
HAL Id: hal-01493758
https://hal.science/hal-01493758v3

Preprint submitted on 15 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization in abstract mean field models
W Oukil

To cite this version:

W Oukil. Synchronization in abstract mean field models. 2023. �hal-01493758v3�

https://hal.science/hal-01493758v3
https://hal.archives-ouvertes.fr


Synchronization in abstract mean field models

W. Oukil,

Faculty of Mathematics,

University of Sciences and Technology Houari Boumediene,

BP 32 El Alia 16111, Bab Ezzouar, Algiers, Algeria.

September 15, 2023

Abstract

We give a sufficient conditions for the existence of solutions, both
synchronized and periodically locked states, in abstract mean field
models.
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1 Introduction

This article generalizes the results obtained in [6]. The class of abstract
mean field systems that we study is defined by the following system:

ẋi = F (X,xi) +Hi(X), i = 1, .., N, t ≥ t0, (P)

where N ≥ 2 and X = (x1, . . . , xN ) is the state of the system.
F : R

N × R → R and H = (H1, . . . ,HN ) : R
N → R

N are a continuous
functions. We note Φt the flow (if exists) of the system (P). The results do
not appear to be trivial for the periodic, non-perturbed system.

1.1 Notations and definitions

In this section, we introduce some notations and definitions. For q, p ∈ N
∗

let G be a function from R
q to R

p. Put G = (G1, . . . , Gp) we consider the
quasi-norm on the space of continues functions from R

q to R
p defined by the

next quantity
||G||B = max

1≤i≤p
sup
Y ∈B

|Gi(Y )|,

1
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where
B = {Y = (y1, . . . , yq) ∈ R

q : max |yi − yj| ≤ 1}.

This quasi-norm is a norm on the space of continues functions from B to
R
p. We note diG, i = 1, 2, . . ., the ith differential of G. We define

||dG||B = max
1≤i≤p
1≤j≤q

||∂jGi(Y )||B , ||d2G||B = max
1≤i≤p
1≤j,k≤q

||∂k∂jGi(Y )||B .

Let G : R
N × R → R, Y = (y1, . . . , yN ) ∈ R

N and z ∈ R, We note

∂iG(Y, z) :=















∂

∂z
G(Y, z) if i = N + 1,

∂

∂yi
G(Y, z) if i = 1, . . . , N.

A function G : R
q → R

p is called 1-periodic in the following sense

Definition 1. [1-periodic function] Let G : R
q → R

p be a function and note
1 := (1, . . . , 1) ∈ R

q. The function G is called 1-periodic if

G(Y + 1) = G(Y ), ∀Y ∈ R
q.

Remark that the previous definition do not imply that the function G is
periodic relative to each variable. Now we define a positive Φt-invariant set,

Definition 2. Suppose that the flow Φt of system (P) exists for every t ≥ t0.
We say that a open set C ⊂ R

N is a positive Φt-invariant if Φt(C) ⊂ C for
all t ≥ t0.

Synchronization and locking may have several meanings or definitions
depending on the authors. We choose the following definitions.

Definition 3 (Dynamical oscillator). The oscillator xi(t) of a solution
X(t) = (x1(t), .., xN (t)) of system (P) is called dynamical if

inf
t≥t0

ẋi(t) > 0.

Definition 4 (Synchronisation). We say that the oscillators {xi(t)}
N
i=1 are

synchronized if they are dynamical and if

sup
t≥t0

sup
1≤i,j≤N

|xi(t)− xj(t)| < +∞.

Definition 5 (Periodic locked solution). We say that the oscillators
{xi(t)}

N
i=1 are periodically locked to the frequency ρ > 0 if they are syn-

chronized and if there exist a periodic functions (Ψi(t) : R → R)Ni=1 such
that

xi(t) = ρt+Ψi(t), ∀i = 1, . . . , N, ∀t ≥ t0.
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1.2 Synchronization Hypothesis (H) and (H∗)

The goal is to prove the existence of the synchronization state of the system
(P) when ||H||B ≈ 0. Consider the following hypotheses:

• (H): F is class C2 on B, 1-periodic and mins∈[0,1] F (s1, s) > 0,

• (H∗):
∫ 1
0

∂n+1F (s1,s)
F (s1,s) ds < 0.

