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In the Alvarez-Macovski[1] method, the line integrals of the x-ray basis set coefficients are computed from measurements with multiple spectra. An important question is whether the transformation from measurements to line integrals is invertible. This paper presents a proof that for a system with two spectra and a photon counting detector, pileup does not affect the invertibility of the system. If the system is invertible with no pileup, it will remain invertible with pileup although the reduced Jacobian may lead to increased noise.

I. INTRODUCTION

In the Alvarez-Macovski [START_REF] Alvarez | Energy-selective reconstructions in X-ray computerized tomography[END_REF] method, the line integrals of the x-ray basis set coefficients are computed from measurements with multiple spectra. The introduction of photon counting detectors into medical x-ray imaging [START_REF] Taguchi | Vision 20/20: Single photon counting x-ray detectors in medical imaging[END_REF] gives the possibility of providing the spectral data by pulse height analysis (PHA). These detectors, however, have multiple defects [START_REF] Overdick | Towards direct conversion detectors for medical imaging with X-rays[END_REF] that affect the information they provide. In some cases, the defects have been found to produce sharply increased noise in the estimates of the line integrals at specific object attenuation [START_REF] Alvarez | Non-invertibility of spectral x-ray photon counting data with pileup[END_REF]. The increased noise may indicate potential non-invertibility of the transformation between the spectral measurements and the line integrals. Therefore, it is important to develop mathematical descriptions of the invertibility of the transformation.

This paper is a step towards this mathematical description. It presents a proof that measurements with two spectra and a photon counting detector with pileup do not affect the invertibility of the system. If the system is invertible with no pileup, it will remain invertible with pileup although the reduced Jacobian may lead to increased noise. An example of the system analyzed is measurements with a photon counting detector of the transmitted flux with two different x-ray tube voltages. Note that the results of this paper are not applicable to pulse height analysis (PHA) since pileup changes the effective spectra of the bins [START_REF] Alvarez | Signal to noise ratio of energy selective x-ray photon counting systems with pileup[END_REF]. My recent paper [START_REF] Alvarez | Non-invertibility of spectral x-ray photon counting data with pileup[END_REF] gives an example of a three bin PHA system that becomes non-invertible for high pileup.

This paper addresses only the invertibility with deterministic, non-noisy measurements although it describes the conditioning of the system, which also affects noise.
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II. THE ALVAREZ-MACOVSKI METHOD

For biological materials we can approximate the xray attenuation coefficient µ(r, E) accurately with a two function basis set [START_REF]Dimensionality and noise in energy selective x-ray imaging[END_REF] 

µ(r, E) = a 1 (r)f 1 (E) + a 2 (r)f 2 (E). (1) 
In this equation, a i (r) are the basis set coefficients and f i (E) are the basis functions, i = 1 . . . 2. As implied by the notation, the coefficients a i (r) are functions only of the position r within the object and the functions f i (E) depend only on the x-ray energy E. If there is a high atomic number contrast agent, we need to extend the basis set to higher dimensions. Neglecting scatter, the expected value of the number of transmitted photons λ k with an effective measurement spectrum S k (E) is

λ k = ˆSk (E)e -´L µ(r,E)dr dE (2) 
where the line integral in the exponent is on a line L from the x-ray source to the detector. Using the decomposition, Eq. 1, the line integral in Eq.

is

ˆL µ (r, E) dr

= A 1 f 1 (E) + A 2 f 2 (E). (3) 
where A i = ´ai (r) dr, i = 1 . . . 2 are the line integrals of the basis set coefficients. Summarizing the A i as the components of the A-vector, A, and the basis functions at energy E as a vector

f (E) = [f 1 (E), f 2 (E)],
we can write the line integral as the inner product of A and f (E),

ˆL µ (r, E) dr = A • f (E). (4) 
The measurements are summarized by a vector, N, whose components are the expected photon counts with each effective spectrum. Since the body transmission is exponential in A, we can approximately linearize the measurements by taking logarithms. The results is the log measurement vector L = -log(N/N 0 ), where N 0 is the expected value of the measurements with no object in the beam and the division means that corresponding members of the vectors are divided. Equations 2 define a relationship between A and the expected value measurement vector, L(A). The invertibility of this transformation is the subject of this paper.

III. INVERTIBILITY WITHOUT PILEUP-SIMPLE CASES

Before discussing the invertibility in general, two simple but important cases will be discussed. 

A. Delta function spectra

The first case is two monoenergetic spectra with energies E 1 and E 2 . In this case, L i = A • f (E i ), i = 1, 2 and the transformation can be written L(A) = MA where M is a matrix with coefficients

M = f 1 (E 1 ) f 2 (E 1 ) f 1 (E 2 ) f 2 (E 2 )
The transformation is invertible if the determinant of M is not equal to zero:

f 1 (E 1 ) f 2 (E 1 ) f 1 (E 2 ) f 2 (E 2 ) = 0 (5) 
That is if

f 1 (E 1 ) f 2 (E 1 ) = f 1 (E 2 ) f 2 (E 2 ) (6) 
The bottom graph of Fig. 1 shows the ratio of the Compton scattering/photoelectric cross-sections basis set functions [START_REF] Alvarez | Energy-selective reconstructions in X-ray computerized tomography[END_REF] versus energy in the medical diagnostic region. Note that the ratio is monotonically decreasing. Thus, the condition in equation ( 6) will be true if the two energies are different. The M matrix for any other basis set that spans the space of attenuation coefficients will be M = TM where T is an invertible matrix so it has a nonzero determinant. Since these are square matrices, det (M ) = det (T) det (M) and if det (M) = 0 then det (M ) = 0 so this result is true for any valid basis set.

