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Abstract
Besides finite element method, mass-spring discrete modeling is widely used in computer graphics. This discrete
model allows to perform very easily interactive deformations and to handle quite complex interactions with only a
few equations. Thus, it is perfectly adapted to generate visually correct animations. However, a drawback of this
simple formulation is the relative difficulty to control efficiently physically realistic behaviors. Indeed, none of the
existing models has succeeded in dealing with this satisfyingly. Here, we propose a new general 3D formulation
that reconstructs the geometrical model as an assembly of elementary "bricks". Each brick (or element) is then
transformed into a mass-spring system. Edges are replaced by springs that connect masses representing the ele-
ment vertices. The key point of our approach is the determination of the spring-stiffness to reproduce the correct
mechanical properties (Young’s modulus, Poisson’s ratio, bulk and shear modulus) of the reconstructed object. We
validate our methodology by performing some numerical experimentations, like shearing and loading, or beam
deflection and then we evaluate the accuracy limits of our approach.

1. Introduction

Models based on the resolution of continuous-media-
mechanics equations by finite elements methods are gener-
ally applied to accurately simulate the deformations of 3D
objects. However, they require a rigorous description of the
boundary conditions, which is hardly compatible with any
unpredictable interactions. Moreover, the amplitudes of the
applied strains and stresses must be well defined in advance
to choose either a small - with Cauchy’s description - or a
large deformation context - with St Venant Kirchoff’s de-
scription. Indeed, the accuracy of each context is optimized
to its domain of deformation.

In the literature, discrete models (like mass-spring sys-
tems) widely used in computer-graphics animation are gen-
erally proposed to deal with interactive applications and to
allow unpredictable interactions. They are adapted to vir-
tual reality environments where many unpredicted collisions
may occur and objects can undergo large or small deforma-
tions. Medical or surgery simulators present another exam-
ple of their possible applications. Nevertheless these models
generally fail to represent accurately the behavior of real ob-
jects.

In this paper, we propose a new method that gathers the
advantages of both approaches. Section 2 presents some pre-
vious work on mass-spring systems and particularly their pa-
rameterization and section 3 presents a survey of some me-
chanical parameters. Then in section 4, we propose our 3D
mass-spring model in which stiffness constants are calcu-
lated according to tensile parameters of the simulated object.
Section 5 presents an evaluation of our model through nu-
merical experiments. Finally some concluding remarks and
perspectives are given in section 6.

2. Related Work

Mass-spring systems have largely been used in the animation
context, because of their simple implementation and their
possible applications for a large panel of deformations. They
consist in describing a surface or a volume with a mesh in
which the global mass is uniformly distributed over the mesh
nodes. The tensile behavior of the object is simulated by the
action of springs, linking the mesh nodes. Then, Newton’s
laws govern the dynamics of the model.

Mass-spring systems have been used to model tex-
tiles [KEH04, LJF∗91, Pro95], long animals such as
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snakes [Mil88], or soft organic tissues, such as muscles,
face or abdomen, with sometimes the possibility to sim-
ulate tissue cut [AT00, CHP89, MLM∗05, MC97, NT98,
Pal03, PBP96]. Moreover, these systems have been used to
describe a wide range of different elastic behaviors such
as anisotropy [Bou03], heterogeneity [TW90], non linear-
ity [cB00] and also incompressibility [PB88, Pro97].

An important problem of these models is to choose an
appropriate meshing that describes well the object and that
does not contain any privileged direction for the strains prop-
agation. Then, the elasticity of springs must be rigorously
defined to achieve the desired behavior. Despite this require-
ment, springs stiffness constants are generally empirically
set [NMK∗05].

Solutions based on simulated annealing algorithms or ge-
netic algorithms [BSSH03, BSSH04, DKT95, LPC95] give
access to spring stiffness constants. Usually they consist in
applying random values to different springs constants and in
comparing the obtained model with some mechanical exper-
iments in which results are either well known analytically or
can be obtained by finite element methods. The stiffness con-
stant of the springs that induce the greatest error is corrected
to minimize the discrepancies. However, the efficiency of
this process depends on the number of springs and is based
on numerous mechanical tests leading to a quite expensive
computation time. Moreover, the process should be repeated
after any mesh alteration.