We call the hypothesis (H∗) the synchronization hypothesis. The particu-
larity of the hypothesis (H∗) is the fact : H ≈ 0 and xi ≈ xj(≈ x) implies
that the system (P) is equivalent to

d

dt
xi ≈ F (x1, x) and

d

dt
(xi − xj) ≈ ∂N+1F (x1, x)(xi − xj).

The condition mins∈[0,1] F (s1, s) > 0 is a sufficient condition to get a dy-
namical oscillators as defined in definition 3.

1.3 Main Results

The following main result, I, states the existence of a solution and a syn-
chronized state as defined in the Definition. 4

Main Result (I). Consider the system (P). Suppose that F satisfies the
hypotheses (H) and (H∗). Then there exists r∗ > 0 such that for all r ∈ (0, r∗]
and every C1 function H on B satisfying ||H||B < r there exists an open set
C

r
⊂ R

N such that

1. Existence of solution. The flow Φt of the system (P) exists for all
initial condition X ∈ C

r
and for all t ≥ t0.

2. Synchronization. The open set C
r
is positive Φt-invariant . Further,

for every X ∈ C
r
we have

min
1≤i≤N

inf
t≥t0

d

dt
Φt
i(X) > 0 and sup

t≥t0

|Φt
i(X)−Φt

j(X)| < 2r,∀1 ≤ i, j ≤ N.

The next main result II shows the existence of a periodic locked solution
as defined in definition 5

Main Result (II). Under assumptions of the Main result (I), suppose in
addition that H is 1-periodic. Then there exists ρ > 0 and an initial condi-
tion X∗ ∈ C

r
such that

Φt
i(X∗) = ρt+Ψi,X∗

(t), ∀i = 1, .., N, ∀t ≥ t0,

where Ψi,X∗
: R → R are a C1 and 1

ρ
-periodic functions.
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Remark. Main result I can be generalized to a function
(t,X) ∈ R × R

N 7→ H(t,X) that depends on the variable time t.

1.4 Remarks and motivation

The results can be applied to models of coupled oscillators such as the
Winfree model [10] and the Kuramoto model [9].

Example 6. [Winfree and Kuramoto Models] Winfree [10] proposed a
model describing the synchronization of a population of organisms or os-
cillators that interact simultaneously. The Winfree model is also studied in
[4, 5, 7, 8]. The Kuramoto model is a refined version of the Winfree model.
The Kuramoto model is applied, for example, in neuroscience to study the
synchronization of neurons in the brain [2, 3]. We call the frequency of each
oscillator its natural frequency, as if it were isolated from the others.

The explicit Winfree [1] and Kuramoto models are defined by the fol-
lowing equations, respectively.

ẋi = ωi +Win(X,xi), i = 1 . . . N , t ≥ t0, (W)

ẋi = ωi +Kur(X,xi), i = 1 . . . N, t ≥ t0, (K)

where for (ω, κ) ∈ R
2
+, Win(Y, z) = ω − κ 1

N

∑N
j=1[1 + cos(yj)] sin(z) and

Kur(Y, z) = ω − κ 1
N

∑N
j=1 sin(yj − z) for all Y = (y1, . . . , yN ) ∈ R

N and
z ∈ R. X(t) = (x1(t), . . . , xN (t)) is the state of the systems, and xi(t) is the
phase of the ith-oscillator. The parameter κ ≥ 0 is the strong coupling; the
vector (ω1 + ω, . . . , ωN + ω) ∈ R

N is the vector of the natural frequencies.
In order to apply the main result I and II we need only shows that the
functions (W) and (K) satisfies the synchronization hypothesis (H∗) and
the hypothesis (H) as proved in the following proposition.

Proposition 7. There exists an open set of parameters (κ, ω) ∈ R
2
+, such

that the functions Win and Kur of the systems (W) and (K) respectively,
satisfies both hypotheses (H) and (H∗).

Proof. The function Win is C2 and 2π1-periodic. Further

min
s∈[0,2π]

Win(s1, s) > 0 ⇐⇒ ∀ω > (1 + cos(
π

3
)) sin(

π

3
)κ, ∀s ∈ [0, 2π].
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For every ω > (1 + cos(π3 )) sin(
π
3 )κ we have

∫ 2π

0

∂N+1Win(s1, s)

Win(s1, s)
ds = −

∫ 2π

0

κ[1 + cos(s)] cos(s)

ω − κ(1 + cos(s)) sin(s)
ds

= −

∫ 2π

0

κ sin2(s)

ω − κ(1 + cos(s)) sin(s)
ds < 0.

