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Integrating Tensile Parameters in Mass-Spring
System for Deformable Object Simulation

Vincent Baudet, Michael Beuve, Fabrice Jaillet, Behzad Shariat, and Florence Zara

Abstract—Besides finite element method, mass-spring system is widely used in Computer Graphics. It is indubitably the simplest
and most intuitive deformable model that takes into account elastic considerations. This discrete model allows to perform with ease
interactive deformations as well as to handle complex interactions. Thus, it is perfectly adapted to generate visually plausible animations.
However, a drawback of this simple formulation is the relative difficulty to control efficiently realistic physically-based behaviors. Indeed,
none of the existing models has succeeded in dealing with this satisfyingly. Moreover, we demonstrate that the mostly cited technique
in the literature, proposed by Van Gelder, is far to be exact in most real cases, and consequently, this model can not be used in
simulation. So, we propose a new general 3D formulation that reconstructs the geometrical model as an assembly of elementary
hexahedral ”bricks”. Each brick (or element) is then transformed into a mass-spring system. Edges are replaced by springs that
connect masses representing the vertices. The key point of our approach is the determination of the stiffness springs to reproduce
the correct mechanical properties (Young’s modulus and Poisson’s ratio) of the reconstructed object. We validate our methodology
by performing some numerical experiments. Finally, we evaluate the accuracy of our approach, by comparing our results with the
deformation obtained by finite element method.

Index Terms—Discrete Modeling, Physical Simulation, Mass-Spring System, Rheological Parameters.

F

1 INTRODUCTION

Finite elements methods (FEM) are generally used to ac-
curately simulate the behavior of 3D deformable objects.
They require a rigorous description of the boundary
conditions so that the amplitudes of the applied strains
and stresses must be well defined in advance to choose
either a small - with Cauchy’s description - or a large
deformation context - with St Venant Kirchoff’s descrip-
tion for example. Indeed, the accuracy of each context is
optimized within its deformation domain.

Mass-spring systems (MSS) have largely been used
in animation because of their simple implementation
and their possible applications for a large panel of
deformations. They consist in describing a surface or
a volume with a mesh in which the global mass is
uniformly distributed over the mesh nodes. The tensile
behavior of the object is simulated by the action of
springs, connecting the mesh nodes. Then, Newton’s
laws govern the dynamics of the model, and the system
composed of Ordinary Differential Equations (ODEs)
can be solved via numerical integration over time. In
computer graphics, MSS-based animations are generally
proposed to deal with interactive applications and to
allow unpredictable interactions. They are adapted to
virtual reality environments where many unpredicted
collisions may occur and where objects can undergo
deformations and/or mesh topology changes. Medical
or surgery simulators present another example of their
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possible applications. Nevertheless these models gen-
erally fail to represent accurately the behavior of real
deformable objects (characterized by their Young’s mod-
ulus and Poisson’s ratio) because of the difficulty to
obtain correct springs stiffness constant.

In this paper, our aim is not to compare MSS and FEM
models, but to propose a new solution to enhance MSS,
making them more compatible with the requirements
of physical realism, by giving a solution to obtain the
springs stiffness constants according to elastic param-
eters. Section 2 presents a state of the art of mass-
spring systems and particularly their parameterization.
Moreover, in this section, we present published solutions
allowing the determination of springs constant to obtain
a realistic behavior of the simulated object. Section 3
describes Van Gelder’s model, which incorporates spring
parameters calculated from the elasticity parameters.
We prove that this model cannot simulate correctly 2D
deformations and in section 4, we present our alter-
native approach to calculate springs stiffness constants
according to tensile parameters of the simulated object.
In section 5, we present how we simulate an object
composed of our model. Then, section 6 presents some
experimental results. Finally, some concluding remarks
and perspectives are given in section 7.

2 RELATED WORK
Mass-spring systems have been used to model tex-
tiles [11], [14], [23], long animals such as snakes, or soft
organic tissues, like muscles, face or abdomen, where
the cutting of tissue can be simulated [16], [17], [19],
[20]. Moreover, these systems have been used to de-
scribe a wide range of different elastic behaviors such as
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anisotropy [3], heterogeneity [24], non linearity [4] and
also incompressibility [22].

However, where FEMs are built upon elastic theory,
mass-spring models are generally far from being ac-
curate. Indeed, in these models, springs stiffness con-
stants are usually empirically set and consequently, it
is difficult to reproduce the true behavior of a given
material with these models. Thus, if the MSS have al-
lowed convincing animations for visualization purposes,
their drawbacks refrain the generalization of their use
when greater resolution is required, like for mechanical
or medical simulators. For more details, an extensive
review can be found in [18].

Consequently, the graphics community has proposed
solutions based on simulated annealing algorithms [9],
[13] to estimate springs stiffness constants to correctly
mimic material properties. Usually, these solutions con-
sist in applying random values to different springs con-
stants and comparing the obtained model behavior with
some mechanical experiments in which results are either
analytically well known or can be numerically obtained.
Then, the springs stiffness constants that induce the
greatest error are corrected to minimize the discrepan-
cies. More recently, Bianchi et al. [2] proposed a similar
approach based on genetic algorithms using reference
deformations simulated with finite element methods.
However, the efficiency of these approaches depends on
the number of springs and is based on numerous me-
chanical tests leading to a quite expensive computation.
Moreover, the process should be repeated after any mesh
alteration and the lack of reference solution is an obstacle
to the generalization of the method to other cases.

Instead of a trial-and-error process, a formal solution
that parameterizes the springs should save computer
resources. In this context, two approaches were explored.
The Mass-Tensor approach [6], [21] aims at simplifying
finite element method theory by a discretization of the
constitutive equations on each element. Despite of its
interest, this approach requires pre-computations and
the storage of an extensive amount of information for
each mesh component (vertex, edge, face, element).

The second approach has been proposed by Van
Gelder [25] and has been referenced in [3], [5], [7], [15],
[20], [26]. In this approach, Van Gelder proposes a new
formulation for triangular meshes, allowing the calcu-
lation of springs stiffness constant according to elastic
parameters of the object to simulate (Young’s modulus
E, and Poisson’s ratio ν). This approach combines the
advantages of an accurate mechanical parameterization
with a hyper-elastic model, enabling either small or
large deformations. However, in next section, we show
that numerical simulations completed by a Lagrangian
analysis exhibit the incompatibility of the proposal with
the physical reality. Indeed, the Van Gelder’s approach
is restricted to ν = 0.

An extension of Van Gelder’s method has been re-
cently presented in [12] for tetrahedra, hexahedra and
some other common shapes, but still remains limited to

ν = 0, 3 that prevents their use when accurate material
properties are required.

Finally, Delingette [8] proposed a formal connection
between springs parameters and continuum mechanics
for the membranes. He succeeded to simulate realisti-
cally the membrane behavior for the specific case of
Poisson’s ratio ν = 0, 3 with regular MSS. The extension
of this approach to 3D is not yet available.