Instead of a try-and-error process, a formal solution to
parameterize the springs should save computer resources.
In this context, two approaches were explored. The Mass-
Tensor approach [CDA99, PDA03] aims at simplifying fi-
nite element method theory by a discretization of the con-
stitutive equations on each element. Despite its interest, this
approach requires pre-computations and the storage of an
extensive amount of information for each mesh component
(vertex, edge, face, element).

The second approach has been proposed by Van
Gelder [Van98] and has been referenced in [Bou03, BO02,
Deb00, MBT02, Pal03, Pic01, WV97]. In this approach, Van
Gelder proposes a new formulation for triangular meshes,
allowing calculating spring stiffness constant according to
elastic parameters of the object to simulate (Young’s modu-
lus, E, and Poisson’s ratio ν). This approach combines the
advantages of an accurate mechanical parameterization with
a hyper-elastic model, enabling either small or large defor-
mations. However, numerical simulations completed by an
Lagrangian analysis exhibited the incompatibility of the pro-
posal with the physical reality. Therefore, it is impossible to
use Van Gelder’s technique to control realistically the elastic
parameters [BBJ∗07].

3. Tensile Characteristics and Physical Experiments

Linear elastic isotropic and homogeneous material can
be characterized in small deformation by four parame-
ters [Fey64]: the Young’s modulus, the Poisson’s ratio, the
shear modulus and the bulk modulus. These parameters are
generally extracted by a set of experiments performed on
parallelepiped samples for which geometrical dimensions
(x0,y0,z0) at rest are well defined (see Fig.1).

Figure 1: The three physical experiments: (left) elongation,
(middle) shearing and (right) inflation.

Elongation experiment

The Young’s modulus and the Poisson’s ratio are mea-
sured by elongation experiments. It consists in applying a
defined pressure ~P along the z axis of the parallelepiped and
measuring the elongations δz along z axis and the thinnings
δx and δy along x and y axes (see Fig.1).

The Young’s modulus E defines the elasticity of a material
by:

E =

∣∣∣~P∣∣∣
δz/z0

. (1)

Young’s modulus can vary from 0.39× 10−3 MPa for
lung tissue to 1,000,000 MPa for diamond. Poisson’s ratio
ν characterizes the thinning (2δi/i0 with i ∈ (x,y)) induced
by the elongation:

ν =−
(

2δi
i0

)
/

(
δz
z0

)
. (2)

The Poisson’s ratio has no unity. It amounts to 0.69 for
metals, 0.3 for lungs and 0.5 for incompressible materials.

Shearing experiment

Shear modulus along x axis is measured by applying a
force ~F along x to one of the faces orthogonal to z axis, and
the opposite force to the other face. The induced deviation
angle, noted θ (see Fig.1), characterizes the amplitude of
shearing. The shear modulus G is then defined by:

G =


∣∣∣~F∣∣∣
A0

/(tan(θ))∼


∣∣∣~F∣∣∣
A0

/θ when θ→ 0, (3)
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with A0 = x0× y0, the area of the parallelepiped base. Note
that, the shear modulus is linked to the Young’s modulus and
the Poisson’s ratio for small deformations by:

G = E/2(1+ν) . (4)

Inflation experiment

Bulk modulus characterizes the response of a material to
inflation. Inflation experiments consist in measuring the in-
flation ∆V resulting from a concentric pressure ∆P, applied
to each face of the parallelepiped (see Fig.1).

The bulk modulus B is defined by:

B = (∆P)/

(
∆V
V0

)
, (5)

where ∆V/V0 is the volume variation, and ∆P the applied
pressure. The bulk modulus is linked to the Young’s modulus
and the Poisson’s ratio for small deformations, with:

B = E/3(1−2ν) . (6)

4. Our 3D Model

The present work aims at reproducing the mechanical be-
havior of a linear isotropic and homogeneous material with
mass-spring systems. We have therefore to determine the
stiffness coefficient of the springs so that the mechanical
characteristics of the simulated object match the mechani-
cal characteristics of real materials. To set the coefficients,
we propose to carry out numerically the experiments de-
scribed in the previous section, and to establish a relation
between the stiffness coefficients and the imposed Poisson’s
ratio, Young, shear and bulk moduli.

