
HAL Id: hal-01493645
https://hal.science/hal-01493645v1

Preprint submitted on 21 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Motion Planning Based on Sliding Horizon and
Validated Simulation *

Elliot Brendel, Julien Alexandre Dit Sandretto, Alexandre Chapoutot

To cite this version:
Elliot Brendel, Julien Alexandre Dit Sandretto, Alexandre Chapoutot. Robust Motion Planning Based
on Sliding Horizon and Validated Simulation *. 2017. �hal-01493645�

https://hal.science/hal-01493645v1
https://hal.archives-ouvertes.fr

Robust Motion Planning Based on
Sliding Horizon and Validated Simulation∗

Elliot Brendel, Julien Alexandre dit Sandretto, and Alexandre Chapoutot †

March 21, 2017

Abstract

A new algorithm of motion planning based on set-membership approach and
inspired by optimal control methods is presented. The goal of this algorithm is to
find a safe and optimal path taking into account various sources of uncertainties on
the dynamical model of the plant, on the model of the environment, while being
robust with respect to the numerical approximations introduced by numerical inte-
gration methods. The main approach is based on sliding horizon method in order
to predict the behavior of the plant allowing the computation of an optimal path.
As an example, the motion planning algorithm is applied on an Autonomous Un-
derwater Vehicle (AUV) case study, showing the benefit of the proposed approach.

1 Introduction
Motion planning algorithms are a center piece in the control framework of mobile
robots as they contribute to give them the ability of have autonomous behaviors. Fur-
thermore, such class of algorithms is critical as a failure can cause the abort of the
mission or can cause important amount of damage such as human loss. The validation
of such algorithms is then mandatory in order to increase the confidence of the end
users. However, those algorithms are also subject to constraints, e.g., to reduce fuel
consumption. In consequence, computing a safe path is usually not enough, an optimal
one is search to minimize some costs.

Moreover, one of the challenge in order to design robust and reliable motion plan-
ning algorithms is to take into account various sources of uncertainties. For example,
the environment is not exactly know and some disturbance should have been consid-
ered. Mathematical models of the mobile robots are not perfect and usually come from
some simplification in order to have efficient simulation activities. Lastly, computer-
aided design usually produces approximated results as it is based on numerical methods
which cannot produce close form solution of a problems, e.g., the solution of an initial
value problem for ordinary differential equations. The set-membership framework is
suitable to deal with such kinds of uncertainties.
∗This work benefited from the support of the “Chair Complex Systems Engineering - Ecole Polytech-

nique, THALES, DGA, FX, DASSAULT AVIATION, DCNS Research, ENSTA ParisTech, Télécom Paris-
Tech, Fondation ParisTech and FDO ENSTA”.
†Authors are with ENSTA ParisTech, Université Paris-Saclay, 828, bd des maréchaux, 91762 Palaiseau

Cedex, France {brendel,alexandre, chapoutot}@ensta.fr

Contributions The main contribution of this article is the combination of set-member-
ship methods with optimizing approach. Hence, a correct-by-construction algorithm is
defined with the intrinsic properties to be robust to uncertainties as it relies on set-
membership approach [8]. Moreover, embedding the motion planning problem into a
constraint satisfaction problems (CSP) [17], and more precisely into a global optimiza-
tion framework [5], the proposed algorithm produces an optimal free-collision paths
with respect to a given cost function which is minimized.

Related Work Motion planning is an active research area in Robotics and many
methods have been developed. Artificial potential fields has been used in motion plan-
ning problems such as in [3] but without producing optimal path. A popular approach
is to use stochastic sampling to discretize the configuration space, e.g., the Rapidly-
exploring Random Trees (RRT) [11] path planning algorithm and its many variants.
The (asymptotic) optimality of the solution is provided by the optimal Rapidly-exploring
Random Trees (RRT*) first proposed in [9]. Other methods based on receding horizon
approach have also been considered to produce optimal collision-free paths. For ex-
ample, [12] uses receding horizon in context of multi-robot or [18] considers complex
mission described by temporal logic. While all these methods are efficient to produce
collision-free paths, they usually did not take into account uncertainties and so the
robustness of the solution is not guaranteed.