3 VAN GELDER MODEL

In 1998, Van Gelder [25] proposed a formulation for
2D triangular mass-spring systems, allowing to calculate
springs stiffness constants according to elastic parame-
ters of the object to simulate. In this model (see Fig. 1),
the stiffness constant of a spring, with rest length c, rep-
resenting the common edge of two neighboring triangles
of the mesh (Ti) of surfaces |Ti| and with edges c, ai, bi

(with i ∈ {1, 2}) is given by

kc =
n∑

i=1

E

1 + ν

|Ti|
c2

+
E ν

1− ν2

a2
i + b2

i − c2

8 |Ti|
, (1)

with ν, the Poisson’s ratio and E, the corresponding 2D
Young’s modulus of the simulated material. Note that,
afterward, these coefficients will be noted EV G and νV G

(coefficients initially used in the Van Gelder (VG) system
to obtain the stiffness constants).

Fig. 1. Notations used for Van Gelder’s model.

Moreover, Van Gelder’s published experimentations
are restricted to ν = 0 to avoid negative value of kc.
But, to cope with majority of elastic materials, we used
Van Gelder’s approach to simulate materials with ν ≥ 0.
In particular, we reproduced the well-known tensile test
using a bar of dimensions l0 × h0 (see Fig. 2 (Left)).
Thus, the bar, fixed at its base, is elongated by a force
~Ftensile, generating a stretch η and a compression of 2δ
at equilibrium.

For our test, the bar is meshed by four symmetrical
Van Gelder triangles and the springs stiffness constants
were calculated according to equation (1). This config-
uration implies the same stiffness constant for the four
diagonal springs (kd), and equal stiffness constants for
springs laying on two parallel edges (kl0 and kh0) (see
Fig. 2 (Right)).

According to Hooke’s law, and for such boundary con-
ditions, the theoretical Young’s modulus E and Poisson’s
ratio ν are defined by:

E =
Ftensile/l0

η/h0
, ν =

2δ/l0
η/h0

. (2)
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Fig. 2. (Left) Tensile test bar. (Right) 2D rectangular ele-
ment meshed by 4 VG triangles involving several springs
with stiffness constants kl0 , kh0 and kd.

Thus, if we note E and ν the Young’s modulus and
Poisson’s ratio computed after the simulation accord-
ing to the obtained deformations, checking whether the
relations νV G = ν and EV G = E are satisfied, will
certify that VG’s model follows Hooke’s law. However,
the simulations results presented in Table 1 show that
this is not the case. Even when Poisson’s ratio is set to
zero, we note a 25% error on the Young’s modulus value,
although the authors claimed that their model was valid
for this specific value, used for simulating membranes.

Poisson’s ratio Young’s modulus (Pa.m)
νV G ν EV G E

0.0 0.5

0 0
1 0.75

100 75.00
1000 750.00

0.25 0.57

0 0
1 0.63

100 62.86
1000 628.57

0.5 0.66

0 0
1 0.56

100 55.56
1000 555.56

TABLE 1
Comparison tests between input parameters (νV G, EV G)
and theoretical values (ν, E) obtained after deformation.

To complete this observation, we propose a demon-
stration within the Lagrangian formulation framework.
Thereby we had to:

1) Define springs potential energy according to their
elongations (η and δ) and potential energy of ap-
plied forces,

2) Define the Lagrangian as the sum of the different
static potential energies (note that kinetic energies
are null),

3) Deduce the values of the deformations (η and δ) by
applying Least Action Principle,

4) Calculate the actual value of the Young’s modulus
and the Poisson’s ratio of the bar.

Thus, we have first to define the springs potential
energy according to the elongation. Using equation (1),

we find stiffness constants for the three different kinds
of springs:

kl0 =
1
4

[
h0EV G

l0(1 + νV G)
+

EV G νV G(h0
2 − l0

2)
(1− νV G

2)l0h0

]
,

kh0 =
1
4

(h0
2νV G − l0

2)EV G

(−1 + νV G
2) l0h0

,

kd =
2EV G l0h0

(1 + νV G)
(
l0

2 + h0
2
) +

EV G νV G

(
l0

2 + h0
2
)

2 (1− νV G
2) l0h0

.

Then, for small deformations, the potential energy
associated to these stiffness constants is defined by
Epi = 1

2 ki d2
i , with i ∈ {l0, h0, d} and di the corre-

sponding deformations equal to 2δ for kl0 , η for kh0 and
1
2

√
l0

2 − 4l0δ + 4δ2 + h0
2 + 2h0η + η2 − 1

2

√
l0

2 + h0
2 for

kd. So, we obtain:

Epl0
=

1
2

[
h0 EV G

l0(1 + νV G)
+

EV G νV G (h0
2 − l0

2)
(1− νV G

2)l0h0

]
δ2,

Eph0
=

1
8

(h0
2νV G − l0

2)EV G

(−1 + νV G
2)l0h0

η2,

Epd = − A B EV G

16 h0l0 (−1 + νV G
2)
(
l0

2 + h0
2
)2 + O

(
η2, δ2

)
,

with

A =
(
h0

2η2 − 4 l0h0δ η + 4 l0
2δ2
)
,

B =
(
−2 l0

2h0
2νV G + l0

4νV G + h0
4νV G + 4 l0

2h0
2
)
.

Consequently for small deformations, the Lagrangian
associated to this tensile test, involving 2 springs of
stiffness constant kl0 , 2 springs of stiffness constant kh0

and 4 springs of stiffness constant kd, is defined by:

L = Ftensileη − 2Epl0
− 2Eph0

− 4Epd.

Then, we apply Least Action Principle to obtain the
values of the deformations (η and δ) leading to solve:

∂L

∂η
= 0,

∂L

∂δ
= 0.

We obtain

η = −2
Ftensile h0 C

EV G l0 D
,

δ =
(1 + νV G) Ftensile H

I EV G
,

with

C = 4 l0
4νV G

2−l0
4νV G−2 l0

2h0
2νV G−h0

4νV G−5 l0
4−2 l0

2h0
2−h0

4

D = l0
4νV G−6 l0

2h0
2νV G+h0

4νV G+5 l0
4+2 l0

2h0
2+5 h0

4

H = −2 l0
2h0

2νV G + l0
4νV G + h0

4νV G + 4 l0
2h0

2

I = l0
4νV G−6 l0

2h0
2νV G+h0

4νV G+5 l0
4+2 l0

2h0
2+5 h0

4

Consequently, according to these deformations, the
Young’s modulus of the bar after deformation is defined
by

E =
Ftensile/l0

η/h0
= −1

2
I EV G

C
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and the Poisson’s ratio by

ν =
2δ/l0
η/h0

= − H

4 l0
4νV G

2 − 5 l0
4 − 2 l0

2h0
2 − h0

4 .

Thus, for a bar of dimension l0 × h0 = 1× 1, we obtain:

E =
1
2

EV G(νV G − 3)
ν2

V G − νV G − 2
, ν =

1
2− νV G

.

