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ABSTRACT

JPEG and Wavelet compression artifacts leading to Gibbs effects and
loss of texture are well known and many restoration solutions ex-
ist in the literature. So is denoising, which has occupied the image
processing community for decades. However, when a noisy image
is compressed, the noisy wavelet coefficients can be assigned to the
“wrong” quantization interval, generating artifacts that can have dra-
matic consequences in products derived from satellite image pairs
such as sub-pixel stereo vision and digital terrain elevation mod-
els. Despite the fact that the importance of such artifacts in very
high resolution satellite imaging has recently been recognized, this
restoration problem has been rarely addressed in the literature.

In this work we present a thorough probabilistic analysis of the
wavelet outliers phenomenon, and conclude that their probabilistic
nature is characterized by a single parameter related to the ratio q/σ
of the compression rate and the instrumental noise. This analysis
provides the conditional probability for a Bayesian MAP estimator,
whereas a patch-based local Gaussian prior model is learnt from the
corrupted image iteratively, like in state of the art patch-based de-
noising algorithms, albeit with the additional difficulty of dealing
with non-Gaussian noise during the learning process.

The resulting joint denoising and decompression algorithm is
experimentally evaluated under realistic conditions. The results
show its ability to simultaneously denoise, decompress and remove
wavelet outliers better than the available alternatives, both from
a quantitative and a qualitative point of view. As expected, the
advantage of our method is more evident for large values of q/σ.

Index Terms— Inverse problems in Imaging, Satellite Imaging,
Remote Sensing, Joint Denoising and Decompression, Patch-based
non-local methods, Bayesian estimation

1. INTRODUCTION

Optical satellites with pixel resolution on ground smaller than 1 me-
ter are known as Very High Resolution satellites (VHR). These satel-
lites generate a great amount of information that must be stored on
the satellite and transmitted to the ground stations. Both processes
are very expensive in terms of data size and this is the main reason
for compressing the data on board before sending it to Earth. Thus,
compression becomes a key point on the image acquisition pipeline,
where wavelet-based compression methods are the standard choice.
A great number of satellites follow the specifications defined on the
CCSDS recommendations [1], which is based on a CDF 9/7 wavelet
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transform [2]. The compression is then obtained by truncating the
wavelet coefficients.

Due to compression three major problems arise: The most evi-
dent ones are (i) the presence of Gibbs effects near object boundaries
and (ii) the deterioration of micro-textures, both resulting from trun-
cation of wavelet coefficients. The third, less evident one, is the
presence of localized artifacts that appear after decompression due
to outlier wavelet coefficients. When a coefficient w(k) is affected
by acquisition noise, the perturbed coefficient wn(k) may fall in a
different quantization interval. The conditions under which these ar-
tifacts occur depend on the relationship between the noise power and
the size of the quantization intervals (as shown in the experimental
section).

Whereas the first two kinds of artifacts are well known and abun-
dantly dealt with in the literature [3, 4] the third one is relatively
new in the image processing community [5]. Even though wavelet
outliers may arise in any imaging device, their importance was first
recognized in the context of VHR satellites for two reasons: (a) The
absence of an onboard contrast equalization step before compression
means that the noise/quantization ratio always reaches critical levels
favoring outlier artifacts in some parts of the image; and (b) since
VHR satellite images are commonly used as an input for low base-
line stereo vision [6, 7], it is particularly important to identify and
accurately restore this kind of artifacts in order to avoid amplified
errors in the final DEM product.

