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Hochschild cohomology algebra of radical square
zero algebras

Claude Cibils

Abstract

We compute the dimension at each degree of the Hochschild co-
homology of a radical square zero finite dimensional algebra, in terms
of the combinatorics of its quiver. The multiplicative structure is ob-
tained as well, those algebras are finitely generated only for quivers
without oriented cycles and for crowns.

1991 Mathematics Subject Classification : 16E40

1 Introduction

The Hochschild cohomology algebra of a finite dimensional algebra is not
easy to compute in general. It gives inside to the homological global dimen-
sion (see [13]) and is closely related to the deformations of the algebra via
its value in degree 2 and suitable obstructions (see [12]). In [4, 5, 8, 7, 9]
a classification of rigid families is performed and cohomology groups are
described. Recently Holm obtained in [14] an explicit computation for fi-
nite abelian group algebras; then A. Solotar and the author showed that
for these algebras the Hochschild cohomology algebra is isomorphic to the
tensor product of the group algebra and the usual cohomology algebra of the
group ([10]). Moreover a close relation seems to exist between the structure
of the Hochschild cohomology algebra and the monoidal structure of the
category of Hopf bimodules over a Hopf algebra, see [3].

In view of these results, it became interesting to write observations ob-
tained some years ago: I lectured at Séminaire P. Dubreuil and M.-P. Malli-
avin in Paris (1990) on the additive structure of the Hochschild cohomology
algebra of a radical square zero algebra; in Salt Lake City meeting on Ho-
mological methods in representation theory (1991) I lectured on the multi-
plicative aspects.
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A radical square zero algebra is a finite dimensional algebra over a field k
such that the square of its Jacobson radical is already zero. Since Hochschild
cohomology is Morita invariant, we consider the corresponding basic algebra.
More precisely, let Q be a connected and finite quiver and let (kQ)

2
be

the quotient of the path algebra of Q by the two-sided ideal generated by
paths of length 2. The case when the quiver is a crown is exceptional;
out of this case, the dimension of each Hochschild cohomology vector space
Hn((kQ)

2
, (kQ)

2
) is the difference between the number of couples composed

by a path of length n and an arrow sharing the same starting and ending
vertices and the number of oriented cycles of length n−1. This computation
can be performed using a reduced projective resolution presented in [4, 5]
of an algebra having a maximal separable subalgebra. Then we are able
to produce suitable models for the cochains vector spaces and coboundaries
maps.

The cup-product (or Yoneda product) can also be described. We obtain
that the Hochschild cohomology algebra is not finitely generated in general,
except of course if Q has no oriented cycles – the Hochschild cohomology
vanish in this case at high enough degrees –, and in the exceptional crown
case. This result has to be compared with Venkov’s Theorem ([16] and
also [2]): for finite group algebras the cohomology algebra is always finitely
generated.

We will also relate the results with previous work on the deformation the-
ory of square radical zero algebras from [8]; cyclic and Hochschild homology
of this class of algebras has been obtained in [6].

The work presented in this paper has the advantage of being mostly self-
contained: once the correct framework is established, there is no difficulty
for carrying on the observations. Partial aspects of the present computations
have been written in a manuscrit by a former Diploma student M. Blater
at Geneva in 1994. E. Marcos told me at the Conference on representations
of algebras Geiranger (1996) that he has made computations for crowns,
obtaining that the Hochschild cohomology algebra is finitely generated in
that case. Notice also recent results on Hochschild homology of truncated
and quadratic monomial algebras obtained by Sköldberg in [15] using the
minimal projective resolution of Annick and Green ([1]).
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2 Resolution and models

Let Λ be a finite dimensional k-algebra, where k is a field, affording a maxi-
mal semisimple algebra E which is separable; the Wedderburn-Malcev The-
orem (see for instance [11]) holds and we have a decomposition Λ = E ⊕ r
where r is the Jacobson radical of Λ. Then the Hochschild cohomology of a
Λ-bimodule M is the cohomology of the following complex of cochains (see
[4, 5]):