Consequently, the relations E = EV G and ν = νV G are
even not satisfied. Moreover, we notice that the Young’s
modulus depends on the Poisson’s ratio, although the
two characteristics should be totally independent in lin-
ear, isotropic and homogeneous materials [10]. Thereby,
this model can hardly be used to realistically control the
elastic parameters.

4 A NEW PARAMETERIZATION APPROACH

Our approach is based on hexahedral mesh, as currently
and widely used within the FEM framework. To better
demonstrate the basis of our solution, we begin with
the parameterization of a 2D rectangular mass-spring
systems (MSS). Indeed, as in FEM, any complex object
can be obtained by assembling of these 2D elements [1].
Then, we will extend our solution to 3D elements.

4.1 Case of a 2D element

Let us consider a given 2D rectangular element with rest
dimensions l0 × h0. This element is composed of four
edge springs and two diagonal ones to integrate the role
of the Poisson’s ratio. The same stiffness constant (kh0 or
kl0) is set on two parallel edges, and (kd) is identically
set for the two diagonal stiffness springs.

In addition to the behavior related to Young’s modulus
and Poisson’s ratio, the model should be able to cor-
rectly undergo a shearing stress according to a defined
shear modulus G. In 2D, this quantity is measured by
applying two opposed forces Fshear involving a shear
stress Fshear/l0 on two opposite edges of the rectangular
element. The material response to the shearing stress is
a lateral deviation of angle θ and a displacement η (see
Fig. 3).

shear

F

F

η

θ shear

h0

l0

Fig. 3. Experimentation to measure 2D shear modulus:
a rectangular element is subject to 2 opposed forces,
generating a deviation angle θ and a displacement η.

Though, the shear modulus is defined as:

G =
tan (θ)× Fshear

l0
=

Fshear h0

l0 η
' θ × Fshear

l0
when θ → 0.

For linear elastic, isotropic and homogeneous mate-
rials, this coefficient is linked to Young’s modulus and
Poisson’s ratio by E = 2 G (1 + ν).

To determinate the spring coefficients that permit to
correctly simulate these mechanical experiments, we fol-
low the next four steps [1]:

1) For each experiment, define the Lagrangian equa-
tion (sum of potential energies).

2) Apply Least Action Principle to get Newton’s equa-
tions.

3) Apply the measured mechanical characteristics def-
inition to build a set of equations linking spring
coefficients to mechanical characteristics.

4) Finally, solve the whole system.

Thus, our process begins with the determination of
the Lagrangian equation for each experiment, and more
precisely we start by the shearing experiment. Indeed,
in this experiment only diagonal springs are stressed.
Consequently, the Lagrangian equation defining this
characteristic depends only on kd, the stiffness constant
of diagonal springs. This means that diagonal springs
are totally correlated to shear modulus and that their
stiffness can be calculated independently of the two
others spring coefficients.

So, the deformation of each diagonal springs is defined
by:

δd =
√

(l0 ± η)2 + h2
0 −

√
l20 + h2

0,

∼ ± η l0√
l20 + h2

0

+ O(η2).

Thus, the Lagrangian equation for shearing, involving 2
springs of stiffness kd, is defined by:

L = Fshearη − 2Epd

= Fshearη − 2× 1
2
kdδd

2

= Fshearη − kd
η2 l20

l20 + h2
0

.

Then the minimization of the energy is done for:

∂L

∂η
= 0 = Fshear − kd

2 η l20
l20 + h2

0

.

It reads:
η =

Fshear(l20 + h2
0)

2 l20 kd
.

Finally, using the shearing definition and linking to E
and ν for isotropic and homogeneous materials, we
obtain the following relation:

kd =
E
(
l20 + h2

0

)
4 l0 h0 (1 + ν)

. (3)

Note that for a square mesh element we obtain:

kd =
E

2 (1 + ν)
= G.
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Then, we continue the parameterization to find stiff-
ness constants of the others springs (kl0 and kh0), by
doing two elongation experimentations in lateral and
longitudinal direction. We obtain two equations from
each elongation experiment, 4 in total [1]. This over-
constrained system admits one solution for ν = 0.3, as
stated by Lloyd et al. [12] and Delingette [8]. But, this
result is not satisfactory because we wish to simulate the
behavior of any real material. Consequently, we have to
add two degrees of freedom to solve this problem.

We note that the Poisson’s ratio defines the thinning
at a given elongation, i. e. it determines the orthogonal
forces to the elongation direction. Thus, we introduce
for each direction a new variable that represents this
orthogonal force. We will note F⊥h0 and F⊥l0 the or-
thogonal force to h0 and l0, respectively. For example,
Fig. 4 presents the corrective forces added to the system
for an elongation stress σ = Ftensile/h0. We can observe
that a corrective force is generated for each mass of the
system.

F
σ

F F

F

Fig. 4. Corrective forces added to the initial 2D system
according to an elongation stress σ = Ftensile/h0.

Thus, the addition of these 2 new variables leads to
a system of 4 equations with 4 unknowns. Note that
this kind of correction is equivalent to the reciprocity
principle used in FEM [10]. Thus, for a constraint Fh0

according to h0, we obtain the following Lagrangian
equation (involving 2 springs of constant stiffness kl0 , 2
springs of constant stiffness kh0 and 2 springs of constant
stiffness kd):

L = Fh0η − 4F⊥h0 2δ − 2Epl0
− 2Eph0

− 2Epd

= Fh0η − 4F⊥h0 2δ − 4 kl0δ
2 − kh0η

2 − kddd
2

with

dd =
√

(h0 + η)2 + (l0 − 2δ)2 −
√

l20 + h2
0

∼ h0 η − 2 l0 δ√
h2

0 + l20
+ O(η2, δ2)

the deformation of the diagonal springs. Then, using
the definition obtained for kd in the equation (3), we
solve ∂L

∂η = 0 and ∂L
∂δ = 0, and we obtain:

η = 1
2

l0(4kl0h0Fh0ν−4EF⊥h0h0+4kl0h0Fh0+El0Fh0 )

4kh0 l0kl0h0ν+4kh0 l0kl0h0+Eh0
2kl0+kh0 l02E

,

δ = 1
4

h0(−16kh0 l0F⊥h0−16kh0 l0νF⊥h0−4EFh0h0+El0Fh0 )

4kh0 l0kl0h0ν+4kh0 l0kl0h0+Eh0
2kl0+kh0 l02E

.

Then, using the definitions of Young’s modulus and
Poisson’s ratio, we obtain kl0 and kh0 , but this time

according to this new potential F⊥h0 . Then, by imposing
the symmetry of kl0 with kh0 (i. e. by imposing the
achievement of the same Young’s modulus and Poisson’s
ratio for an elongation test and its orthogonal), we can
restrain the corrective forces and thus obtain the separate
formulations of kl0 , kh0 and F⊥h0 . Thus, the solution of
the system is (with (i, j) ∈ {l0, h0}2 and i 6= j):

ki =
E
(
j2 (3 ν + 2)− i2

)
4 l0 h0 (1 + ν)

, F⊥i =
i Fi (1− 3ν)

8j
. (4)

Note that the experimentation according to l0 would
permit to obtain the same stiffness constants and
formulations for the corrective forces.