We consider as sample, a parallelepiped with rest dimen-
sions x0×y0×z0. To ensure homogeneous behavior, springs
laying on parallel edges need to have the same stiffness con-
stant. Thus, we have to determine only 3 stiffness coeffi-
cients for these edges: kx0 , ky0 and kz0 . In addition, some
diagonal springs are necessary to reproduce the thinning in-
duced by the sample elongation. Fig.2 displays three possi-
ble configurations for these diagonal links:

Figure 2: Three possibilities for the 3D element composi-
tion.

• diagonal springs located on all the faces (configuration
M1),

• only the inner diagonals (configuration M2),
• the combination of both inner and face diagonals (config-

uration M3).

Prior to the above configuration choice, let’s present our
springs parameterization approach. The determination of the
stiffness parameters could be realized by a series of nu-
merical try-and-error processes. This may hardly converge.
Therefore, we propose a methodology to calculate these pa-
rameters analytically, within the Lagrangian framework, and
according to the following procedure.

For each experiment that defines an elastic characteristic
(see Fig.1):

1. We build the Lagrangian as the sum of the potential of
springs due to elongation as well as the potential of ex-
ternal forces, since kinetic term is null.

2. We establish a Taylor’s expansion of the Lagrangian to
the second order in deformations and apply the principle
of least action. It reads linear equations.

3. We use the definitions of section 3 to express the me-
chanical characteristics as a function of the stiffness co-
efficients.

4. We obtain a set of equations, since the mechanical char-
acteristics are input parameters. We solve this system to
get stiffness coefficients.

To solve the system, the number of unknowns has to be
equal to the number of equations (constraints).

Three equations result from each elongation experiment
(one for the Young’s modulus and one for the Poisson’s ratio
along each direction orthogonal to the elongation). Thus, we
obtain 9 equations for all the elongation directions. More-
over, 6 more equations have to be added to take into account
the shear modulus (6 experiments). We have also to add one
more equation to take into account the bulk modulus (1 ex-
periment). Consequently, we could have 16 equations. Since
the four elastic characteristics can be linked (see eq. (4) and
(6)), if three characteristics are imposed, one can expect that
the fourth will be verified. Thus, the whole system admits at
most 15 equations.

Three degrees of freedom stem from the parallel edge (kx0 ,
ky0 , kz0 ), but the total number of freedom degrees depends on
the diagonal spring configuration. Note that, for small shear-
ing (θ≈ 0), only diagonal springs are stressed. Thus, the La-
grangian equation defining this characteristic depends only
on the stiffness constants kdi of the different diagonals. This
means that the diagonal springs constant can be determined
independently of the other stiffness coefficients.

Note that, for the configuration (M2), the equations of
shearing depend only on the inner diagonal kd . Conse-
quently, only 3 equations are independent.

We summarize the number of degrees of freedom and the
number of equations in Table 1 according to the possible
configurations of the system. We observe that all the geo-
metrical configurations bring to an over-constraint system.
Nevertheless, the configuration (M2) is less constrained than
the others. Thus, we chose this configuration, which corre-



4 V. Baudet &M. beuve &F. Jaillet &B. Shariat &F. Zara / Integrating Tensile Parameters in 3D Mass-Spring System

sponds to the model with only the inner diagonals. The four
diagonal springs have the same stiffness constant noted kd .

M1 M2 M3
Number of unknown stiffness constant in shearing 3 1 4
Number of unknown stiffness constant in elongation 3+(3) 3+(1) 3+(4)
Total number of unknown stiffness constant 6 4 7

Number of equations in elongation 9 9 9
Number of equations in shearing 6 3 6
Total number of equations 15 12 15

Table 1: Number of equations and unknowns according to
the geometry chosen.

As mentioned above, the inner diagonals fully define the
shearing modulus. The problem is that there is only 1 diag-
onal spring variable for 3 shearing equations (see Table 1).
Each equation, corresponding to one particular direction i
(i ∈ {x0,y0,z0}) leads to a different solution:

kdi =
E i ∑ j∈{x0,y0,z0} j2

8(1+ν)Π{l∈{x0,y0,z0},l 6=i}l
.

However a unique solution can be obtained for a cubic el-
ement (i. e. with x0 = y0 = z0). In this case kd is well defined
proportionally to G:

kd =
3Ex0

8(1+ν)
. (7)

Thus, we constrain the mesh element to a cube. The non-
diagonal edge springs are identical and their spring stiffness
constant is noted kx. This stiffness coefficient has to satisfy
two relations (E and ν). One solution can be found for the
Poisson’s ratio ν = 0.25 but this is not a versatile solution,
thus unsatisfying.