Uncertainty in motion planning has been considered mainly based on two repre-
sentations: set-membership [15, 16] or covariance matrices [10, 4]. While the latter is
able to find paths with a collision probability under a given threshold, set-membership
approaches can guarantee safe trajectories under a bounded noise assumption. In [16]
is introduced a preliminary conceptual reliable and robust path planner based on RRT
principles and solved in an set-membership framework where all uncertainties are con-
sidered bounded. Interval analysis principle along with graph algorithms were previ-
ously used [6] to find a collision-free shortest path for a polygonal rigid object in a
given configuration with obstacles. Nevertheless, theses approaches builds robust and
safe paths but usually cannot produce optimal paths.

Contents The paper is organized as follows. Some preliminary notions on motion
planning problem, set-membership methods and sliding horizon method are introduced
in Section 2. The main contribution of the paper is presented in Section 3 by formulated
the problem and the presentation of the algorithms. In Section 4 a case study focus on
AUV is described showing the relevance of the proposed approach. Conclusion and
perspective are drawn in Section 5

2 Preliminary notions
In this section, the main notions useful for our approach to solve the robust motion
planning problem are introduced.

2.1 Dynamics of a vehicle
The dynamics of a vehicle, such as a car, a flight or a ship, can be modelized by dif-
ferential equations to analyze its behavior. In the special case of autonomous vehicles
- Unmanned Aerial Vehicle (UAV), Autonomous Underwater Vehicle (AUV) or Un-
manned Ground Vehicle (UGV) - the dynamical modeling is very important to define

the controller and the path planner. In this paper, it is assumed that the dynamics
is modeled by nonlinear ordinary differential equations as the ones coming from the
Newton’s laws.

Starting from a given point at time zero, an initial value problem is defined by:

ẏ(t) = f (t,y(t),u(t)), with y(0) = y0 . (1)

In (1), y(t) ∈ Rn and u(t) ∈ Rm denote the vector of states and inputs, respectively.

2.2 Motion planning
A motion planning consists on producing a continuous path in the configuration space,
that satisfies system dynamics (movement constraints), safety constraints (obstacles),
inputs limitations, and possibly optimizes a cost linked to a given aspect of movement.
In a more enriched motion planning, the considered constraints can take into account
the quality of ground, ocean stream, up-draft, seabed shape, etc. These constraints
can be considered in connection with the task and/or the sensors. A cost function are
often added. This latter, linked to states of the system (and not linked to inputs) can
be a distance expressed in the configuration space or a more complex functional cost
involving state and/or state derivatives.

2.3 Uncertainties and Validated Simulation
The simplest and most common way to represent and manipulate sets of values is
interval arithmetic (see [13]). An interval [xi] = [xi,xi] defines the set of reals xi such
that xi ≤ xi ≤ xi. IR denotes the set of all intervals over reals.

Interval arithmetic extends to IR elementary functions over R. For instance, the
interval sum, i.e., [x1]+[x2] = [x1+x2,x1+x2], encloses the image of the sum function
over its arguments. An interval vector or a box [x] ∈ IRn, is a Cartesian product of n
intervals.

Validated numerical integration methods are interval counterpart of numerical in-
tegration methods. A validated numerical integration of a differential equation, as de-
fined in (1) assuming piece-wise constant input, consists in a discretization of time,
such that t0 6 · · · 6 tend, and a computation of enclosures of the set of states of the
system y0, . . . , yend, by the help of a guaranteed integration scheme. In details, a guar-
anteed integration scheme is made of

• an integration method Φ(f ,y j, t j,h), starting from an initial value y j at time t j
and a finite time horizon h (the step-size), producing an approximation y j+1 at
time t j+1 = t j+h, of the exact solution y(t j+1;y j), i.e., y(t j+1;y j)≈Φ(f ,y j, t j,h);

• a truncation error function lteΦ(f ,y j, t j,h), such that y(t j+1;y j)=Φ(f ,y j, t j,h)+
lteΦ(f ,y j, t j,h).

A validated numerical integration method is a two step method starting at time t j and
for which i) it computes an enclosure [ỹ j] of the solution of (1) over the time interval
[t j, t j+1] to bound lteΦ(f ,y j, t j,h); ii) it computes a tight enclosure of the solution of (1)
for the particular time instant t j+1. There are many methods for these two steps among
Taylor series and Runge-Kutta methods see [14, 1] and the references therein for more
details.