Same for the Kuramoto model, we have Kur is 2π1-periodic, and

min
s∈[0,2π]

Kur(s1, s) > 0, ∀ω > 0, ∀s ∈ [0, 2π],

For every ω > 0 and κ > 0 we have
∫ 2π

0

∂N+1Kur(s1, s)

Kur(s1, s)
ds = −

∫ 2π

0

κ

ω
ds = −

2πκ

ω
< 0.

2 Dispersion curve

The strategy to prove the main results is to utilize the comparison theorem
for differential equations. We assume a priori that the distance between the
oscillators is small and derive a differential equation estimation to conclude
that the distance between oscillators remains uniformly bounded over time.
We refer to the upper-solution as the dispersion curve. We present the
following lemma:

Lemma 8. Let η = (η1, η2, η3) ∈ R
3
+/{(0, 0, 0)}. Let P1(a, b) = η1a + η2b

2

a polynomial defined for all (a, b) ∈ R × R and let Λ : R → R a C1 and
1-periodic function satisfying

∫ 1

0
Λ(s)ds < 0.

Then for all (a, b) ∈ R
∗
+ × (0, η3) the following differential equation

d

ds
z(s) =

P1(a, b)

η3 − b
+ Λ(s)z(s), (1)

admits a positive solution C1 and 1-periodic solution that we note ∆a,b(s).
Further, there exists Dη,∆ ∈ (0, η3) such that for all D ∈ (0,Dη,∆] there
exists r > 0 such that the solution ∆

r
:= ∆

r ,D satisfies

max
s∈[0,1]

∆
r
(s) ≤ D.
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Proof. Remark that for all (a, b) ∈ R
∗
+× (0, η3), the differential equation (1)

admit a positive C2 and 1-periodic solution ∆a,b(s) of the form

∆a,b(s) =
P1(a, b)

η3 − b

∫ 1+s

s
exp

(

∫ 1+s

t
Λ(v)dv

)

dt

1− exp
(

∫ 1
0 Λ(v)dv

)

Put

λ1 = −

∫ 1

0
Λ(s)ds and λ2 = max

0≤s,t≤1

∫ 1+s

t

Λ(v)dv.

max
s∈[0,1]

∆a,b(s) ≤
P1(a, b)

η3 − b

exp(λ2)

1− exp(−λ1)
.

To get maxs∈[0,1]∆r
(s) ≤ D it sufficient to choose r and D such that

P1(r ,D)

η3 −D

exp(λ2)

1− exp(−λ1)
= D, (2)

which is satisfied for all D ∈ (0,Dη,Λ] such that

Dη,Λ =
η3
2

1− exp(−λ1)

1− exp(−λ1) + η2 exp(λ2)
.

where r > 0 is given by the following formula

r =
D

η1

[

η3
1− exp(−λ1)

exp(λ2)
− [

1− exp(−λ1)

exp(λ2)
+ η2]D

]

.

Definition 9. Let D ∈ (0,Dη,Λ]. We call the dispersion curve associated to
D the solution

∆
r
:= ∆

r ,D(s),

of the differential equation (1) where r is defined by

r =
D

η1

[

η3
1− exp(−λ1)

exp(λ2)
− [

1− exp(−λ1)

exp(λ2)
+ η2]D

]

, (3)

and where

λ1 = −

∫ 1

0
Λ(s)ds et λ2 = max

0≤s,t≤1

∫ 1+s

t

Λ(v)dv.
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Definition 10. Let D ∈ (0,Dη,Λ]. We call the synchronization open set
associated to D and we note C

r
the open set on R

N defined by

C
r
:=

{

X = (xi)
N
i=1 ∈ R

N : ∃νX ∈ R, max
i

|xi − νX | < ∆
r
(νX)

}

, (4)

where ∆
r
is the dispersion curve associated to D.

Remark 11. Remark that

D < Dη,Λ <
η3
2η2

exp(−λ2) and r < D
η3
η1

exp(−λ2).