Since the number of equations is greater than the number
of degrees of freedom, we propose therefore to introduce a
new variable. The Poisson’s ratio defines the thinning of the
sample at a given elongation, i. e. it determines the forces or-
thogonal to the elongation direction. Consequently, by mod-
ifying the compression forces, we should achieve, by simu-
lation, the behavior corresponding to any Poisson’s ratio ν.
We propose to add two new forces induced by the elonga-
tion. For the sake of symmetry, the amplitude of the forces
is identical in both directions. This amplitude F⊥ is the new
degree of freedom (see Fig. 3). Note that this kind of correc-
tion is equivalent to the reciprocity principle used in finite
elements methods [Fey64].

This new additional variable leads to a system of 2 equa-
tions with 2 unknowns. After resolution it reads for i ∈
{x0,y0,z0}:

kx =
Ex (4ν+1)

8(1+ν)
, (8)

F⊥i = −Fi (4ν−1)
16

. (9)

F
σ

F F

F

Figure 3: The orthogonal correction force.

The Lagrangian equation of the inflation test, verifies that
this solution satisfies the definition of the bulk modulus.

Since all the stiffness coefficients and the added compres-
sive force are now determined for a mesh element, we can
tackle the simulation of any object composed of mesh ele-
ments. The simulation of an object results from the simula-
tion of the deformation of each single element that consti-
tutes the object. For this, we need to:

1. Compute all the forces applied to each element. These
forces can be (i) internal, including forces due to springs
and correction forces, or (ii) external, like gravity or re-
action forces due to neighboring elements.

2. Calculate accelerations and velocities according to an in-
tegration scheme (explicit or implicit Euler, Verlet, etc.).

3. Displace each mesh node consequently.

Note that, to compute the correction forces applied to a mesh
element face, we need to compute the elongation force. This
elongation force is the projection on the face normal of the
sum of all the external forces applied to the considered face.

Note that, the set of stiffness coefficients and the correc-
tive forces were determined from a Taylor’s expansion of
the Lagrangian to the second order. This guaranties a correct
mechanical behavior for small deformations. The next sec-
tion will describe numerical experimentations, first to verify
that the object has the same mechanical characteristics as
each of its composing elements, and second to evaluate the
accuracy for deformations attaining 20%.

5. Evaluation of the 3D Model

We propose now to qualify the mechanical properties of
our meshed systems for small and large deformations (up
to 20%). For this we have carried out several tests. Unless
otherwise stated, the object is a parallelepiped composed of
cubic mesh elements.

Tensile stress limits

In each tensile experiment, we apply to a beam-like object
a quasi-static stress. The elongation can attain 20% of the
beam length. The experiments have been carried out with in-
put parameters ranging from 100 Pa to 100 kPa for Young’s
modulus E, and from 0.1 to 0.5 for Poisson’s ratio ν. The ac-
curacy of the simulation is evaluated by comparing the sim-
ulated mechanical quantities to the input parameters.
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The quantitative study of the test results shows that
Young’s modulus (see Fig. 4) and Poisson’s ratio (see Fig. 5)
of our model tend to drift when the deformation increases.
Nevertheless, these results are really satisfying. As illus-
trated in Fig. 4, the error on Young’s modulus exceeds 5%
only for deformations larger than 10%.
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Figure 4: 2D Young’s modulus errors for a cubic meshed
element in quasi-static tensile stress.
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Figure 5: Poisson’s ratio errors (absolute value) for a cubic
element in tensile stress.

Besides, we notice that this error increases conversely
with the imposed Poisson’s ratio: for a 10% deformation,
the error on Young’s modulus amounts to 2.7% if ν = 0.3, it
amounts only to 2% if ν = 0.4. This error falls down to 1.5%
if ν = 0.5.

Concerning Poisson’s ratio simulation, the error for ν ∈
[0.3;0.5] remains lower than 5%, even if the deformation at-
tains 14% (see Fig. 5). We observe identical curves whatever

the value of E is. This is not surprising since the spring stiff-
ness constants and the thinning forces are proportional to the
input parameter E.