As a result, validated numerical integration methods produce two functions depend-
ing on time

R :
{

R→ IRn

t 7→ [y] (2)

with for a given ti, R(ti) = {y(ti;y0) : ∀y0 ∈ [y0]} ⊆ [y], and

R̃ :
{

IR→ IRn

[t, t] 7→ [ỹ] (3)

with R̃([t, t]) = {y(t;y0) : ∀y0 ∈ [y0]∧∀t ∈ [t, t]} ⊆ [ỹ].
In [2], validated numerical integration has been combined with CSP tools. Indeed,

functions R() and R̃() are abstracted, but guaranteed, solutions of (1). Therefore, the
process of validated simulation, mixed with constraint programming and abstraction of
time functions provides an efficient tool for the prediction of the system evolution.

2.4 Sliding Horizon Method
A sliding, or receding, horizon-based method is used when the future cannot be antici-
pated, such as in a moving environment or a progressively discovered environment.

In the proposed method, the predicted horizon needs to be prolonged, but long term
validated simulations are difficult to obtain. A sliding horizon approach is then inter-
esting to progressively discover the environment and by the way reducing the duration
of the simulations. A sliding horizon based motion planning is then close to Model
Predictive Control. The main difference is the desired result: MPC is a control syn-
thesis, then it produces solutions in the input space (with cost on inputs), while motion
planning is a path planner, then it produces solutions in the state space (with cost on
states).

A sliding horizon-based method consists on computing a value (an optimal control
or a path) from a time t0 for a period T0 (as long as possible) in order to anticipate the
future, i.e., the horizon, injecting this value in the system, and re-computing this value
at time t1, with t0 + t1 < T0, for a new horizon period T1 (T1 may be equal to T0). The
initial condition of the problem on t1 is the state of the system evaluated or measured
(in the case of control synthesis) at t1.

3 Robust and Guaranteed Motion Planning Based on
Sliding Horizon

3.1 Problem Formulation
A dynamical system as defined in (1), where y is the state and u is the control, is
considered. Then a constraint function h : y 7→ h(y) and a cost function g : y 7→ g(y)
are defined, constraints coming from safety and cost from task for example. Thus, the
problem is to find the control u which is the solution of

(P) :

 minu g(y)
ẏ = f (y,u)
h(y)< 0

.

3.2 Complete Approach
The robust and guaranteed motion planning using sliding horizon proposed in this pa-
per is defined by the steps:

1. a control u1 solution of (P) on a time span [0,T], with T the prediction period,
and from the initial state y0, is computed;

2. a simulation on a time span [0,T ′], with T ′ the sliding period (T ′ < T), and from
the initial state y0, is performed. It provides the trajectory y1(t) driven by the
input u1 ;

3. a control u2 solution of (P) on a time span [T ′,T ′+T], and from the initial state
y1(T ′), is computed;

4. as in the second step, a simulation on a time span [T ′,2T ′], and from the initial
state y1(T ′) is performed. It provides the trajectory y2(t) driven by the input u2;

5. these steps are repeated until a user defined number of steps is reached.

At Step i, to find the control ui, we browse through the set of the controls, assuming that
its finite, until the control whose corresponding y(t) satisfies the constraint h(y(t))< 0
and minimizes the cost g(y(t)), ∀t ∈ [(i−1)T ′, iT ′] is found.

3.3 Algorithms
The method is divided in two algorithms, the main one (see Algorithm 1) is the global
procedure handling the sliding horizon progress. The second one (see Algorithm 2)
solves the problem (P). A third algorithm (see Algorithm 3) which improved the sec-
ond one is given.

3.3.1 Main Algorithm

Algorithm 1 Sliding horizon
Require: y0, T , T ′, nstep, f , h, g, D

for i ∈ [[0,nstep−1]] do
uoptim←− find u(y0,T, f ,h,g,D)
y(t)←− simulation

(
f ,y0,uoptim,T ′

)
y0←− y(T ′)
Path.push back(y(t))

end for
Ensure: Path

In Algorithm 1, nstep is the iteration number of the algorithm and y0 is the initial
state for an iteration. h and g are the constraint function and the cost function, respec-
tively. T ′ and T are the same than given in Section 3.2 and D is the set of inputs which
is assumed to be finite. The function find u solves our problem (P) (and is given in
Algorithm 2). The simulation method returns a list of boxes that contains the solution
of ẏ= f (y,u) for a given u in a guaranteed way using validated simulation method (see
Section 2.3). Path is the list of trajectories from the initial state driven by the inputs
found for every iteration of the algorithm.