0 → ME → HomE−E(r, M) → · · · → HomE−E

(
r

⊗
E

n

, M

)
→ · · ·

where ME = {m ∈ M | em = me for all e in M} and HomE−E

(
r

⊗
E

n

, M

)
is

the vector space of E-bimodule morphisms from the tensor product over E
of n copies of r to the E-bimodule M obtained by restricting the Λ actions.
The coboundaries δ are given by

(δm)(x) = xm − mx for m ∈ ME and x ∈ r,

δf (x1, . . . , xn+1) = x1f (x2, . . . , xn+1) +∑
(−1)if (x1, . . . , xixi+1, . . . xn+1) + (−1)n+1f (x1, . . . , xn) xn+1

for f ∈ HomE−E

(
r

⊗
E

n

, M

)
and where we have replaced the tensor product

symbols by commas.
Of course, the interesting feature of this cochain complex in case of a

square radical zero algebra is that the middle-sum terms of the coboundary
vanish. We have

δf (x1, . . . , xn+1) = x1f (x2, . . . , xn+1) + (−1)n+1f (x1, . . . , xn) xn+1.

Let now Q be a quiver, that is a finite oriented graph given by two sets,
the set of vertices Q0 and the set of arrows Q1, provided with two maps s and
t : Q1 → Q0 corresponding to the source and the terminus vertices of each
arrow. A path of length n is a sequence of arrows γ = an · · · a1 such that
t(ai) = s(ai+1) for each possible i. We put s(γ) = s(a1) and t(γ) = t(an).
We agree that a vertex e is a path of length zero with source and terminus
vertices e itself.

The quotient of the path algebra of Q by the two-sided ideal generated
by paths of length 2 can be described directly as follows: let kQ0 be the
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semisimple commutative algebra which has Q0 as a complete set of primitive
orthogonal idempotents. Let also kQ1 be the vector space which has Q1 as
a basis, equipped with its natural bimodule structure:

ea = δe,t(a)a and ae = δe,s(a)a

where e is a vertex, a is an arrow and δx,y the Kronecker symbol having
value 1 if x = y and 0 otherwise.

We denote (kQ)
2

the vector space kQ0 ⊕kQ1 with the algebra structure
given by

(e, x)(e′, x′) = (ee′, ex′ + xe′).

This finite dimensional algebra has square zero Jacobson radical r = kQ1,
and E = kQ0 is a maximal semisimple subalgebra already separable. Ac-
tually any finite dimensional algebra having radical square zero over an
algebraically closed field is Morita equivalent to an algebra (kQ)

2
, where Q

has vertices given by the set of isomorphism classes of simple modules, and
the number of arrows between two vertices is the dimension of Ext1 between
the corresponding simple modules.

We consider now more in detail the cochain space HomE−E (r⊗
E

n, Λ),
where the bimodule M is given by the algebra itself Λ = (kQ)

2
, where Q is

an arbitrary quiver and k any field. First we have the following immediate
result:

Lemma 2.1 Let r = kQ1 be the Jacobson radical of (kQ)
2
and let E = kQ0.

Then r
⊗
E

n

has a basis given by Qn, the set of paths of length n.

We introduce now the following notation: let X and Y be sets of paths.
The set X//Y of parallel paths is the set of couples (γ, γ′) from X × Y
such that s(γ) = s(γ′) and t(γ) = t(γ′). For example Qn//Q0 is the set of
oriented cycles of length n. In the following, we will denote kB the vector
space having a given set B as a basis.

Lemma 2.2 For the algebra Λ = (kQ)
2

the vector space HomE−E

(
r

⊗
E

n

, Λ
)

is isomorphic to k (Qn//Q0) ⊕ k (Qn//Q1).