The main objective of this work is to obtain a restored image
from the quantized wavelets coefficients. We have decided to face
image compression and denoising jointly. This is not a classic ap-
proach (denoising and outliers removal are usually performed sepa-
rately). However, in our opinion this approach enables a better global
optimization and a more natural way to model the problem. It also
enables the use of the most powerful denoising methods developed
so far, those based on local Gaussian models of patches [8, 9]. To use
these methods, two main issues have to be considered. First, patches
are no longer defined on the spatial domain but on the wavelet co-
efficients domain. Second, the datafit term must take into account
both the noise generated by the sensor and the one derived from the
quantization process. It will become clear that dealing with these
two issues is not trivial. This is the subject of this paper which is
organized as follows: In Section 2 we briefly review previous work
on satellite imaging restoration and compression artifacts mitigation.
Section 3 is devoted to the proposed joint denoising and decompres-
sion approach. In Section 4 we present the numerical implementa-
tion of the proposed approach. Finally, in Section 5 we apply the
joint denoising and decompression method to VHR satellites, which
is the case in which the combined effects of instrumental noise and
high compression rates are the most significant. The results shows
the suitability of the proposed approach. In Section 6 we conclude
and discuss possible future work.



2. PREVIOUS WORK ON DECOMPRESSION

The restoration of noisy compressed images requires performing at
the same time both denoising and elimination of quantization arti-
facts. This is a difficult problem whose main features have been
described in the previous section. Surprisingly, this problem has not
received much attention given the number of acquisition systems that
follow this image formation process (satellites but also most imaging
systems). In particular, for VHR satellites like Pléiades this problem
becomes critical, since the acute generation of disparity maps form
stereo pairs and all its derived products (basically 3D reconstruction)
are very sensitive to this kind of image degradations.

Two families of state-of-the art approaches to remove quantiza-
tion noise have been proposed in the literature: dithering methods
and variational approaches.

In the dithering methods [5], noise is added before or after
quantization in such a way that the joint sensor-, quantization- and
dithering-noise is closer to white noise. This kind of techniques is
popular among photo-interpreters since it manages to hide outliers in
noise, but they decrease the accuracy of subpixel stereo algorithms,
thus making them a bad choice for VHR satellite imaging.

As for the variational methods, most methods consist of mini-
mizing the total variation of the restored image with the constraint
that quantization errors must fall within the intervals defined by the
compressor [3, 10, 4]. These techniques became quite popular to
dequantize wavelet coefficients, but in the presence of outliers the
quantization interval constraint needs to be relaxed in a robust man-
ner. In Durand and Nikolova [11] this constraint is relaxed by means
of a weighted `1-norm. The adaptation of this method to noisy image
decompression was explored in [12]. The results of this modified
method are extremely good at neutralizing outliers when these are
sufficiently large, sparsely distributed (say no more than 1% to 5%
of coefficients are outliers) and decorrelated from the background.
However, the first two conditions are rarely met in satellite images,
where the outlier rates are generally between 5% and 10% and may
show low amplitudes.

3. JOINT DENOISING AND DECOMPRESSION METHOD

3.1. Notation and problem setting

From now on we will denote the original, sensed image by u ∈
X = L2(Ω), Ω the image support. The image compression method
typically consists of applying a wavelet analysis operatorW , leading
to the wavelets coefficients w = Wu, followed by a quantization
operator Q. We denote the quantized wavelet coefficients as wq =
Qw = QWu. In this setting, the quantized version of the original
image would be obtained as uq = W−1wq = W−1QWu, where
W−1 denotes the corresponding wavelet synthesis operator.

In a real scenario, the original image u is first contaminated by
a random instrumental noise n whose statistics are assumed to be
known and will be detailed later, leading to a new image un = u+n.
The wavelet coefficients of un will be denoted by wn = Wun,
its quantized version by wqn = Qwn, and the noisy reconstructed
image by uqn = W−1wqn = W−1QWun.

The difficulty of the problem clearly relies on the fact that Q is
non-linear and non invertible, thus making degradation and image
statistics intertwined. Therefore, in order to obtain the best possible
restoration of u we need to consider the effects of instrumental noise
and quantization jointly. In this section we develop a variational
model that considers both effects together; the minimization of the
corresponding functional will result in the restored version of u. As

usual, since the problem is ill posed the functional will consist of
a prior model and data misfit term. We will call this new method
presented here Wavelet Non-Local Bayes (WNLB).