To sum up, each element of our 2D mass-spring
system is defined by six springs with three differ-
ent stiffness constants (kl0 , kh0 , kd) and by two elonga-
tion/compression corrective forces (F⊥l0 , F⊥h0). These
coefficients and corrective forces are defined by equa-
tions (3) and (4) which integrate Young’s modulus and
Poisson’s ratio of the simulated deformable object.

4.2 Generalisation to 3D elements
Our 3D model is the generalization of our 2D approach
by the use of parallelepiped elements. Let’s consider a
3D element of our system with dimensions x0 × y0 × z0.

4.2.1 Geometry of our 3D model
As in 2D, to ensure homogeneous behavior, springs
laying on parallel edges need to have the same stiffness
constant. Thus, we have to determine only 3 stiffness
coefficients for these edges: kx0 , ky0 and kz0 . In addition,
some diagonal springs are necessary to reproduce the
thinning induced by the elongation. Fig.5 displays three
possible configurations for these diagonal links:

• M1: diagonal springs located on all faces,
• M2: only inner diagonals,
• M3: combination of both inner and face diagonals.

Fig. 5. Three possible configurations for integrating diag-
onal connections in the 3D element composition.

Prior to the above configuration choice, let’s present
our springs parameterization approach. As in 2D, we
propose a methodology within the Lagrangian frame-
work, according to the following procedure. For each
experiment that determinates an elastic characteristic:

1) We build the Lagrangian as the sum of the springs
potential due to elongation as well as the potential
of external forces, since kinetic term is null.
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2) We establish a second order Taylor’s expansion
of the Lagrangian in deformations and apply least
action principle.

3) We obtain a set of equations using the mechanical
characteristics as input parameters, and we solve
this system to get stiffness coefficients.

To solve the system, the number of unknowns has to
be equal to the equations number (constraints). Three
equations result from each elongation experiment (one
for the Young’s modulus and one for the Poisson’s ratio
along each direction orthogonal to the elongation). Thus,
we obtain 9 equations for the three elongation directions
for all possible configurations. For shearing equations,
we have 6 equations for configurations M1 and M3 (2
equations for each shearing plane), and 3 equations for
configuration M2 (1 equation for each shearing plane).

For the number of unknowns, three degrees of free-
dom (kx0 , ky0 , kz0) stem from the parallel edge for all
the possible configurations. Then, for the configuration
M1, we have two diagonals on each face of the element,
i. e. 12 diagonals in total. But, by symmetry we have
the same stiffness constant for two diagonal springs
in a same face, and the same stiffness constants for
springs on parallel faces. So, we get only 3 different
diagonals stiffness constants for this configuration M1.
For configuration M2, we have only 4 inner diagonals
with the same stiffness constant. And, as configuration
M3 is the combination of the two priors configuration,
we have to determine 4 stiffness constants

Table 2 summarizes these numbers of equations and
unknowns. We observe that all geometrical configura-
tions bring to an over-constrained system.

M1 M2 M3
Nb of equations for elongation 9 9 9
Nb of equations for shearing 6 3 6
Total number of equations 15 12 15
Nb of unknowns for shearing 3 1 4
Nb of unknowns for elongation 3+(3) 3+(1) 3+(4)
Total number of unknowns 6 4 7

TABLE 2
Number of equations and unknowns according to the

chosen geometry.

Nevertheless, configuration M2 is less constrained
than the others. Thus, we choose this configuration
which corresponds to the model with only inner
diagonals modeled by 4 springs with the same stiffness
constant noted kd.

But, before starting our parameterization process to
find the four stiffness constants (kx0 , ky0 , kz0 and kd) of a
3D element in configuration M2, we want to demonstrate
that there is no general solution and that the springs on
diagonal faces are not mandatory.

4.2.2 Nonexistence of a 3D general solution
For the demonstration of the nonexistence of a 3D gen-
eral solution, we choose the configuration noted M3, i.e.
with inner diagonals and face diagonals. Moreover, for
notation simplicity, we choose to restrict our 3D element
to a cube, i.e. where non-diagonal edges are identical. We
note x0 the rest length of these non-diagonal edges and
kx0 the stiffness constant of the corresponding springs.
This stiffness coefficient has to satisfy two relations (E
and ν). We will see that there is only one solution for
ν = 0.25, that is not satisfying for a cube (and by
extension for any parallelepiped).

Diagonal edges of a 3D face have a length dface =√
2x0 and inner diagonal edges have a length dcube =√
3x0. We note kdface

the stiffness constant of the springs
modeling the diagonal edges of a face and kdcube

the
stiffness constant of the springs modeling the 3D inner
diagonal edges.

By symmetry in the cube, the 6 shearing experiments
are equivalent and can be resumed into a single equa-
tion. If we consider a shearing stress due to a sliding η,
we obtain the deformation of the 4 inner diagonals of
the cube, and the deformation of the 4 diagonals of the
2 lateral faces of the deformation. We respectively note
these deformations δdcube

and δdface
with:

δdcube
=
√

(x0 + η)2 + 2x2
0 −

√
3 x0 ∼

√
3

3 η + O(η2)

δdface
=
√

(x0 + η)2 + x0
2 −

√
2 x0 ∼

√
2

2 η + O(η2)

Thus, the Lagrangian equation for this shearing exper-
iment involving 4 inner diagonals and 4 face diagonals
is defined by:

L = Fshearη − 4Epdcube
− 4Epdface

= Fshearη − 4× 1
2

kdcube
δ2

dcube
− 4× 1

2
kdface

δ2
dface

= Fshearη −
2
3

kdcube
η2 − kdface

η2

After resolution of the energy minimization and the
use of the shearing definition and its link with E and ν,
we obtain the following equation:

4 kdcube
+ 6 kdface

3 x0
=

E

2 (1 + ν)
= G. (5)

Then, we can incorporate the compressibility exper-
iment. For this, we apply a uniform pressure to the
cube, which generates a uniform distortion η. This defor-
mation generates an identical deformation of the inner
diagonals and the faces diagonal, defined by:

δdcube
=
√

3 (x0 + η)2 −
√

3 x0 ∼
√

3 η + O(η2)

δdface
=
√

2 (x0 + η)2 −
√

2 x0 ∼
√

2 η + O(η2)

The uniform pressure applied to the faces of the cube
generates the same surface force noted Fface. Thus, the
Lagrangian equation of the compressibility experiment,
involving 12 side edges, 4 inner diagonals and 12 face
diagonals, is defined by:
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L = 6 Fface
η
2 − 12Epx0

− 12Epdface
− 4Epdcube

= 6 Fface
η

2
−12

2
kx0 η2−12

2
kdface

δ2
dface

−4
2

kdcube
δ2

dcube

= 6 Fface
η
2 − 6 kx0η

2 − 12 kdface
η2 − 6 kdcube

η2

Then, we remember that the compressibility coefficient
or Bulk modulus is defined by

K =
∆P

∆V/V0

with P the pressure and ∆V/V0 the volume variation.
Moreover, for small deformations, we have the following
relation with E and ν:

K =
E

3 (1− 2ν)
.