Proof: Since Λ = E ⊕ r is a decomposition of Λ as a direct sum of E-
bimodules, we have

HomE−E

(
r

⊗
E

n

, Λ
)

= HomE−E

(
r

⊗
E

n

, E

)
⊕ HomE−E

(
r

⊗
E

n

, r

)
.
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The kQ0-bimodule decomposition of r
⊗
E

n

= kQn is among Qn, more precisely

kγ is a one-dimensional sub-bimodule of r
⊗
E

n

for each γ ∈ Qn. Moreover
the action of the vertices are zero on γ except for t(γ) on the left and
s(γ) on the right, this vertices acts as the identity: we say that kγ is of
type (t(γ), s(γ)). The kQ0-bimodule decomposition of kQ0 is among Q0,
each vertex e provides a direct summand of type (e, e). Now we have that
HomE−E(U, V ) = 0 if U and V are simple E-bimodules not of the same type
(this is Schur’s Lemma which is immediate in this context). Finally we infer
the following linear isomorphism

k (Qn//Q0) → HomkQ0−kQ0 (kQn, kQ0)

where (γ, e) ∈ Qn//Q0 is sent to the elementary map which associates e to
γ and 0 to any other path of Qn. Similarly we have that

(γ, a) �→ (
γ′ �→ δγ,γ′a

)

is a linear isomorphism from k(Qn//Q1) to HomkQ0−kQ0 (kQn, kQ1) .

Remark 2.3 In degree 0, the vector space ΛE is identified with k(Q0//Q0)⊕
k(Q0//Q1). Notice that Q0//Q0 is simply Q0, and that Q0//Q1 is the set of
loops of Q.

We wish now to translate the coboundaries through these linear isomor-
phisms. Let

D : k (Qn//Q0) −→ k (Qn+1//Q1) given by

D(γ, e) =
∑

a∈Q1e

(aγ, a) + (−1)n+1
∑

a∈eQ1

(γa, a)

where Q1e (resp. eQ1) is the subset of Q1 of arrows with prescribed source
(resp. terminus) vertex e.

Proposition 2.4 The diagram where the vertical maps are given by the
linear isomorphisms of Lemma 2.2, the coboundary map δ of the reduced
complex of cochains at the top horizontal, and at the bottom the map

k (Qn//Q0) ⊕ k (Qn//Q1)

(
0 0
D 0

)
−→ k (Qn+1//Q0) ⊕ k (Qn+1//Q1)

is commutative.
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Verifications are straightforward, using that the algebra has zero radical
square.

Remark 2.5 If Q has no oriented cycles, there is a path of maximum length
m. From the above result we infer that Hn

(
(kQ)

2
, (kQ)

2

)
is zero for n > m

3 Hochschild cohomology

Since Hochschild cohomology is additive on a product of algebras, we will
assume that the considered quivers are connected.

A c-crown is a quiver with c vertices cyclically labeled by the cyclic group
of order c, and c arrows a0, · · · , ac−1 such that s(ai) = i and t(ai) = i + 1.
A 1-crown is a loop, and a 2-crown is the two-way quiver.

Theorem 3.1 Let Q be a connected quiver which is not a crown. Then for
n > 0 we have

dimkH
n

(
(kQ)

2
, (kQ)

2

)
= | Qn//Q1 | − | Qn−1//Q0 | .

We also have dimkH
0
(
(kQ)

2
, (kQ)

2

)
= | Q1//Q0 | +1.

Proof: We will show the probably most interesting observation of this work,
namely that D is injective for a positive n and for quivers which are not
crowns. We fix a notation: if γ is an oriented path of positive length, f(γ)
and l(γ) denotes the first and last arrows of γ respectively. Moreover the
support of an element x expressed in a basis B of a vector space is the subset
of B determined by the non zero coefficients of x.

Let x =
∑

(γ,e)∈k(Qn//Q0) x(γ,e)(γ, e) be an element of the kernel of D. We
fix an oriented cycle (γ, e) in order to show that its field coefficient x(γ,e) is
zero. The contribution of x(γ,e)(γ, e) in D(x) is

x(γ,e)

⎡
⎣ ∑

a∈Q1e

(aγ, a) + (−1)n+1
∑

a∈eQ1

(γa, a)

⎤
⎦ .