3.3.2 Optimization Algorithm

In order to find a control which is solution of (P), a discretization of the set of the
controls is performed, and the one which minimizes g while satisfying the constraint
h is returned. In Algorithm 2, D is a finite set of control inputs, utemp is the previous

Algorithm 2 find u function
Require: y0, T , f , h, g, D

c←−+∞

for u ∈ D do
y(t)←− simulation(f ,y0,u,T)
if g(y(T))< c and h(y(t))< 0,∀t ∈ [0,T] then

utemp←− u
c←− g(y(T))

end if
end for
uoptim←− utemp

Ensure: Optimal control uoptim

validated control, and c is the cost corresponding to utemp. The result is given in term
of the “optimal control” uoptim, which is proven to drive the system to the optimal and
safe trajectory, while being easier to save in memory.

3.3.3 Improvement of Algorithm 2

Algorithm 3 Improvement of Algorithm 2: find u function
Require: y0, T , f , h, g, D

c←−+∞

D′←− D
for u ∈ D′ do

y(t)←− simulation(f ,y0,u,T)
if g(y(T))< c and h(y(t))< 0,∀t ∈ [0,T] then

utemp←− u
c←− g(y(T))

end if
D′←− D′ \{u}
yD′(t)←− simulation(f ,y0,D′,T)
if c 6 g(yD′(T)) then

break
end if

end for
uoptim←− utemp

Ensure: Optimal control uoptim

In this part, an improvement of the previous algorithm using the set-membership
approach is proposed. For each control u found, considering that D′ is the set of the
remaining untested controls, a simulation on all the set D′ can be performed by the help
of validated numerical integration methods (see Section 2.3). We denote by yD′(t) the

obtained trajectories. If c 6 g(yD′(T)), we ensured that the previous validated control
u is optimal and no more iteration over D is needed.

4 Motion Planning For an AUV
The motion planning of an AUV which has to move the closest to the seabed is consid-
ered. In consequence, the cost function is the depth of the gravity center of the AUV.
As security constraints, we want to ensure that the AUV is closer to the seabed than the
distance dmax and further than dmin.

4.1 Dynamics of an AUV
The gravity center of the AUV is subjected to the ODE defined in [7] and given in
Equation (4). 

ẋ = vcosθ cosψ

ẏ = vcosθ sinψ

ż = −vsinθ

ψ̇ = sinϕ

cosθ
· v ·u1 +

cosϕ

cosθ
· v ·u2

θ̇ = cosϕ · v ·u1− sinϕ · v ·u2
ϕ̇ = −0.1sinϕ +θ · v · (sinϕ ·u1 + cosϕ ·u2)

(4)

where s = (x,y,z,ψ,θ ,ϕ) is the state vector which can be split into the vector (x,y,z)
of the coordinates of the gravity center and the vector (ψ,θ ,ϕ) of the Euler angles;
u = (u1,u2) is the control input vector; v is the velocity.

Note that (4) has been simplified by substituting tanθ by θ in the definition of ϕ̇

to avoid technical issues of the implementation. Nonetheless, the algorithm remains
valid.

4.2 Underwater environment
We define a function (x,y) 7→ seabed(x,y) which returns the depth of the seabed at the
coordinates (x,y). We also define dmin and dmax two constants such that the AUV stays
at a distance to the seabed between dmin and dmax. Some constraints on AUV angles
are considered: yaw and roll are bounded in an interval (to go in a quite straight way
and to not capsize) and pitch is bounded by an extreme value (to limit the dive angle).
Finally, in order to force the AUV to move forward through the x dimension, we impose
xend > xinit. Thus, the problem is to find the control u solution of

(PAUV) :



minu z
ṡ = f (s,u)
z > seabed(x,y)+dmin
z < seabed(x,y)+dmax
xend > xinit
θ < 0.8
ϕ,ψ ∈ [−0.5,0.5]

Figure 1: Seabed picture.