3 Reduction of the system (P )

The goal of this Section is to prove that the perturbed system (P) can be
studied by using a scalar periodic differential equation such as equation (1)
of lemma 8. Define the following new system

Definition 12. Let X ∈ R
N and let µ0 ∈ R, we call the (NPS) system

associated to Φt(X) the following system

µ̇X = F (Φt(X), µX ), t ∈ IX , (NPS)

where IX = [t0, TX) is the maximal interval of the solution X(t) := Φt(X)
of the system (P) of initial condition φt0(X) = X. We say that µX(t) is
the solution of the system (NPS) associated to Φt(X) of initial condition
µX(t0) ∈ R.

We note

L := ||F ||B + ||dF ||B + ||d2F ||B , and α := min
s∈[0,1]

F (s1, s). (5)

Let X ∈ R
N and let µX(t) be the solution of the system (NPS) associ-

ated to Φt(X) of initial condition µ0 ∈ R. We also note X := Φt(X) and
µX := µX(t) without loss of generality. We consider the following quantities

δi,1(X) := xi − µX , δi,2(X) := µX − xi,

and δ(X) := max
1≤i≤N

|δi,1(X)| = max
1≤i≤N

|δi,2(X)|.

We have the next lemma
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Proposition 13. We consider the system (P). Suppose that the function
F satisfies the hypothesis (H) and suppose that Φt(X) is defined for all
t ∈ [t1, t2]. Let D ∈ (0, α

L
) and suppose that δ(X) < D for all t ∈ [t1, t2],

then
µ̇X > −LD + α > 0, ∀t ∈ [t1, t2].

In particular, t → µX(t) is a diffeomorphism from [t1, t2] to [µX(t1), µX(t2)].

Proof. The strategy is to use the Mean value theorem . Since δ(X) < D we
get, |F (X,µX )− F (µX1, µX)| ≤ ||dF ||BD < LD. Hence

µ̇X = F (X,µX ) = [F (X,µX )− F (µX1, µX)] + F (µX1, µX) > −LD + α.

Thanks to hypothesis 0 < D < α
L

to get µ̇X(t) > −LD + α > 0 for all
t ∈ [t1, t2].

Proposition 14. We consider the system (P). Suuppose that F satisfies
the hypothesis (H) and suppose that Φt(X) is defined for all t ∈ [t1, t2]. Let
D ∈ (0, α

L
) and r > 0. Suppose that

||H||B < r , and δ(X) < D, ∀t ∈ [t1, t2].

Then for all 1 ≤ i ≤ N , k ∈ {1, 2} and s ∈ [µX(t1), µX(t2)] we have

d

ds
δ∗i,k(s) <

1

α

αr + LD2(L+ 2α)

α− LD
+

∂FN+1(s1, s)

F (s1, s)
δ∗i,k(s), (6)

where
δ∗i,k(s) := δi,k(X(µ−1

X (s))) and X(µ−1
X (s)) = (x1(µ

−1
X (s)), . . . , xN (µ−1

X (s))).

Proof. The strategy is to use several times the Taylor formula. Let
D ∈ (0, α

L
) and suppose that δ(X) < D for all t ∈ [t1, t2]. Use the Tay-

lor formula, there exists ci ∈ [xi, µX ] such that for all 1 ≤ i ≤ N

F (X,xi)− F (X,µX) = ∂N+1F (X,µX )δi,1 +
1

2
∂N+1[∂N+1F (X, ci)]δ

2
i,1

< ∂N+1F (X,µX )δi,1 +
1

2
||d∂N+1F ||BD

2

< ∂N+1F (X,µX )δi,1 + LD2.

For k = 2 we also obtain

F (X,µX )− F (X,xi) = −∂N+1F (X,µX)δi,1 −
1

2
∂N+1[∂N+1F (X, ci)]δ

2
i,1

= ∂N+1F (X,µX)δi,2 −
1

2
∂N+1[∂N+1F (X, ci)]δ

2
i,2

< ∂N+1F (X,µX)δi,2 + LD2.
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We have ||H||B < r , use equations (P) and (NPS) we obtain for all 1 ≤ i ≤ N
and k ∈ {1, 2}

d

dt
δi,k = Hi(X) + [F (X,xi)− F (X,µX )] < r + LD2 + ∂N+1F (X,µX )δi,k.

(7)

Use again the Taylor formula to get

∂N+1F (X,µX )δi,k = [∂N+1F (X,µX)− ∂N+1F (µX1, µX) + ∂N+1F (µX1, µX)]δi,k

< ||d∂N+1F ||BD|δi,j|+ ∂N+1F (µX1, µX)δi,k

< LD2 + ∂N+1F (µX1, µX)δi,k.