We point out a change in the profile of Poisson’s ratio
error occurring at ν = 0.25. Thinning is overestimated for
the values of ν≥ 0.25 and underestimated elsewhere. In fact,
at ν = 0.25 no corrective Lagrangian forces are needed, so
the error is minimal.

When performing tensile tests on a beam, meshed by any
composition of elements, we obtain exactly the same error
as for a unique element. This confirms that the mechani-
cal properties of any meshed object are fully defined by the
properties of the mesh elements.

Limits in shearing

Figure 6 presents the results for an element subject to a
shearing experience (see Fig. 1). We can remark that the rel-
ative error on G does not depend on E, as expected. This
error increases with the imposed ν but remains smaller than
5% for a shearing angle inferior to 5◦ and for ν < 0.4. The
worst results is obtained for ν = 0.5.

ν=0,1

ν=0,2

ν=0,3

ν=0,4ν−>0,5

α

E
rr

or
 o

n 
G

 in
 %

Shearing angle    in degreeα

Figure 6: Measured error on shearing in a cube, according
to shearing angle and Poisson’s ratio.

To validate the shearing on an element composition, we
built a 100× 100× 300 mm beam by assembling elements
characterized by E = 1 Pa and ν = 0.3. We stressed it by ap-
plying a force equivalent to 2000 N. The interpretations of
shearing experiment are not straight forward for large defor-
mations. Therefore we considered as reference, a Finite El-
ement Model (FEM) to evaluate the accuracy of our model.
For this, the results of our simulations and the FEM refer-
ence have been superimposed (see Fig. 7). Within the theo-
retical framework of our model, i. e. small deformations, the
agreement is very satisfactory, attesting the good behavior of
our model.



6 V. Baudet &M. beuve &F. Jaillet &B. Shariat &F. Zara / Integrating Tensile Parameters in 3D Mass-Spring System

2×2×6 sampling: M=13%, SD=1.3% MAX=33%

4×4×12 sampling: M=6%, SD=0.33% MAX=14%

8×8×24 sampling: M=3%, SD=0.03% MAX=6%

Figure 7: Shearing experience: (Left) superimposition of the
results of our wired model with the color gradation FEM
reference solution and (Right) Map of error in displacement
on each node of the mesh. Notation: M for mean error value,
SD for standard deviation and MAX for maximal error.

To get a more quantitative comparison, we quantified at
each node of the mesh the discrepancy between the dis-
placements calculated by our model and the displacements
extracted from the finite element reference. We obtained a
map of errors in which the mesh illustrate the solution of our
model, and the arrows represent the enhanced discrepancies
with regard to finite element reference.

Fig. 7 illustrates the influence of the mesh resolution on
the result accuracy. We observe the mean error amounts to
about 13% with a maximum of 33% for a 2×2×6 resolu-
tion. It decreases progressively, if we improve the resolution.
Mean error and the maximal error fall down respectively to
3% and 6% for a 8×8×24 resolution.

Limits in inflation

We also performed some tests of deflation and inflation
to measure the error in the bulk modulus conservation (see

Fig. 8). These experiments exhibit a conservation of this co-
efficient for small displacements whatever the imposed co-
efficient E and ν are. Conservation is observed whatever the
composition of elements is.

Figure 8: Error measured on the bulk modulus according to
the deformation imposed in volume.

Limits in deflection

The deflection experience (construction or structural ele-
ment bends under a load) is recommended to validate me-
chanical models. It constitutes a relevant test to evaluate (a)
the mass repartition, and (b) the behavior in case of large de-
formations (inducing large rotations, especially close to the
fixation area).

This test consists in observing the deformation of a beam
anchored at one end to a support. At equilibrium, under grav-
ity loads, the top of the beam is under tension while the
bottom is under compression, leaving the middle line of the
beam relatively stress-free. The length of the zero stress line
remains unchanged (see Fig. 9).

Figure 9: Cantilever submitted to gravity, expression of the
neutral axis deviation.

In case of a null Poisson’s ratio, the load induced deviation
of the neutral axis is given by:

y(x) =
ρg

24 EI

(
6 L2x2−4 L x3 + x4

)
(10)

for a parallelepiped beam of inertia moment I = T H3/12,
and with linear density ρ = M/L.
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We notice that results are dependent of the sampling reso-
lution, as for any other numerical method, however the fiber
axis profile keeps close to the profile given by the equa-
tion (10). Figure 10 displays some results for a cantilever
beam of dimensions 400×100×100 mm, with Young’s mod-
ulus equals to 1000 Pa, Poisson’s ratio to 0.3 and a mass
of 0.0125 Kg.m−3. By looking at the displacement errors
at each mesh node, we observe that the error is decreasing
when the sampling is improved: the maximum error in the
sampling 4× 1× 1 is about 45% while it is about 5% for a
resolution of 16×4×4.