B. Single material object

Another useful special case is when the object is known to consist of a single material with basis set coefficient vector a. In this case, a single photon count measurement suffices to determine the material thickness. With a single material of thickness t, the A vector is A = at and the expected number of photons is a function of only

t λ(t) = ˆS1 (E)exp[-µ(E)t]dE.
The derivative of λ with respect to t is always negative

λ = dλ dt = -´µ(E)S 1 (E)exp[-µ(E)t]dE < 0. ( 7 
)
because the integrand is always greater than zero. Since λ(t) is monotonically decreasing, it can be inverted to compute t.

IV. INVERTIBILITY FOR THE GENERAL CASE WITH NO

PILEUP

For the general case, the following theorem is useful (Fulks 1978[7] page 284):

Let F be a continuously differentiable mapping defined on an open region D in E2, with range R in E2 , and lets its Jacobian be never zero in D. Suppose further that C is a simple closed curve that, together with its interior (recall the Jordan curve theorem), lies in D, and that F is one-to-one on C. Then the image T of C is a simple closed curve that, together with its interior, lies in R. Furthermore, F is one-to-one on the closed region consisting of C and its interior, so that the inverse transformation can be defined on the closed region consisting of T and its interior. which I paraphrase as

If the Jacobian of a continuously differentiable two dimensional mapping is nonzero throughout an open region D and if the mapping is one to one on a simple closed curve C which lies in D, then the mapping is one to one on C and its interior. The first quadrant will be used as the region with the closed curve C consisting of segments along the positive axes and a circle joining the ends of the segments, as shown in Figure 2. This is a region of theoretical and practical importance because a basis set consisting of the attenuation coefficients of the calibration materials is usually used, Since only positive equivalent thicknesses of the calibration materials can be used, this region must contain all the measured values. .

In the theorem, the Jacobian is the determinant of the matrix of all the partial derivatives of the transformation. Since L is the logarithm of the measurements, the components of its Jacobian matrix are

M ij = ∂Li ∂Aj = -´fj (E)Si(E)e -A•f (E) dE ´Si(E)e -A•f (E) dE i, j = 1, 2 (8) 
Note that by defining the normalized spectra

ŝi (E) = S i (E)e -A•f (E) ´Si (E)e -A•f (E) dE i = 1, 2 (9) 
the M ij are

M ij = ˆfj (E)ŝ i (E)e -A•f (E) dE
That is, they are the effective values of the basis functions in the spectra transmitted through the object.

A. Application of the theorem to the dual energy transformation

To apply the first part of the theorem, the transformation must be shown to be invertible on a closed curve in the domain. The simple cases discussed Sec. III may be used for this proof.

The parts of the curve along the axes are special cases of the single material case. Each axis corresponds to different thicknesses of one of the basis materials if the attenuation coefficient of the calibration material is used as a basis function. If other basis functions used, the coordinates can be transformed to the attenuation coefficients of real materials and the proof applies in the transformed coordinates.

The circle of large radius is an approximation of the single energy case. For large radius, there will be high attenuation. With beam hardening, the transmitted spectrum with large attenuation therefore approaches the two monoenergetic spectra case where the energies are the maximum energies in the spectra. If the maximum energies are different, we can approach the known invertible monoenergetic case arbitrarily closely by making the radius larger and larger.

The remaining part of the theorem requires us to show that J (A) is non-zero inside C. This must be tested with individual spectra. The following sections show that, for the system studied, pileup does not affect this condition. If the Jacobian is non-zero without pileup, it will also be non-zero with pileup.

V. EXPECTED NUMBER OF PHOTONS RECORDED WITH

PILEUP

The response time of a photon counting detector is modeled using the dead time, τ , which is defined to be the minimum time between two photons that are recorded as separate events [START_REF] Knoll | Radiation Detection and Measurement[END_REF]. The dead time is an abstraction that combines the contributions to the response time of all the physical effects in the detector. In this model, the detector is assumed to start in a "live" state. With the arrival of a photon, the detector enters a separate state where it does not count additional photons. The nonparalyzable model will be used where the time in the separate state is assumed to be fixed and independent of the arrival of any other photons during the dead time. There is a second model commonly used, called paralyzable, where the arrival of photons extends the time in the non-counting state. Both models give similar recorded counts at low interaction rates but give different results at high rates where the probability of multiple interactions during the dead time becomes significant. Measurements by Taguchi et al. [START_REF] Taguchi | Modeling the performance of a photon counting x-ray detector for CT: energy response and pulse pileup effects[END_REF] indicate that for the detectors they studied the non-paralyzable model is more accurate at higher count rates. It also leads to simpler analytical results [START_REF] Yu | Mean and variance of single photon counting with deadtime[END_REF].