Equation (7) implies that for all 1 ≤ i ≤ N and k ∈ {1, 2}

d

dt
δi,k < r + 2LD2 + ∂N+1F (µX1, µX)δi,k.

Thanks to proposition 13, µ̇X > α − LD. We consider the change of vari-
able : t → s := µX(t) for t ∈ [t1, t2]. Put δ∗i,k(s) := δi,k(X(µ−1

X (s)))

and X(µ−1
X (s)) = (x1(µ

−1
X (s)), . . . , xN (µ−1

X (s))). We deduce that for all
s ∈ [µX(t1), µX(t2)]

d

dt
δi,k(X) =

d

ds
δ∗i,k(s)

d

dt
µX(t) < r + 2LD2 + ∂N+1F (s1, s)δ∗i,k(s)

d

ds
δ∗i,k(s) =

r + 2LD2

µ̇X
+

∂N+1F (s1, s)

µ̇X
δ∗i,k(s) <

r + 2LD2

α− LD
+

∂N+1F (s1, s)

µ̇X
δ∗i,k(s)

=
r + 2LD2

α− LD
+

∂N+1F (s1, s)

F (s1, s)

F (s1, s)

µ̇X
δ∗i,k(s).

Use the Mean value theorem and the change of variable t → s := µX(t) we
get

|F (µX1, µX)− µ̇X | = |F (µX1, µX)− F (X,µX)| < ||dF ||BD < LD,

which is equivalent to

F (s1, s)

µ̇X
= 1 + θ(s), |θ(s)| <

LD

α− LD
, ∀s ∈ [µX(t1), µX(t2)].

Finlay, since |
∂N+1F (s1,s)

F (s1,s) | < L
α

and since |δi,k(t)| ≤ δ(X) < D for all
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t ∈ [t1, t2] we obtain for all s ∈ [µX(t1), µX(t2)]

d

ds
δ∗i,k(s) <

r + 2LD2

α− LD
+

∂N+1F (s1, s)

F (s1, s)
[1 + θ(s)]δ∗i,k(s)

<
r + 2LD2

α− LD
+

L2

α

D2

α− LD
+

∂N+1F (s1, s)

F (s1, s)
δ∗i,k(s)

=
1

α

α(r + 2LD2) + L2D2

α− LD
+

∂N+1F (s1, s)

F (s1, s)
δ∗i,k(s).

We have the following proposition

Proposition 15. Let F be a function satisfying hypotheses (H) and (H∗).
Then there exists D∗ ∈ (0, 1) such that for all D ∈ (0,D∗], there exists
r > 0 and an open set C

r
(as in definition 10), such that for any function

H satisfying ||H||B < r we have

∀X ∈ C
r
: Φt(X) ∈ C

r
, ∀t ∈ IX .

Proof. Use equation (5) and hypothesis (H)

max{

∫ t2

t1

∂N+1F (s1, s)

F (s1, s)
ds : 0 ≤ t1 ≤ t2 ≤ 1} ≤

L

α
.

Let Dη,Λ the constant defined by lemma 8 such that η et Λ are defined by

η = (
1

L
, 2 +

L

α
,
α

L
), and Λ(s) =

∂N+1F (s1, s)

F (s1, s)
.

Put D∗ := Dη,Λ. Let D ∈ (0,D∗] and the dispersion function ∆
r
associated

to D (See definition 9). The dispersion curve ∆
r
is solution of the periodic

scalar differential equation

d

ds
∆

r
(s) =

1

α

αr + LD2(L+ 2α)

α− LD
+

FN+1(s1, s)

F (s1, s)
∆

r
(s),

and satisfies the folioing estimation

max
s∈[0,1]

∆
r
(s) ≤ D.

Let C
r
be the synchronization open set associated to D, as defined in defi-

nition 10.
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For any function H satisfying ||H||B < r , where r is given by formula (3),
let X(t) = (x1(t), . . . , xN (t)) := Φt(X) be the solution of the system (P)
of initial condition X = (x1, . . . , xN ) ∈ C

r
. There exists νX ∈ R such

that max1≤i≤N |xi − νX | < ∆
r
(νX) ≤ D. Let µX(t) be the solution of the

system (NPS) associated to X(t) of initial condition µX(t0) = νX , then
δ(X) < ∆

r
(µX(t0)). Let

T ∗ := sup{t ∈ IX : ∀ t0 < s < t, max
i

|xi(s)− µX(s)| < ∆
r
(µX(s))}.