Consequently, in our experiment the Bulk modulus is
defined by:

K =
Fface/ (x0 + η)2(

(x0 + η)3 − x0
3
)

/x0
3
∼ Fface

3 x0η
+ O(η2)

=
E

3 (1− 2ν)

Hence, after resolution of the energy minimization and
the use of the definition of the compressibility coefficient
with its link with E and ν, we obtain the following
equation:

4 kx0 + 8 kdface
+ 4 kdcube

3 x0
=

E

3 (1− 2ν)
. (6)

We can now integrate the laws governing a tensile
stress η to take into account Young’s modulus and
Poisson’s ratio. By symmetry, the other directions are
compressed of the same value 2δ. Thus, in this experi-
ment, two faces (noted face2) are constricted by keeping
their square shape, while the 4 others faces (noted face1),
parallel to the elongation, are stretched. Then, diagonal
edges are deformed in the following way:

δdcube
=

√
(x0 + η)2 + 2 (x0 − 2δ)2 −

√
3 x0

∼
√

3
3

η − 4
√

3
3

δ + O(η2, δ2)

δdface1
=

√
(x0 + η)2 + (x0 − 2δ)2 −

√
2 x0

∼
√

2
2

η −
√

2δ + O(η2, δ2)

δdface2
=

√
2 (x0 − 2δ)2 −

√
2 x0

∼ −2
√

2δ + O(δ2)

Then, the Lagrangian associated to this tensile exper-
iment, involving 4 elongated side edges, 8 compressed

side edges, 4 diagonals of constricted faces (face2), 8 di-
agonals of stretched faces (face1) and 4 inner diagonals,
is defined by:

L = Ftensileη −
4
2
kx0η

2 − 8
2
kx0(2δ)2 − 4

2
kdface

(−2
√

2δ)2

−8
2
kdface

(√
2

2
η −

√
2δ

)2

− 4
2
kdcube

(√
3

3
η − 4

√
3

3
δ

)2

L = Ftensileη − 2kx0η
2 − 16kx0δ

2 − 16kdface
δ2

−4kdface

(√
2

2
η −

√
2δ

)2

− 2kdcube

(√
3

3
η − 4

√
3

3
δ

)2

After resolution of the energy minimization and the
use of Young’s modulus and Poisson’s ratio definitions,
we obtain the following equations:

E =
12kdcube

kdface
+ 24k2

dface
+ 24k2

x0
+ 60kx0kdface

+ 24kx0kdcube

x
(
6kx0 + 9kdface

+ 4kdcube

)
ν =

2kdcube
+ 3kdface

6kx0 + 9kdface
+ 4kdcube

(7)

Consequently, we have to resolve a system of equa-
tions (5), (6) and (7). One solution can be found for
the Poisson’s ratio value ν = 0.25 but this is not a
versatile solution. So, we have demonstrated that there
is no general solution in 3D for a cube, and by extension
for any parallelepipedic shape.

4.2.3 Parameterization

Now, we can start our parameterization process with
configuration M2 to find the four stiffness constants (kx0 ,
ky0 , kz0 and kd) of a 3D element of our mass-spring
model.

Shearing experiment

Note that, for small shearing (θ ≈ 0), only diagonal
springs are stressed. Thus, as in 2D, the Lagrangian
equation defining this characteristic depends only on
the stiffness constant kd of the different diagonals. This
means that, as in 2D, the diagonal springs fully define
the shearing modulus; and their stiffness constant kd can
be determined independently of the other stiffness coef-
ficients. Thus, like in 2D, we begin the parameterization
with the shearing experiment.

Let apply a shearing in the (x0, y0) plane along x0

direction. In this experiment, two diagonals are stretched
while the two others are compressed. The deformation
of each diagonal is defined by:

δd =
√

(x0 ± η)2 + y2
0 + z2

0 −
√

x2
0 + y2

0 + z2
0 ,

∼ ± x0 η√
x2

0 + y2
0 + z2

0

+ O(η2).

Thus, the Lagrangian equation for this shearing ex-
periment involving the 4 diagonal springs of stiffness
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constant kd is defined by:

L = Fshearη − 4Epd

= Fshearη − 4× 1
2
kd δd

2

= Fshearη − kd
2 η2 x2

0

x2
0 + y2

0 + z2
0

Then, after the solving of the energy minimization and
the use of the shearing definition and its link with E and
ν, we obtain:

kd =
E z0

(
x2

0 + y2
0 + z2

0

)
8 (1 + ν) x0 y0

.

But, if we do again this shearing experiment for the
two others directions, we will obtain two others values
for the stiffness constant kd and at the end, we will
obtain:

kdi
=

E i
∑

j∈{x0,y0,z0} j2

8(1 + ν)Π{l∈{x0,y0,z0},l 6=i}l
,

with i one particular direction (i ∈ {x0, y0, z0}). To obtain
a symmetric behavior, i.e. the same stiffness constant kd

whatever the shearing direction, it is possible to choose
the average of the stiffness constants, with:

kd =
E
(
x2

0 + y2
0 + z2

0

)2
24 (1 + ν) x0 y0 z0

. (8)

But, this solution may not be satisfying for all shearing
experiments. However a unique solution can be obtained
for a cubic element i.e. with x0 = y0 = z0. In this case,
kd is well defined proportionally to G, with

kd =
3 E x0

8 (1 + ν)
=

3
4

G x0. (9)

Thus, after finding the expression of the stiffness
constant kd, we can continue our parameterization with
the elongation experimentation to obtain the stiffness
constants of the others edge springs.

Elongation experiment
As seen before, three equations result from each
elongation experiment. Consequently, for each direction,
the elongation experiment induces an over-constrained
system with 3 equations and only one unknown. So, as
in 2D, we will introduce two correction forces for each
elongation direction.

Let apply a stress Fx0/(x0y0) along the x0 axis in-
volving a stretching η along this axis. This stress also
generates a thinning down on the orthogonal faces of 2ε
along y0 axis and of 2ζ along z0 axis.