3.2. Prior model: Patches in the Wavelet domain

The joint effect of noise and compression results in a highly corre-
lated noise in the spatial domain, with correlations at several scale
levels. This renders patch-based MAP estimators intractable in the
spatial domain. However, when analyzed in the wavelet domain the
noise affecting each wavelet coefficient is nearly decorrelated from
the others. For this reason our algorithm works with patches in the
wavelet domain. A patch Pk = pk(w) = {w(k + l) : l ∈ Ωp} pro-
vides a context of neighboring coefficients w(k + l) that should be
as tightly correlated as possible to the central coefficient w(k) when
w is the wavelet transform of a natural image. In order to maximize
this correlation the shape Ωp of the patch should be chosen to con-
sider neighboring coefficients along the spatial, subband and scale
dimensions. The DWT specified on the CCSDS compressor1 is a
three-level CDF 9/7 biorthogonal DWT. One way to take into ac-
count scale interactions in the multi-scale representation is therefore
to consider p × p × (1 + 3) patches, which allows to incorporate
the summary of the same level. The optimal size p depends on the
signal to noise ratio and will be specified in the experiments.

Inspired by the Non-Local Bayes denoising method [8], the
prior model for clean patches is assumed to be a multivariate Gaus-
sian Pk ∼ N (µk,Σk), where the mean and covariance parameters
(µk,Σk) can be robustly estimated from a set of self-similar noisy
patches. It is worth noting that the local Gaussian prior is a well
established model for images in the spatial domain, and since the
wavelet transform is a linear operator, this model is still suitable for
patches in the wavelet domain.

Estimating a Gaussian model under such conditions is a difficult
problem and the details will be discussed in the following sections.
For the moment we shall assume that (µk,Σk) are known. Then the
prior model is (in − log scale)

Rk(z) := − log P [Pk = z] ∝ (z − µk)TΣ−1
k (z − µk). (1)

3.3. Data misfit term

The data misfit term is obtained by carefully modeling the image
degradation process of the wavelet patches. To do so we must first
specify the noise model that is adopted here, which is customary in
satellite imaging but is general enough to be considered with minor
modifications to other optical imaging devices [13].

The image acquisition noise (in the spatial domain) is the super-
position photon noise, electronic noise and quantization noise due
to analog-to-digital conversion. The full noise distribution can be
fairly approximated by a Gaussian distribution whose variance de-
pends linearly on the luminance h ∗u at each pixel x, where h is the
instrument point spread function: σ(x)2 = c21 + c2 × (h ∗ u)(x)
(see [5]). Here c1 and c2 are two constants provided by the manu-
facturer. It is worth noting that even in case there could exist some
deviation from the white noise assumption in the spatial domain, the
white noise approximation in the wavelets domain would still hold.
Indeed, the cross-correlation of CDF 9/7 wavelets coefficients is to-
tally negligible [14] with respect of the auto-correlation. The noise
variance in the wavelets domain, that we denote by σ2

n(k), can be
readily derived from σ2(x) and is given by σ2

n(k) = E
[
(Wn(k))2

]
.

1This is the compressor used by the Pleiades VHR satellite; similar con-
siderations apply to the more general JPEG2000 lossy compression method.



Consider a clean patch Pk = pk(w) and its degraded counter-
part P̃k = pk(wqn). Since the degradation affecting each wavelet
coefficient is nearly independent, the multivariate degradation model
can be approximated by a product of univariate models

P
[
P̃k

∣∣∣ Pk = z
]

= Πl∈Ωp P [wqn(k + l) | w(k + l) = z(l)]︸ ︷︷ ︸
fk+l(z(l))

.

As observed by Zymnis et al. [15] in the context of compressed sens-
ing, each univariate conditional probability fk(z) is a smooth func-
tion of z that admits a closed form solution

fk(z) = P [Q(w(k) + n(k)) = wqn(k) | w(k) = z]

= P

z + n(k) ∈ Q−1(wqn(k))︸ ︷︷ ︸
[a(k),b(k)]

 , n(k) ∼ N (0, σ2
n(k))

= P
[
N (0, 1) ∈

[
a(k)− z
σn(k)

,
b(k)− z
σn(k)

]]
= Φ

(
b(k)− z
σn(k)

)
− Φ

(
a(k)− z
σn(k)

)
,

in terms of the known quantization interval [a(k), b(k)]2, the noise
variance σ2

n(k) and the erf function Φ(x) = 1√
2π

∫ x
−∞ e

−t2/2dt.