By continuity we have t0 6= T ∗. The proposition is proved if we shows
that T ∗ = sup{t ∈ IX}. By contradiction, suppose that T ∗ ∈ IX . Using
the change of variable s = µX(t) the proposition 14 implies that for all
s ∈ [νX , µ∗

X := µX(T ∗)]

d

ds
δ∗i,k(s) <

1

α

αr + LD2(L+ 2α)

α− LD
+

FN+1(s1, s)

F (s1, s)
δ∗i,k(s), ∀s ∈ [µX , µ∗

X ].

Hence there exists 1 ≤ i0 ≤ N and k ∈ {1, 2} such that
|δ∗i0,k0(µ

∗
X)| = ∆

r
(µ∗

X). Suppose that δ∗i0,k0(µ
∗
X) = ∆

r
(µ∗

X) without loss
of generality. We get

d

ds
δ∗i0,k0(µ

∗
X) <

1

α

αr + LD2(L+ 2α)

α− LD
+

FN+1(µ
∗
X1, µ∗

X)

F (µ∗
X1, µ∗

X)
δ∗i0,k0(µ

∗
X)

=
1

α

αr + LD2(L+ 2α)

α− LD
+

FN+1(µ
∗
X1, µ∗

X)

F (µ∗
X1, µ∗

X)
∆

r
(µ∗

X) =
d

ds
∆

r
(µ∗

X).

There exists s < µ∗
X close enough to µ∗

X such that δ∗i0,k0(s) > ∆
r
(s)

or in other words there exists t < T ∗ close enough to T ∗ such that
δi0,k0(t) > ∆

r
(µX(t)). We have obtained a contradiction.

4 Proof of main result I : Existence of solution and

the synchronized state

Theorem 16. Let F be a function satisfying the hypotheses (H) and (H∗).
Then there exists D∗ ∈ (0, 1) such that for all r ∈ (0,D∗], there exists
a synchronization open set C

r
(as defined in the definition 10), such that

for any function H satisfying ||H||B < r , and for all X ∈ C
r
we have

IX = [t0,+∞[. Further C
r
is positive Φt-invariant and

∀X ∈ C
r
, ∃νX ∈ R : |Φt

i(X)− µX(t)| < r, ∀i = 1, .., N, ∀t ≥ t0,

where µX(t) is the solution of the system (NPS) associated to Φt(X) of
initial condition µX(t0) = νX .
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Proof. Thanks to proposition 15, it is sufficient to prove that IX = [t0,+∞[.
By contradiction suppose that there exists t0 < tX < +∞ such that the
solution X(t) is defined only on IX = [t0, tX [. Then limt→tX ||Φt(t)|| = +∞.
Proposition 15 implies that

|Φt
i(X) − Φt

j(X)| < D,∀1 ≤ i, j ≤ N, ∀tX > t ≥ t0,

For all i = 1, .., N ,

α− LD − r <
d

dt
xi < max

s∈[0,1]
F (s1, s) + LD + r , ∀tX > t ≥ t0.

Hence ||Φt(X)|| < +∞ for all t ∈ [t0, tX ], in particular
limt→tX ||Φt(t)|| < +∞. We have obtained a contradiction.

5 Proof of main result II : Periodic locked solution

We use the fixed point Theorem to prove the existence of periodic locked
state as follow

Lemma 17. Let F be a function satisfying the hypotheses (H)and (H∗).
For any 1-periodic C1 function H satisfying ||H||B < r let C

r
the synchro-

nization Φt-invariant open set given by theorem 16. Let the set Σ defined
by

Σ = {X ∈ R
N , max

i
|xi| < ∆

r
(0)} ⊂ C

r
.

Then there exists a C1 function P : Σ → Σ (the Poincaré map) and a C1

function θ : Σ → R
+ (the return time map) such that

Φt0+θ(X)(X) = P (X) + 1, 1 = (1, · · · , 1) ∈ R
N ,

1

L
< θ(X) <

2

α
.