Thus, for this elongation experiment, the deformation
of the diagonal springs is defined by:

dd =
√

(x0 + η)2 + (y0 − 2ε)2 + (z0 − 2ζ)−
√

x2
0 + y2

0 + z2
0

∼ η x0 − 2 ε y0 − 2 ζ z0√
x2

0 + y2
0 + z2

0

+ O(η2, ε2, ζ2)

Then, two Lagrange multipliers are linked to the forces
induced by the spring distortions to ensure the correct
integration of Poisson’s ratio. Consequently, we have
two new forces: Fx0y0

and Fx0z0
acting along y0 and

z0, respectively. These corrective forces is generated for
each one of the 8 vertices of the 3D element. Hence,
the lagrangian associated to this elongation experiment
along x0, involving 4 springs of each direction (x0, y0,
z0) and 4 inner diagonals, is defined by:

L = Fx0η − 8Fx0y0
(2ε)− 8Fx0z0

(2ζ)− 4
2
kx0η

2

−4
2
ky0 (2ε)2 − 4

2
kz0 (2ζ)2 − 4

2
kd d2

d

Consequently, the energy minimization is calculated
for

∂L

η
= 0,

∂L

ε
= 0,

∂L

ζ
= 0

and after resolution we obtain 3 equations (one deriving
from Young’s modulus and two from Poisson’s ratio).
Then, we iterate this process for

• an elongation experiment along y0 induced by a
force Fy0 with corrective forces Fy0x0

along x0 and
Fy0z0

along z0,
• an elongation experiment along z0 induced by a

force Fz0 with corrective forces Fz0x0
along x0 and

Fz0y0
along y0.

At the end, we obtain 9 equations with 9 unknown val-
ues and the system resolution gives us the following ex-
pected symmetric solutions, with (i, j, k) ∈ {x0, y0, z0}3
with i 6= j 6= k:

ki =
E
(
6 j2k2 (1 + ν) + (ν(j2 + k2)− i2)

(
x2

0 + y2
0 + z2

0

))
24 (1 + ν) x0 y0 z0

Fij
= −

((
x2

0 + y2
0 + z2

0

) (
ν(k2 + i2)− i2

)
+ 6 i2 k2 ν

)
Fi

48 i j k2

(10)
Moreover, for a cubic element, i.e. with x0 = y0 = z0,

we obtain for i ∈ {x0, y0, z0}:

kx0 =
E x0 (4ν + 1)

8 (1 + ν)
, F⊥i = −Fi(4ν − 1)

16
. (11)

To sum up, each element of our 3D mass-spring sys-
tem is defined by 16 springs with four different stiffness
constants (kd, kx0 , ky0 , kz0) and by 6 corrective forces
(Fx0y0

, Fx0z0
, Fy0x0

, Fy0z0
, Fz0x0

, Fz0y0
). These coefficients

and corrective forces are defined by equations (8) and
(10) which integrate Young’s modulus and Poisson’s
ratio of the simulated deformable object. In the case of
a cubic element, stiffness constants and corrective forces
are defined by equations (9) and (11).

4.2.4 Validation of the Bulk Modulus
Before looking at the simulation loop, we want to
validate our model according to its induced Bulk
modulus.
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In that sense, we apply a uniform pressure P on the
surface of our 3D element. This pressure generate, for
each couple of parallel faces, a force proportional to this
pressure P : FP x0 on plane (y0, z0), FP y0 on plane (x0, z0)
and FP z0 on plane (x0, y0). Thus, we have:

P =
FP x0

y0 z0
=

FP y0

x0 z0
=

FP z0

x0 y0

⇒ FP x0 = P y0 z0, FP y0 = P x0 z0, FP z0 = P x0 y0.

These forces generate symmetrical deformations of 2η
along x0, 2ε along y0, 2ζ along z0 and a deformation
of δ for the inner diagonals. Moreover, corrective forces
due to each elongation are applied on each vertex of
the 3D element. Thus, the Lagrangian equation of this
compressibility experiment, involving all springs, is
defined by:

L = 2η P y0 z0 + 2ε P x0 z0 + 2ζ P x0 y0

−8× 2 η (Fy0x0
+ Fz0x0

)− 8× 2 ε (Fx0y0
+ Fz0y0

)
−8× 2 ζ (Fx0z0

+ Fy0z0
)− 4

2kx0 (2η)2

− 4
2ky0 (2ε)2 − 4

2kz0 (2ζ)2 − 4
2kd δ2

The resolution of the energy minimization enables
to obtain the expressions of the deformations η, ε and
ζ. Then we can apply the Bulk modulus definition to
introduce the compressibility equation as follow:

∆P = K
∆V

V0
⇒ K =

∆P V0

∆V

with V0 (resp. P0) the initial volume (resp. pressure), V1

(resp. P1) the volume (resp. pressure) after deformation
and with ∆P = P1 − P0, ∆V = V1 − V0, V0 = x0 y0 z0

and V1 = (x0 + 2η) (y0 + 2ε) (z0 + 2ζ).

Then, by assuming that ∆P → 0, we can find the
definition of K, that is

K =
E

3 (1− 2ν)

and conclude that our 3D model enable the conservation
of the Bulk modulus.

5 SIMULATING AN OBJECT DEFORMATION

Since all the stiffness coefficients and the added
corrective forces are now determined for a 2D or 3D
mesh element, we can now present how we proceed
to do the simulation of any object composed by these
mesh elements.

5.1 Composition of elementary elements

Any deformable object can be modeled by the assembly
of our 2D or 3D elements. Then, we apply on this later
composition the several characteristics that just have
been found in previous sections.

5.1.1 Mass-spring modeling of the composition

Fig. 6 presents a sample for a 2D object composed of 9
elementary 2D elements of our model. These 9 elements
are placed side by side and consequently some springs
appear twice in this composition.

Fig. 6. A complex object is modeled by the assembly of
several elementary “bricks” of our model.

For example in Fig. 6, vertices P2 and P3 are common
to elements 1 and 2, and consequently, the spring
between these two vertices appear twice. So, according
to the parallel springs properties, we choose to model
these two springs by a unique spring, linking vertices
P2 and P3 with a stiffness constant equal to the sum of
the stiffnesses of the two initial springs of elements 1
and 2.

From the energetic point of view of the simulated
object, the total energy of an object corresponds to the
sum of the energies of composing elements of this object.
Thus, the Lagrangian equation describing the behavior
of the object corresponds to the superposition of the
Lagrangian equation of each element. Moreover, external
forces applied to an element of the object, follows (i)
from forces due to the neighboring elements, and (ii)
from external forces of the object.

5.1.2 Tensile properties of the composition

Then, we want to validate this composition by
demonstrating that the tensile properties (Young’s
modulus and Poisson’s ratio) are preserved. For this, let
consider a bar of size l0 × h0 composed of n elements
i. Moreover, we assume that these elements, of sizes
l0 × hi with

∑n
i=1 hi = h0, have the same Young’s

modulus and Poisson’s ratio.

First, we assume that the bar is fixed at its base of
size l0, and we apply at its extremity a tensile force Fh0

according to the direction h0. When the bar is at its equi-
librium, the sum of the internal forces of each element
are null. Moreover, as the bar is a composition of several
elements in equilibrium, the tensile force applied at the
extremity of the bar, induced the application of this force
on each element composing this bar. Consequently, each
element find its equilibrium for a same stress Fh0/l0.

We note ηi and 2δi the strains caused by Fh0 on each
element i of size hi × l0. Then, as each element has the
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same Young’s modulus and Poisson’s ratio, we have:

E =
Fh0/l0
ηi/hi

, ν =
2δi/l0
ηi/hi

.