4×1×1 sampling: M=16.31%, SD=2.83%, MAX=38%

8×2×2 sampling: M=7.08%, SD=0.58%, MAX=16.7%

16×4×4 sampling: M=0.68%, SD=0.03%, MAX=4.05%

Figure 10: Deflection experiment: (Left) the reference FEM
solution (in color gradation) with superimposition of vari-
ous simulations performed for different sampling resolutions
(wire mesh), (Right) Map of error in displacement on each
node of the mesh with the scale indicating the minimal error
(in blue) and maximal (in red). Notation: M for mean error
values, SD for standard deviation and MAX for maximum
error.

Nevertheless figure 11 illustrates that there is a limit to
the sampling resolution beyond which large shearings (rota-
tions) of meshes in the vicinity of the fixation area are ob-
served. In this area, our model is outside of its domain of va-
lidity and the maximum of error is about 8%. However, our
model behaves better than the models using finite element
methods that prove more difficulty outside their validity do-
main.

Figure 11: (Left) Limit of the sampling resolution: the qual-
ity of results is limited by the deformations accepted by our
model. (Right). Results of the cantilever experiment are to-
tally wrong for small deformation conditions with finite el-
ement. However, our model results (in wire frame) remain
within an acceptable range.

Illustration on a non-symmetric composition

All the previous tests were performed on highly symmet-
ric objects. We propose now to break this symmetry. Fig-
ure 12 presents L-like object fixed at its base.

Figure 12: Experiment on a non-symmetric object.

We apply a constant force to the edges that are orthogonal
to the base. Figure 13 shows our results superimposed to the
FEM solution, with a map of error in displacement. The ob-
ject dimensions are 4000×4000×4000mm. The mechanical
characteristics are: Young’s modulus = 1kPa, Poisson’s ratio
= 0.3 and an applied force = 0.3GN. In this experiment, we
have neglected the mass. Again we clearly observe that our
model behaves as expected: better mesh resolution leads to
better results. Moreover, the dissymmetry of the geometry
does not influence the accuracy of the results.
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2×2×2 sampling: M=6.99%, SD=0.94%, MAX=18%.

2×2×2 sampling: M=3.37%, SD=0.2%, MAX=7%.

2×2×2 sampling: M=0.66%, SD=0.01%, MAX=1.6%.

Figure 13: Experiment on a non-symmetric object: (Left) the
reference FEM solution (in color gradation) with superim-
position of various simulations performed for different mesh
resolutions), (Right) map of error in displacement (in mm)
on each node of the mesh. Notation: M for mean error value,
SD for standard deviation, MAX for maximum error.

6. Conclusion and Future Work

We proposed a mass-spring model that ensures fast and
physically accurate simulation of linear elastic, isotropic and
homogeneous material. It consists in meshing any object by
as set of cubic mass-spring elements, and in adding some
corrective forces orthogonal to elongation forces. By con-
struction, our model is well characterized by the Young’s
modulus, Poisson’s ratio, shearing modulus and bulk mod-
ulus, for small deformations. The spring coefficients have
just to be initialized according to simple analytic expres-
sions. The amplitude of the corrective forces is simply de-
rived from the elongation forces. Limits of our model have

been given, by comparing our results with those obtained by
a finite element method, chosen as reference for preciseness.

We exhibited that our model can also support large defor-
mations. The accuracy increases with the mesh resolution.

In the future, we are looking to apply the same technique
to other geometrical elements, for example parallelepipeds,
tetrahedron or any polyhedron. This would increase the ge-
ometrical reconstruction possibilities and would offer more
tools for simulating complex shapes.

Mesh optimization or local mesh adaptation would prob-
ably improve the efficiency of the model. For example,
we can modify the resolution in the vicinity of highly de-
formed zones, reducing large rotations of elements undergo-
ing heavy load.

Moreover, it may be interesting to investigate a procedure
to update the spring coefficients and corrective forces when
the deformations become too large.
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