Let us say that a vertex is concerned by an arrow a if it coincides with
either the source or the terminus vertex of a. We claim first that if the vertex
e is concerned by other arrows than f(γ) or l(γ), then x(γ,e) is already zero.
Indeed, let a be such an arrow with for instance s(a) = e and a �= f(γ); then
the basis element (aγ, a) is not in the support of D(γ′, e′) for any (γ′, e′)
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other than (γ, e). To see this, suppose first that (aγ, a) = (a′γ′, a′); then
a = a′ and γ = γ′. Secondly suppose (aγ, a) = (γ′a′, a′); then a = a′ and a
is the first arrow of γ: we have supposed this is not the case. When a is an
arrow with t(a) = e and a �= l(γ), the analogous proof applies.

We assume now we are in the leaving situation, that is Q1e = {f(γ)}
and eQ1 = {l(γ)}. Consider the “rotated” (γ, e) of (γ, e), namely remove
f(γ) from the beginning of γ and add it at its end: if γ = l(γ) · · · a2f(γ)
then γ = f(γ)l(γ) . . . a2 and e = s(a2) = t(f(γ)). Our second claim is that
x(γ,e) = (−1)nxγ,e. Indeed we have that (f(γ)γ, f(γ)) is of course in the
support of D(γ, e) and also in the support of D(γ, e) since (γf(γ), f(γ)) =
(f(γ)γ, f(γ)). But (f(γ)γ, f(γ)) is not in any other support of the image
by D of a basis element. To prove this, let first (γ′, e′) be a cycle such
that there exist a ∈ Q1e

′ verifying (aγ′, a) = (f(γ)γ, f(γ)). Then f(γ) = a
and γ = γ′. Let secondly (γ′, e′) be a cycle such that there exist a ∈ e′Q1
with (γ′a, a) = (f(γ)γ, f(γ)). Then a = f(γ), γ′f(γ) = f(γ)γ and γ′ is
the rotated γ of γ. We infer that the coefficient of (f(γ)γ, f(γ)) in D(x)
is x(γ,e) + (−1)n+1x(γ,e). This has to be zero since we are assuming that
D(x) = 0, and since Qn+1//Q1 is a basis.

The end of the proof is an induction process: if e is concerned by some
other arrow than f(γ) or l(γ), we infer x(γ,e) = 0 by the first claim. The
second claim provides our aim x(γ,e) = 0. If e is not concerned by other
arrows than f(γ) or l(γ), we rotate γ and we analyze arrows at e. The
process has a successful end: rotating n times (γ, e) returns to (γ, e) and at
some rotation stage we have to meet an “exotic” arrow – not the first, not
the last –, otherwise the connected quiver is a crown and γ some power of
the minimal oriented cycle at one of its vertices.

The linear map D at zero degree is certainly not injective, since we know
that H0(Λ, Λ) is always the center of Λ; for Λ = (kQ)

2
, a basis of the center

is provided by the set of loops Q1//Q0 together with the unit element of the
algebra, namely the sum of all the vertices. Furthermore it is immediate to
verify that the kernel of

D : k(Q0//Q0) → k(Q1//Q1)

given by D(e, e) =
∑

a∈Q1e(a, a) − ∑
a∈eQ1

(a, a) is indeed one-dimensional,
generated by

∑
e∈Q0

(e, e) (recall that Q is connected).

Before considering the exceptional crown case, we point out a fact from
the previous dimensional computation.
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Corollary 3.2 Let Q be a connected quiver which is not a crown, k be a
field and (kQ)

2
the corresponding radical square zero algebra. The graded co-

homology H∗((kQ)
2
, (kQ)

2
) = ⊕n≥0H

n((kQ)
2
, (kQ)

2
) is finite dimensional

if and only if Q has no oriented cycles. More precisely, if there is an oriented
cycle of length c, then Hcn+1((kQ)

2
, (kQ)

2
) �= 0 for all positive n.