Proof. Let X ∈ Σ ⊂ C
r
. Let µX(t) be the solution of the system (NPS)

associated to X(t) of initial condition µX(t0) = 0. Let τX be the inverse
function of the function µX := µX(t) . By the proposition 13 and the
theorem 16 we obtain

α− LD < µ̇X(t) < L.

Remark (11) in the Section 2 shows that for all D < α
2L we have

α

2
< µ̇X(t) < L.
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Let θ(X) := τX(1) − t0. Then
∫ τX(1)
t0

µ̇X(t)dt = 1
which implies the second estimation of lemma. Recall that
max1≤i≤N |Φt

i(X) − µX(t)| < ∆(µX(t)) < D for all t ≥ t0. Put
P (X) := Φt0+θ(X)(X)− 1, P = (P1, . . . , PN ). Since µX(t0+ θ(X)) = 1 then

max
1≤i≤N

|Pi(X)| = max
1≤i≤N

|Φ
t0+θ(X)
i (X) − 1| < ∆(1) = ∆(0).

We have shown that P is a map from Σ into itself.

Corollary 18. The Poincaré map P defined in lemma 17 admits a fixed
point X∗ ∈ Σ.

Proof. Σ̄ is compact and convex; P : Σ̄ → Σ̄ is continuous. By Brouwer
fixed point theorem, P admits a fixed point in X∗ ∈ Σ̄. We claim that
X∗ 6∈ ∂Σ̄. Suppose by contradiction X∗ ∈ ∂Σ̄. There exists 1 ≤ i0 ≤ N ,
such that |xi0,∗| = ∆

r
(0); Put

X∗(t) = Φt(X∗), X∗(t) = (x1,∗(t), . . . , xN,∗(t)).

Let µX∗
(t) the solution of the system (NPS) associated to the solution X∗(t)

of initial condition µX∗
(t0) = 0. We note

δi,1(X∗(t)) = xi,∗(t)− µX∗
(t), and δi,2(X∗(t)) = µX∗

(t)− xi,∗(t).

There exists 1 ≤ i ≤ N , k ∈ {1, 2}, and t′ > t0 close to t0
such that δi0,k(X∗(t)) < ∆

r
(µX∗

(t)) for all t′ > t > t0. By re-
peating this argument for every 1 ≤ i1 ≤ N and k ∈ {1, 2}
satisfying the equality δi1,k(X∗(t)) = ∆

r
(µX∗

(t)) we obtain for
some t∗ > t0, δ(X∗(t

∗)) < ∆
r
(µX∗

(t∗)). But 16 implies that
max1≤i≤N |xi,∗(t)−µX∗

(t)| < ∆
r
(µX∗

(t)) for all t > t∗. We have obtained a
contradiction with the fact that

max
1≤i≤N

|Φ
t0+θ(X∗)
i (X∗)− µX∗

(t0 + θ(X∗))| = max
1≤i≤N

|xi,∗ + 1− 1|

= ∆
r
(0) = ∆

r
(µX∗

(t0 + θ(X∗))),

knowing that µX∗
(t0 + θ(X∗)) = 1 and Φt0+θ(X∗)(X∗) = X∗ + 1.

The main result II is a consequence of the previous corollary.

Proof of the main result II. Corollary 18 implies the existence of a fixed
point X∗ ∈ C

r
and return time θ∗ > 0 such that

Φt0+θ∗(X∗) = X∗ + 1.
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Thanks to periodicity and uniqueness of solution of differential equation, we
obtain

Φθ∗+t(X∗) = Φt(X∗) + 1, ∀t ≥ t0.

Let Ψ : R
N → R

N the function defined by

Ψ(s) := Φs(X∗)−
s

θ∗
1 = (Ψ1(s), · · · ,ΨN (s)), ∀s ≥ t0.

The theorem is proved if we show that Ψi are θ∗-periodic. We have

Ψ(s+ θ∗) = Φs+θ∗(X∗)−
s+ θ∗
θ∗

1 = Φs(X∗) + 1 −
s+ θ∗
θ∗

1 = Ψ(s).

Lemma 17 implies that θ∗ is uniformly bounded.

6 Conclusion

We have extended the results obtained in [6] to a class of abstract mean field
models. We have demonstrated the existence of solutions and synchronized
solutions under small perturbations. Additionally, we have established the
existence of periodic locked states for periodic systems.
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