4.3 Experiments
4.3.1 Settings of the experiments

The seabed function is defined by

seabed : (x,y) 7→ 3(1− x)2e−x2−(y+1)2

−10
(x

5 − x3− y5
)

e−x2−y2

− e−(x+1)2−y2

3

Then the following seabeds are considered

• seabed 1: (x,y) 7→ seabed
(x−30

20 , y
2

)
−100;

• seabed 2: (x,y) 7→ seabed
(y

2 ,
x−30

20

)
−100;

• seabed 3: (x,y) 7→ seabed
(−x+30

20 , y
2

)
−100;

• seabed 4: (x,y) 7→ seabed
(y

2 ,
−x+30

20 , y
2

)
−100.

Each seabed is a rotation of the first one (see Figure 1).
The limits on depth are defined such that dmin = 1 meter dmax = 10 meters. The

velocity v is fixed to 0.1 m.s−1 and the initial state s0 to (0,0,−92,0.1,0.1,0.1). As
discretization of the set of the controls, we choose such that

D =

{
−0.3+

0.6k
9

: k ∈ [[0,9]]
}2

.

Finally, the prediction and sliding periods are T = 30 s and T ′ = 15 s, for a total
number of steps nstep of 35.

4.3.2 Implementation of the find u function

The presented method has been implemented in the DynIBEX framework1. It pro-
poses a validated simulation procedure based on Runge-Kutta methods and provides
some differential constraint programming facilities [2]. Every simulation has been

Algorithm 4 find u function for an AUV
Require: s0, T , f , h

c←−+∞

for i ∈ [[0,9]] do
u1←−−0.3+ 0.6i

9
if not

(
utemp.is empty()

)
then

while i < 10 do
u←− (u1, [−0.3,0.3])
simu u←− simulation(f ,s0,u,T)
su←− simu u.get last()
zu←− su[2]
if lb(c)6 lb(zu) then

i←− i+1; u1←−−0.3+ 0.6i
9

else
break

end if
end while
if i = 10 then

break
end if

end if
for j ∈ [[0,9]] do

u2←−−0.3+ 0.6 j
9 ; u←− (u1,u2)

simu u←− simulation(f ,s0,u,T)
su←− simu u.get last()
zu←− su[2]
if lb(zu)< lb(c) and h(simu u)< 0 then

utemp←− u; stemp←− s; c←− zu
end if

end for
end for
uoptim←− utemp

Ensure: Optimal control uoptim

computed using Heun’s method with a 10−4 precision which is a good trade-off be-
tween speed and precision of the results.

Algorithm 4 is an adaptation of the generic Algorithm 3 to the specific problem
of the AUV described above and to the dedicated implementation. Some operators
coming from DynIBEX are used: lb([x]) stands for the lower bound of interval [x],
[x].is empty() corresponds to the test of empty interval, simu u is the result of a vali-
dated numerical simulation method (it contains R() and R̃() abstractions), in particular
simu u.get last() returns R(T).

Instead of considering all the elements of the set D =
{
−0.3+ 0.6k

9 : k ∈ [[0,9]]
}
×{

−0.3+ 0.6k
9 : k ∈ [[0,9]]

}
, interval based approach allows us to fix one dimension (here

u1) and to compute the tube of the solutions of (4) for u2 = [−0.3,0.3]. If this computed
tube is less optimal than the previous validated solution

(
utemp,stemp

)
, we skip to the

next u1 until we reach a tube that may contain more optimal solutions than the previ-
1http://perso.ensta-paristech.fr/˜chapoutot/dynibex/

Figure 2: Results of the AUV motion planning with seabed 1 to 4 from top left to
bottom right.

ous one (the first break statement). Then we can iterate on the second dimension of the
control (u2) to find a possible new couple

(
utemp,stemp

)
. The second break statement is

reached when there has not been any other tube containing a possible more optimal so-
lution, then we skip all the iterations until the last statement uoptim←− utemp. With the
parameters described in Section 4.3.1, solving the motion planning problem requires
2702 simulations with the improved Algorithm 3 instead of 3557 with Algorithm 2.