⇒ ηi =
hi Fh0

E l0
, δi = ν l0

ηi

2hi
=

ν Fh0

2 E
.

Thus, we can note that the expression of ηi is inde-
pendent of the element. So, if we consider the bar as a
unique element of size l0 × h0, we have:

η =
n∑

i=1

ηi =
Fh0

E l0

n∑
i=1

hi =
Fh0 h0

E l0
,

δ = δi =
ν Fh0

2 E
.

So, using the Young’s modulus and Poisson’s ratio
definitions on the bar, we obtain:

Ebar =
Fh0/l0
η/h0

=
Fh0/l0

Fh0/E l0
= E,

νbar =
2δ/l0
η/h0

=
2δ

l0
× h0

η
=

2νFh0/2E

l0
× h0

Fh0/E l0
= ν

Consequently, the conservation of the Young’s
modulus and Poisson’s ratio of the bar is validated for
the tensile test according to the direction of the assembly.

Then, we have to do the same tensile test, but with a
traction orthogonal to the assembly. So, we assume now
that the bar is fixed at a orthogonal side to the base, and
we apply a pressure Pl0 on the other orthogonal side
along to the direction l0.

Thus, we apply on each element i a force Fl0,i with
Fl0,i = hi Pl0 and we note η′i and 2δ′i the resulting
strains. Consequently, as each element has the same
Young’s modulus and Poisson’s ratio, we have:

E =
Fl0,i/hi

η′i/l0
, ν =

2δ′i/hi

η′i/l0
,

⇒ η′i =
Fl0,i l0
E hi

=
l0 Pl0

E
, δ′i =

ν hi η′i
2 l0

=
ν hi Pl0

2 E
.

Thus, we can note that the deformation η′i is a con-
stant. Moreover, if we consider again the bar as a unique
element of size l0 × h0, we have:

η′ = η′i, δ′ =
n∑

i=1

δ′i =
ν Pl0

2 E

n∑
i=1

hi =
ν Pl0 h0

2 E

So, using the Young’s modulus and Poisson’s ratio
definitions on the bar, we obtain:

Ebar =
Pl0

η′/l0
= Pl0 ×

l0
η′

=
Pl0 l0 E

l0 Pl0

= E,

νbar =
2δ′/h0

η′/l0
=

2δ′

h0
× l0

η′
=

2 ν Pl0 h0

2E h0
× l0 E

l0 Pl0

= ν.

Consequently, we also obtain the conservation of the
Young’s modulus and Poisson’s ratio for a tensile test
orthogonal to the assembly.

Moreover, note that the same results are obtained for
the shear modulus and for tests with a bar of n × m
elements. So, the assembly exhibits the same mechanical
characteristics as each element composing it, and this
independently of the size of the element.

5.2 Simulation Loop

We have seen that a deformable objet is modeled by
the assembly of several 2D or 3D elements of our MS
model. Then, the simulation of this object results from
the simulation of the deformation of each single element
that constitutes the object.

This simulation can be done according to Newton’s
laws. In this case, the several steps of the simulation
loop are as follows:

1) Computation of all forces applied to each element.
These forces can be (i) internal, including forces
due to springs and correction forces, or (ii) external,
like gravity or reaction forces due to neighborhood.

2) Computation of accelerations of each element ac-
cording to Newton’s laws.

3) Computation of velocities and positions of each
element according to any numerical integration
scheme.

After the description of our 2D or 3D model, we will
present in the next section some numerical experimen-
tations.

6 EVALUATION OF THE 3D MODEL

We propose now to qualify the mechanical properties of
our system. For this, we have carried out several tests.

6.1 Tensile stress experiment

We start our experimentations with some tensile stress
tests by applying to a beam-like object a quasi-static
stress. The elongation can attain 20% of the beam length.
The experiments have been carried out with input pa-
rameters ranging from 100 Pa to 100 kPa for Young’s
modulus E, and from 0.1 to 0.5 for Poisson’s ratio ν. The
accuracy of the simulation is evaluated by comparing the
simulated mechanical quantities to the input parameters.

The quantitative study of the test results shows
that Young’s modulus (see Fig. 7) and Poisson’s ratio
(see Fig. 8) of our model tend to drift when the
deformation increases. Nevertheless, these results are
really satisfying. As illustrated in Fig. 7, the error on
Young’s modulus exceeds 5% only for deformations
larger than 10%. Besides, we notice that this error
increases conversely with the imposed Poisson’s ratio:
for a 10% deformation, the error on Young’s modulus
amounts to 2.7% if ν = 0.3 and it amounts only to
2% if ν = 0.4. This error falls down to 1.5% when ν = 0.5.
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Fig. 7. Errors on Young’s modulus for a cubic meshed
element in quasi-static tensile stress.

The Fig. 8 illustrates that, concerning Poisson’s ratio
simulation, the error for ν ∈ [0.3; 0.5] remains lower than
5%, even if the deformation attains 14%. We observe
identical curves whatever the value of E is. This is not
surprising since the spring stiffness constants and the
thinning forces are proportional to the input parameter
E. We point out a change in the profile of Poisson’s ratio
error occurring at ν = 0.25. Thinning is overestimated
for values of ν ≥ 0.25 and underestimated elsewhere.
In fact, at ν = 0.25, no corrective Lagrangian forces are
needed, so the error is minimal.

ν−>0,5
ν=0,4

ν=0,2

ν =0,3

l
0

l
0

E
rr

or
 in

 %
 o

f

Deformation imposed in % (d)

η

d=100
η

ν=0,1

ν

Fig. 8. Poisson’s ratio errors (absolute value) for a cubic
element in tensile stress.

When performing tensile tests on a beam, meshed by
any composition of elements, we obtain exactly the same
error as for a unique element. This confirms that the
mechanical properties of any meshed object are fully
defined by the properties of the mesh elements.

6.2 Shearing experiment

Then, we continue our experimentations with some
shearing experiments. To validate the shearing on an
element composition, we built a 100×100×300 mm beam
by assembling elements characterized by E = 1 Pa and
ν = 0.3. We stressed it by applying a force equivalent to
2000 N. The interpretations of shearing experiment are
not straightforward for large deformations. Therefore,
we considered as reference the FEM solution to evaluate
the accuracy of our model. For this, results of our
simulations have been superimposed to the FEM one
(see Fig. 9). Within the framework of our model, i.e.
small deformations, the agreement is very satisfactory,
attesting the good behavior of our model.

Fig. 9 illustrates the influence of the mesh resolution
on the result accuracy. We observe a mean error in
displacement around 13% with a maximum of 33% for
a 2×2×6 resolution. It decreases progressively when
we improve the resolution. Mean and maximal errors
fall down respectively to 3% and 6% for a 8×8×24
resolution. We performed additional experiments that
show convergence of our method when refining mesh,
that what one of the major drawback of most early
techniques.