Proof: We already noticed that if Q has no oriented cycles, the degree of the
non-zero cohomology vector spaces is bounded by the maximal length of a
path. We need to prove that the inequality | Qn−1//Q0 | < | Qn//Q1 | holds
whenever Qn−1//Q0 is non empty. Consider the following set monomor-
phism

Qn−1//Q0 → Qn//Q1

given by (γ, e) �→ (l(γ)γ, l(γ)) where l(γ) denotes as before the last arrow of
γ. Since Q is not a crown, this map is not surjective.

Proposition 3.3 Let Q be a c-crown with c ≥ 2. The center of (kQ)
2

is one-dimensional. If the characteristic of k is not two, let n be an even
multiple of c. Then

dimkH
n

(
(kQ)

2
, (kQ)

2

)
= dimkH

n+1
(
(kQ)

2
, (kQ)

2

)
= 1.

The cohomology vanishes in all other degrees.
Moreover, a non-trivial n-cochain is provided by the sum of all the cycles

of length n. A non-trivial n + 1-cochain is given by (aγ, a) for any chosen
cycle γ of length n with first arrow denoted a.

If the characteristic of k is two, the above dimensions are valid for any
multiple of c, the non-trivial cochains are given as before.

Proof: We have to consider the kernel of

D : k (Qn//Q0) → k (Qn+1//Q1) .

Notice first that Qn//Q0 and Qn+1//Q1 are empty if n is not a multiple
of c. Now assume that c divides n and consider the cyclic group G =
< t | tc = 1 > labeling the vertices of the crown; each cycle of length n
is determined by its source and terminus vertex in G, hence we obtain a
bijection between Qn//Q0 and G. Similarly, each couple of Qn+1//Q1 is
determined by their common source vertex, we also have a bijection with G.
Through this bijections the map D becomes a linear endomorphism D′ of
kG given by D′(ti) = ti + (−1)n+1ti−1. Now it is straightforward to verify

8



that D′ has one-dimensional kernel given by the sum of elements of G if n
is even, or for any n in case of characteristic two. If n is odd, D′ is injective
for a field of characteristic not two.

The result follows, since the assumption c ≥ 2 insures enough distance
between non-zero cochain vector spaces.

The case of a loop (c = 1) is special since there is no longer vanishing
cochain vector spaces, and the coboundaries maps interact:

Proposition 3.4 Let Q be a loop a, the corresponding algebra (kQ)
2

is
k[a]/a2. Assume k is not of characteristic two. For every n > 0, we have

dimkH
n((kQ)

2
, (kQ)

2
) = 1.

If n is even (an, a) generates linearly the cohomology at degree n; for n odd,
(an, 1) is a linear generator at degree n + 1.

If the characteristic of k is two, the coboundaries are zero and each
Hochschild cohomology vector space is two-dimensional.

4 Cup-product

In the context of the reduced cochain complex of the beginning of Section
1, the cup-product is the following: let f and g be cochains of degree n and
m respectively. Then f � g is the cochain of degree n + m given by

f � g(x1, . . . , xn, y1, . . . , ym) = f(x1, . . . , xn)g(y1, . . . , ym).

As usual we have: δ(f � g) = δf � g + (−1)ng � δf . This implies
the existence of a well defined product in Hochschild cohomology. In case of
a radical square zero algebra this can be easily described. Recall that if Q
is connected and is not a crown, any cocycle can be represented as a linear
combination of elements of Qn//Q1. Relations are provided by the image of
D.

Lemma 4.1 If Q is a connected quiver which is not a crown, the cup-
product of elements of positive degree is always zero for the Hochschild co-
homology of (kQ)

2
.

Proof: Consider elements of k (Qn//Q1) and k(Qm//Q1) as cochains repre-
senting cocycles, and recall that the corresponding E-bimodule morphisms
have values in the radical. Since r2 = 0, the cup product is already zero at
the cochain level.
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Lemma 4.2 The center of (kQ)
2

is isomorphic to the algebra k[l1, . . . , lr]
where {l1, . . . , lr} is the set of loops; each loop has square zero and is or-
thogonal to the others. Moreover, loops and elements of positive degree are
orthogonal in Hochschild cohomology.