4.4 Discussion
Results of the presented method are given in term of depth w.r.t. time in Figure 2. The
depth is computed with seabed(x,y). The path provided by the motion planning method
for the seabeds 1, 3 and 4 allows the AUV to follow the seabed remaining between a
distance dmin and dmax from it. As shown in Figure 2 top right, the execution for the
second seabed failed after 9 steps, because of the variations of the seabed (a deep ditch
and then a climb). In this picture, after t = 135 seconds, a simulation is done with the
entire interval of inputs u= [−0.3,0.3]2, and no solution can be found without collision
with the seabed. This phenomenon is due to the fact that the dive velocity of the AUV
is high at the moment when the seabed grows quickly.

A solution to this failure of the algorithm could be obtained by increasing T and
decreasing T ′ in order to see the obstacle sooner but with a longer computation time
(see Figure 3). An other solution is to add a constraint to the problem, for example
we bounded lb(ż)>−0.03 m.s−1 and the algorithm achieved to find a path across the
seabed (see Figure 4). Indeed, it succeeds by avoiding the gap and reaching the optimal
depth further.

Figure 3: Result for the seabed 2 with longer prediction period.

Figure 4: Result for the seabed 2 with additional constraint on diving speed.

5 Conclusion and Future Work
In this paper, we proposed a validated algorithm to solve a motion planning problem,
considering constraints and cost on states. Our approach showed its efficiency in an
application of motion planning for an Autonomous Underwater Vehicle. An improve-
ment exploiting set membership is used to avoid some tests on inputs which reduces
significantly the number of simulations. The presented approach can in some case fail
because of its dependency to many parameters that the user has to calibrate.

As a future work, a procedure to dynamically choose the parameters such as pre-
diction period or additional constraints on system behavior could be considered, w.r.t.
a prediction of the seabed for example.

References
[1] Julien Alexandre dit Sandretto and Alexandre Chapoutot. Validated Explicit and

Implicit Runge-Kutta Methods. Reliable Computing, 22, 2016.

[2] Julien Alexandre dit Sandretto, Alexandre Chapoutot, and Olivier Mullier. For-
mal verification of robotic behaviors in presence of bounded uncertainties. In
International Conference on Robotic Computing. IEEE, 2017.

[3] A. Bemporad, A. De Luca, and G. Oriolo. Local incremental planning for a car-
like robot navigating among obstacles. In International Conference on Robotics
and Automation, pages 1205–1211, 1996.

[4] A. Censi, D. Calisi, A. De Luca, and G. Oriolo. A bayesian framework for optimal
motion planning with uncertainty. In International Conference on Robotics and
Automation. IEEE, 2008.

[5] E. R. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker Inc.

[6] Luc Jaulin. Path planning using intervals and graphs. Reliable Computing,
7(1):1–15, 2001.

[7] Luc Jaulin. Mobile Robotics. ISTE Press - Elsevier, 2015.

[8] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied Interval Anal-
ysis. Springer, 2001.

[9] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incre-
mental sampling-based methods. In Conference on Decision and Control. IEEE,
2010.

[10] A. Lambert and D. Gruyer. Safe path planning in an uncertain-configuration
space. In International Conference on Robotics and Automation. IEEE, 2003.

[11] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In Workshop on the Algorithmic Foundations of Robotics, 2000.

[12] José M. Mendes Filho and Eric Lucet. Multi-robot motion planning: a modified
receding horizon approach for reaching goal states. Acta Polytechnica, 56(1):10–
17, 2016.

[13] Ramon E. Moore. Interval Analysis. Prentice Hall, 1966.

[14] Nedialko S. Nedialkov, K. Jackson, and Georges Corliss. Validated solutions of
initial value problems for ordinary differential equations. Appl. Math. and Comp.,
105(1):21 – 68, 1999.

[15] L. A. Page and A. C. Sanderson. Robot motion planning for sensor-based con-
trol with uncertainties. In International Conferenc on Robotics and Automation,
volume 2, pages 1333–1340. IEEE, 1995.

[16] Romain Pepy, Michel Kieffer, and Eric Walter. Reliable robust path planning with
application to mobile robots. International Journal of Applied Mathematics and
Computer Science, 19(3):413–424, 2009.

[17] Michel Rueher. Solving continuous constraint systems. In International Confer-
ence on Computer Graphics and Artificial Intelligence, 2005.

[18] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon temporal
logic planning. IEEE Transactions on Automatic Control, 57(11):2817–2830,
Nov 2012.