(a) (b)

(c) (d)
(a-b) 2×2×6 sampling: M=13%, SD=1.3% MAX=33%
(c) 4×4×12 sampling: M=6%, SD=0.33% MAX=14%
(d) 8×8×24 sampling: M=3%, SD=0.03% MAX=6%

Fig. 9. Shearing experience: (a) Map of error in dis-
placement on each node of the mesh, (b-d) the reference
FEM solution (in color gradation) with superimposition
of various simulations performed for different sampling
resolutions (wire mesh). Notation: M for mean error value,
SD for standard deviation and MAX for maximal error.
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On Fig. 10, we can also remark that the relative error
on G does not depend on E, as expected. This error
increases with the imposed ν but remains smaller than
5% for a shearing angle inferior to 5◦ and for ν < 0.4.

ν=0,1

ν=0,2

ν=0,3

ν=0,4ν−>0,5

α

E
rr

or
 o

n 
G

 in
 %

Shearing angle    in degreeα

Fig. 10. G errors for a cubic element according to an
imposed shearing deformation and the Poisson’s ratio.

Then, we realize this shearing experiment on a non-
symmetric composition. For this, we choose an L-shaped
object fixed at its base, and we apply a constant force
to the edges orthogonal to the base. Fig. 11 shows our
results superimposed to the FEM solution (computed at
high resolution), with a map of deformation. The object
dimensions are 4000×4000×4000mm. The mechanical
characteristics are: Young’s modulus of 1kPa, Poisson’s
ratio of 0.3 and an applied force of 0.3GN. In this
experiment, we have neglected the mass.

(a) (b)

(c) (d)
(b) 2×2×2: M=6.99%, SD=0.94%, MAX=18%.
(c) 4×4×4: M=3.37%, SD=0.20%, MAX=7%.
(d) 8×8×8: M=0.66%, SD=0.01%, MAX=1.6%.

Fig. 11. Experiment on a non-symmetric object: (a)
load scheme, (b-d) the reference FEM solution (in color
gradation) with superimposition of various simulations
performed for different sampling resolutions (wire mesh).

Again we clearly observe that our model behaves
as expected i. e. better mesh resolution leads to better
results. Moreover, the dissymmetry of the geometry does
not influence the accuracy of the results.

6.3 Deflection experiment
Then, we continue our experimentations. Indeed, the
deflection experience (construction or structural element
bends under a load) is recommended to validate me-
chanical models. It constitutes a relevant test to evaluate
(a) the mass repartition, and (b) the behavior in case of
large deformations inducing large rotations, especially
close to the fixation area.

This test consists in observing the deformation of a
beam anchored at one end to a support. At equilibrium,
under gravity loads, the top of the beam is under tension
while the bottom is under compression, leaving the
middle line of the beam relatively stress-free. The length
of the zero stress line remains unchanged (see Fig. 12).

In case of a null Poisson’s ratio, the load induced
deviation of the neutral axis is given by:

y (x) =
ρg

24 EI

(
6 L2x2 − 4 L x3 + x4

)
(12)

for a parallelepiped beam of inertia moment I =
TH3/12, and with linear density ρ = M/L.

(a) (b)

(c) (d)
(b) 4×1×1: M=16.31%, SD=2.83%, MAX=38%.
(c) 8×2×2: M=7.08%, SD=0.58%, MAX=16.7%.
(d) 16×4×4: M=0.68%, SD=0.03%, MAX=4.05%.

Fig. 12. Deflection experiment: (a) Cantilever neutral
axis deviation, (b-d) the reference FEM solution (in color
gradation) with superimposition of various simulations
performed for different sampling resolutions (wire mesh).

We notice that results are dependent of the sampling
resolution, as for any other numerical method, however
the fiber axis profile remains close to the profile given
by equation (12). Fig. 12 displays some results for a
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cantilever beam of dimensions 400×100×100 mm, with
Young’s modulus equals to 1000 Pa, Poisson’s ratio to
0.3 and a mass of 0.0125 Kg.m−3. By looking at the
displacement errors at each mesh node, we observe that
the error is decreasing when the sampling is improved:
the maximum error in the sampling 4 × 1 × 1 is about
45% while it is about 5% for a resolution of 16 × 4 × 4,
compared to a FEM reference result (computed at higher
resolution), proving again the convergent behavior of
our technique.

6.4 3D deformable object simulation
An example of application is depicted on Fig. 13.

Fig. 13. A complete 3D application: simulation of the
head lateral movement at different steps. Puma’s model
developed by the INRIA Gamma researcher’s team.

By dragging points, we applied some external forces
on an initial hexahedral meshing of a puma, leading
to produce the head lateral movement. Note that the
initial choice of a parallelepiped shape is absolutely
not a constraint in most applications. This choice has
been motivated by the fact that it is considered by the
numerical community as stable and more precise for

the same number of elements than a tetrahedral mesh
element. This is to be counterbalanced by the fact that
it requires generally more elements to fit a non simple
geometry. Anyway, for better visualization or collision
detection purposes, it is easy to fit a triangular skin on
our hexahedral model, as shown on Fig. 13.

7 CONCLUSION AND FUTURE WORK

We proposed a mass-spring model that ensures fast and
physically accurate simulation of linear elastic, isotropic
and homogeneous material. It consists in meshing any
object by a set of cubic mass-spring elements. By con-
struction, our model is well characterized by the Young’s
modulus and Poisson’s ratio. The spring coefficients
have just to be initialized according to simple analytic
expressions. The precision of our model have been given,
by comparing our results with those obtained by a high
resolution finite element method, chosen as reference.

In the future, we are looking to apply the same
techniques to other geometrical elements, for example
tetrahedron or any polyhedron. This would increase the
geometrical reconstruction possibilities and would offer
more tools for simulating complex shapes, although in
the actual state, the hexahedral shape is not a con-
straint in many applications ranging from mechanics to
medicine. If desired, a triangulation of the surface can
be performed with ease and at reduced computational
cost.

Mesh optimization or local mesh adaptation would
probably improve the efficiency of the model. For exam-
ple, we can modify the resolution in the vicinity of highly
deformed zones, reducing large rotations of elements
undergoing heavy load.

We exhibited that our model can support reasonably
large deformations. The accuracy increases with the
mesh resolution. This is a major improvement relatively
to early techniques, as it is generally dependent to the
mesh resolution and topology. However, it may be in-
teresting to investigate a procedure to update the spring
coefficients and corrective forces when the deformations
become too large. In this case, the elastic behaviour will
be lost (the initial shape will not be recovered), but this
may allow to handle strong topology alteration, even
melting should be able to be considered.
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Savoie, 2000.

[5] Cynthia Bruyns and Mark Ottensmeyer. Measurements of soft-
tissue mechanical properties to support development of a physi-
cally based virtual anima model. In MICCAI 2002, pages 282–289,
2002.
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[20] Céline Paloc. Adaptative Deformable Model (allowing Topological
Modifications) for Surgical Simulation. PhD thesis, University of
London, 2003.
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