Let Q be a connected quiver which is not a crown. Let Z = k[l1, . . . , lr]
be the center of (kQ)

2
as above, and let X be a vector space of dimension∑

i>0 dimkH
i((kQ)

2
, (kQ)

2
) – this sum is finite if and only if Q has no

oriented cycles, see Corollary 3.2 –. Consider on X the trivial Z-bimodule
structure, i.e. lix = xli = 0 for all i and for all x ∈ X, the unit element acts
of course as the identity.

Proposition 4.3 Let Q be a connected quiver which is not a crown. Then
the Hochschild cohomology algebra H∗((kQ)

2
, (kQ)

2
) is isomorphic to Z⊕X

where the product is given by

(z, x)(z′, x′) = (zz′, zx′ + xz′).

Remark 4.4 Any finite subset of the above algebra generates a finite di-
mensional sub-algebra. Hence as soon as the quiver has an oriented cycle
(but is not a crown), the Hochschild cohomology is not finitely generated.

We observe now that we retrieve the conditions obtained in [8] in order
to insure the rigidity of a radical square zero algebra:

Proposition 4.5 Let Q be a connected quiver. Then H2((kQ)
2
, (kQ)

2
) = 0

if and only if
1) Q has no loops,
2) Q do not contain unoriented triangles, i.e. 3 vertices and 3 arrows

not performing an oriented cycle.
3) Q is not the 2-crown.

Proof: If Q is a 2-crown or a loop, H2((kQ)
2
, (kQ)

2
) �= 0 regardless the

characteristic of the field; other crowns has zero 2-cohomology. Then as-
sume Q is not a crown. If Q has a loop, we know from Corollary 3.2 that
H2((kQ)

2
, (kQ)

2
) �= 0. Now assume Q has no loops; then

dimkH
2((kQ)

2
, (kQ)

2
) = | Q2//Q1 |

which is exactly the number of unoriented triangles for such quivers.
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Theorem 4.6 Let k be a field and let Q be a c-crown with c ≥ 2. Then
H∗((kQ)

2
, (kQ)

2
) is isomorphic to k[f, g]/g2, where f and g are commuting

variables of degrees c′ and c′ + 1 respectively (if k has characteristic two or
if c is even, we put c′ = c; otherwise c′ = 2c).

Proof: We have proved that the Hochschild cohomology of a c-crown (c ≥ 2)
is non-zero only for degrees n and n + 1, where n is a multiple of c′. At
degree n the cohomology is linearly generated by the E-bimodule morphism

fn : r
⊗
E

n

→ E

which sends each oriented cycle of length n to its source-terminus vertex.
At degree n + 1, the cohomology is given by

gn : r
⊗
E

n+1

→ r

obtained through the choice of a particular oriented cycle γ of length n with
first arrow called a: we have gn(aγ) = a and gn vanish on any other basis
element. The element in cohomology does not depend on the choice of γ.

From this description, we obtain the following: since we know that fc′ �=
0 in cohomology, we have (fc′)m = fc′m. We know also that gc′ �= 0, and we
have g2

c′ = 0. Moreover

gc′ (fc′)m = (fc′)m gc′ = gc′m.

The presentation follows, with fc′ = f and gc′ = g.

There is no difficulty in order to perform the analogous computations
for a crown and we leave them to the reader.

Discussion: The methods developed in this work can perhaps be extended
in order to describe the Hochschild cohomology algebra of a truncated quiver
algebra – every path of a given length is zero –. More generally, the monomial
algebras – some chosen paths are zero – can perhaps also be reached. An
interesting application will be to compute for a non-trivial 2-cocycle the
obstructions in order to realize it as a non-trivial deformation of the algebra
(see [12]).
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