In a previous paper [START_REF] Alvarez | Signal to noise ratio of energy selective x-ray photon counting systems with pileup[END_REF], I used the central limit theorem of renewal processes [START_REF] Ross | Stochastic Processes[END_REF] to show that, for recording times much greater than the mean inter-event time, the expected value of recorded counts with pileup approaches

N rec = λ 1 + η . (10) 
In this equation, λ is the expected number of photons incident on the detector during the measurement time and η is the expected number of photons arriving during the dead time τ . If ρ is the average rate of photon arrivals then η = ρτ . If T rec is the measurement time then ρ = λ /Trec. Defining b = τ /Trec, η = bλ and the expected recorded counts are

N rec = λ 1 + bλ . (11) 

VI. INVERTIBILITY OF TWO BASIS FUNCTIONS-TWO SPECTRA CASE WITH PILEUP

In this section I give a proof that with photon counting detector measurements of the total number of transmitted photons with two spectra, pileup does not affect invertibility. An example would be making two sequential measurements of an object using an x-ray tube with different voltages. Note that this does not prove that any two spectrum measurement with pileup is invertible.

For example with two bin photon counting with PHA, pileup causes the recorded spectrum to change so the assumptions of this section would not be met.

The proof is analogous to the proof for the measurements with no pileup described in the previous Sec. III.

A. Invertibility with pileup on the contour C

First, I will show that if the transformation is invertible on the path in the first quadrant shown in Fig. 2 without pileup it is also invertible with pileup.

The proof for invertibility on the circular segment joining the segments on the axes is also applicable with pileup since, for large thicknesses, the count rate is very low so the pileup parameter η is essentially equal to zero and the pileup counts are the same as those without pileup.

Next we need to show that the data are invertible on the paths from the origin along the coordinates axes. The equation for the expected value of the recorded number of photons with pileup is

N rec = λ 1 + bλ . ( 12 
)
Differentiating this equation along the axes

N rec = λ 1 + bλ - b (λ ) λ (1 + bλ) 2 
where a prime denotes a derivative with respect to object thickness. Factoring the equation

N rec = λ 1+bλ 1 -bλ 1+bλ = λ (1+bλ) 2 . ( 13 
)
From Eq. 7, for a single material λ is always less than zero. Since the denominator of Eq. 13 is always positive, the derivative of the recorded counts with pileup with is never equal to zero so the transformation of the recorded counts with pileup is invertible along the coordinate axes. This shows that if the transformation without pileup is invertible on C then the transformation with pileup is also invertible on the curve.

B. Jacobian inside C

The log measurement with pileup is

L rec,i = -log N rec,i N rec,i,0
and the Jacobian matrix with pileup has elements

M rec,ij = ∂Lrec,i ∂Aj = -1 Nrec,i ∂Nrec,i ∂Aj . (14) 
From Eq. 11

N rec,i = λ i 1 + bλ i and from Eq. 13

∂N rec,i ∂A j = λ i (1 + bλ i ) 2 .
Substituting in Eq. 14

M rec,ij = 1 1 + bλ i λ i λ i (15) 
From the definition in Eq. 8, the term in brackets in Eq. 15 is the element of the Jacobian matrix without pileup. Therefore,

M rec,ij = M 0,ij 1 + bλ i
Since for the dual energy case the matrices are 2 × 2, the determinant is .

J rec = M rec
where J 0 is the Jacobian without pileup. Since the terms in the denominator are always positive, the zero values of Jacobian determinant with pileup, if any, will occur at the same points as the Jacobian without pileup.

VII. DISCUSSION

The data acquisition model used is unrealistic-most systems with photon counting detectors would also use PHA. Nevertheless, it provides an example of invertibility with pileup.

As discussed in my previous paper [START_REF] Alvarez | Signal to noise ratio of energy selective x-ray photon counting systems with pileup[END_REF], due to the exponential probability distribution of x-ray photon inter-arrival times, pulse pileup is a fundamental effect. It will always be present in photon counting systems no matter how small the response time. Pileup has accurate analytical models and its analysis may lead to an understanding of invertibility with the other detector defects such as charge trapping and sharing, polarization, and incomplete photon energy deposition due to Compton scattering and K radiation escape [START_REF] Overdick | Towards direct conversion detectors for medical imaging with X-rays[END_REF].

VIII. CONCLUSION

A proof is given that pileup does not affect the invertibility of a two spectrum, photon counting data with pileup system.
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 1 Fig.1. Ratio of the Compton scattering/photoelectric cross-sections basis set functions (bottom graph). Since the ratio is monotonically decreasing, the ratios in Eq. 6 are different if the delta function energies are different.
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 2 Fig. 2. Closed contour used in proof of invertibility. The contour consists of segments of the two positive axes and a quadrant of a circle joining the ends of the line segments.
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