From the integral form of Φ it is shown in [15] that the first and
second order derivatives of fk(z) also have a closed form, and that
fk is a strictly convex function.

To summarize, the conditional probability of an observed patch
P̃k, given a clean patch Pk = z can be written in − log scale as

Dk(z) := − log P
[
P̃k

∣∣∣ Pk = z
]

=
∑
l∈Ωp

− log fk+l(z(l)). (2)

4. NUMERICAL IMPLEMENTATION

From the previous section, in virtue of (1) and (2) our Bayesian MAP
estimator leads to the following optimization problem

P̂k = arg max
z

P
[
Pk = z

∣∣∣ P̃k] = arg min
z
Dk(z) +Rk(z),

where the regularization term Rk is quadratic and the degradation
model Dk is strictly convex with known gradient and diagonal Hes-
sian. Such a problem can be solved with a Newton algorithm.

4.1. Local Gaussian model estimation

The previous method requires to estimate a local Gaussian model
(µk,Σk) from a set of nearest neighborsNk =

{
m : d(P̃k, P̃m) < δ

}
.

This set of patches are used to estimate the sample mean and co-
variances of the local Gaussian models. The metric used to compare
patches should be robust to the noise present in the images; the
covariance estimation may be ill-posed and therefore may require
regularization techniques. These issues also occur in NLBayes (with
several additional challenges that are discussed below); we refer the
reader to [8] for the technical details.

2In our case these are specified by the CCSDS compressor.

(a) Cannes (b) St. Michel

Fig. 1: Images used for the experiments. Both images are 12 bits
Pléiades images. The zone delimited by the red rectangle in the
Cannes image is the one highlighted on Figure 2.

4.2. Weighted Aggregation

The minimisation problem stated in the previous section is based on
patches. That means that the solution for each minimisation problem
is a patch. Since each wavelet coefficient belongs to several patches,
we have at our disposal several estimators of the same wavelet coef-
ficient to be aggregated. In NLBayes this aggregation is performed
by taking the mean value of all patches at each given pixel. This
simple approach does not take into account the confidence of each
of the restored patches. As shown by Kevrann [16], better results are
obtained by weighting each patch contribution with this information:
ŵ(k) =

∑
i P(P̂ki)P̂ki(k − ki), where P(P̂ki) = e−Fk(P̂ki

) is the
posterior probability of the estimator P̂ki and Fk(P̂ki) is the original
functional evaluated on the patch Pki .

5. APPLICATION TO VHR SATELLITE IMAGING

5.1. Models of sensor noise and CCSDS compressor

Luminance-dependent noise. In the case of Pléiades images, the
noise model is considered Gaussian but with a variance that depends
on the luminance, as already described.
Outliers coefficients. When a coefficient w(k) is affected by ac-
quisition noise, the perturbed coefficient wn(k): Q−1(w(k)) 6=
Q−1(wn(k)). This problem leads to artifacts in the original spatial
image, that can be seen clearly on Figure 2. This figure only shows
the lower part of its 12 bit dynamic range in order to highlight dark
areas at the expense of saturation in lighter areas. Observe that such
outliers are apparent as such only when the ratio q/σ is relatively
large, thus making an outlier event relatively rare and isolated. For
moderate compression rates like the 2 bpp example in figure 2 this
situation arises only in dark areas where σ takes the smallest values.
In lighter areas (where σ is larger) or for lower compression rates
(for instance 4 bpp, where q is smaller), the q/σ ratio may take very
small values. In such a situation outliers are omnipresent, and the
degradation statistics approaches those of white Gaussian noise.

5.2. Results

The results presented in the following illustrate the performance of
the proposed method and its main features. Experiments were per-
formed on simulated Pléiades images, with its corresponding noise



Original vs Noisy Image NLBayes + VST WNLB
Cannes 13.79 (0.97) 49.69 (0.97) 49.83 (0.97)
St. Michel 50.21 (0.98) 50.53 (0.99) 50.78 (0.99)

Table 1: Quantitative analysis of the proposed method for different
noise levels and compression ratios, and comparison with NLBayes
+ VST. Results are expressed in PSNR (SSIM between brackets).

Q1 Q2 Q3 Q4 Q5
0.7:2.3 2.3:2.7 2.7:3.2 3.2:4.1 4.1:9.5

Noisy 50.33 50.20 50.18 50.22 50.13
NLBayes 50.55 50.40 50.40 50.44 50.33
WNLB 50.64 50.52 50.51 50.54 50.46
Increment 0.093 0.11 0.11 0.10 0.13

Table 2: Analysis of the performance of the presented method for
different q/σ ratios. The table shows the PSNR grouped by quartile.
The values correspond to St. Michel Image compressed at 2.7 bpp.

model and its CCSDS compression method. Performance evaluation
of WNLB is evaluated by comparing its results with those obtained
by NLBayes. In order to make this comparison fair, we make use of a
noise withening process, known as Variance Stabilization Transform
(VST) [17], that enables to partially whiten the noise making it com-
patible with the white Gaussian noise assumption of NLBayes. Fig-
ure 1 shows two 12 bits Pléiades images used for the experiments:
one from Cannes and the other from Toulouse (Place St. Michel).
In both cases the instrumental noise constants are c1 = 1.9224 and
c2 = 0.0339, but the compression ratios are different: Cannes is
compressed at 2.0 bpp while St. Michel is compressed at 2.77 bpp.

Figure 2 presents the results on the Cannes image. This example
clearly shows one of the major problems derived from the compres-
sion of noisy images: the presence of wavelet outlier coefficients
introduces visual artifacts (see for example the detail corresponding
to the noisy image). It is clear that NLBayes cannot completely re-
move all the outliers, which are still present in the scene. In Table 1
we present the quantitative analysis of the method by comparing the
PSNR and SSIM [18] obtained for the proposed method against NL-
Bayes + VST. We also include in the table results for the St. Michel
image, where the compression ratio was 2.77 bpp, which is the nom-
inal compression ratio for Pléiades images. Finally, in Table 2, we
present a quantitative analysis of the proposed method in relation to
q/σ ratio for the St. Michel image. This analysis allows to distin-
guish two different regimes: When q < σ almost all coefficients
contain wavelet outliers induced artifacts and the degradation is very
close to white noise. In this situation both WNLB and NLBayes +
VST performance similarly. However, when q � σ artifacts become
more isolated events, and the degradation deviates significantly from
white Gaussian noise. In this case NLBayes cannot get its full po-
tential, but WNLB performs particularly well.

6. CONCLUSION

Wavelet outliers that result from the interaction between noise and
compression can be a serious hindrance for stereoscopic vision from
VHR satellite images. To correctly deal with this artifacts a joint
denoising and decompression approach is required. This work pro-
poses a first patch-based algorithm for this task. Our approach gen-

(a) Original Image (b) Noisy and quantised image

(c) Restored image using NLBayes (d) Restored image using WNLB

Fig. 2: Detail of the results obtained for an image with luminance-
dependent local variance and 2 bpp compression ratio. Image range
is saturated to view details on the dark regions (in this case, the
street).

eralizes a state of the art denoising algorithm (NLBayes) that has
been adopted by space agencies and professional digital photogra-
phers alike. As such its performance is comparable to that of NL-
Bayes as long as compression artifacts are negligible with respect
to the noise variance. However the full advantage of our method
becomes evident when compression is relatively strong with respect
to noise. In the future an extensive calibration of patch sizes as a
function of signal-to-noise ratio still has to be performed in order
for this method to show its full potential. Other generalizations like
including deconvolution are envisioned.
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