
HAL Id: hal-01493576
https://hal.science/hal-01493576v1

Submitted on 28 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended Reliable Robust Motion Planners
Adina M Panchea, Alexandre Chapoutot, David Filliat

To cite this version:
Adina M Panchea, Alexandre Chapoutot, David Filliat. Extended Reliable Robust Motion
Planners. 56th IEEE Conference on Decision and Control, Dec 2017, Melbourne, Australia.
�10.1109/CDC.2017.8263805�. �hal-01493576�

https://hal.science/hal-01493576v1
https://hal.archives-ouvertes.fr

Extended Reliable Robust Motion Planners ∗

Adina M. Panchea †, Alexandre Chapoutot and David Filliat‡

March 21, 2017

Abstract

A new method to plan guaranteed to be safe paths in an uncertain environ-
ment, with an uncertain initial and final configuration space, while avoiding static
obstacles is presented. First, two improved versions of the previously proposed
BoxRRT algorithm are presented: both with a better integration scheme and one
of them with the control input selected according to a desired objective, and not
randomly, as in the original formulation. Second, a new motion planner, called
towards BoxRRT*, based on optimal Rapidly-exploring Random Trees algorithm
and using interval analysis is introduced. Finally, each of the described algorithms
are evaluated on a numerical example. Results show that our algorithms make it
possible to find shorter reliable paths with less iterations.

1 Introduction
The motion planning problem, as addressed in this paper, consists in finding a path,
or a sequence of control policy which drives a mobile robot, with a given dynamics
description, from a given initial state region to a given goal region while avoiding
collisions with a given set of obstacles.

The development of efficient and intelligent motion planning algorithms used for
autonomous navigation, which is at the core of autonomous mobile robotic devices,
remains a challenge in particular when trying to guarantee the safety of the vehicle. The
guarantee of vehicle’s safety implies that the motion planning should take into account
uncertainties usually resulting from the approximate initial mobile robot localization,
from imperfect embedded sensors or from the approximate models used to describe the
behaviour of the robotic devices.

Related work
Many motion planning algorithms have been proposed in the literature. When dealing
with complex environments, non-holonomic vehicles or high-dimensional state-space,
a popular approach is to use stochastic sampling to discretize the configuration space.
Among the existing approaches, we focus on the Rapidly-exploring Random Trees
∗This work was supported by DGA MRIS.
†Adina M. Panchea is with COSYNUS/LIX UMR 7161, Ecole Polytechnique, Palaiseau, France

panchea@lix.polytechnique.fr
‡Alexandre Chapoutot and David Filliat are with the U2IS, ENSTA ParisTech, Univ. Paris-Saclay,

Palaiseau, France {chapoutot, filliat}@ensta-paristech.fr

(RRT) ([12, 14, 10, 13]) path planning algorithm and its many variants. These algo-
rithms have the advantage of rapidly covering the whole configuration space and of
easily integrating complex robot models.

However, RRT lacks in guaranteeing an optimal solution. The (asymptotic) op-
timality of the solution is provided by the optimal Rapidly-exploring Random Trees
(RRT*) first proposed in [8] and recently used, for example to plan trajectories for
aerial vehicle ([24, 23]). In [18], a survey on motion planning algorithms based on
RRT∗ is given.

Uncertainty in path planning has been considered using several representations
such as set-membership ([19, 21]) or covariance matrices ([11, 22, 4]). While the
latter is able to find paths with a collision probability under a given threshold, set-
membership approaches can guarantee safe trajectories under a bounded noise assump-
tion.

The localization information provided by imperfect proprioceptive sensors, while
represented by Gaussian functions ([11, 22]) can guarantee the safety of the path at
a certain confidence threshold. Recently, [20] provided the guarantee of a safe path
to imperfect proprioceptive sensors, while considering the uncertainties bounded with
know bounds. Under the latter uncertainty representation, [21] introduced a prelimi-
nary conceptual reliable and robust path planner based on RRT principles and solved
in an interval analysis ([15, 7]) framework. The interval analysis framework was pre-
viously used ([6]) along with graph algorithms to find collision-free short paths in a
given configuration space.

Contributions
This study presents motion planning algorithms which can guarantee safe paths in an
uncertain configuration space, where all approximate initial and final mobile robot lo-
calisation are bounded with known bounds. Improving the motion planner (denoted
BoxRRT) proposed in [21], our first contribution consists in an improved BoxRRT
planner which makes use of modern and new tools ([1, 2]) for the guaranteed numeri-
cal integration employed by the motion planner combined with methods coming from
constraint satisfaction problems. The second contribution consists in a second im-
proved BoxRRT algorithm which makes use of the guaranteed numerical integration
improvements along with the choice of the control input according to a desired objec-
tive and not randomly, as already proposed in the literature. As a third contribution,
a preliminary attempt towards a new reliable and robust motion planning algorithm
based on RRT∗ principles is introduced.

This paper is organized as follows. First, Sect. 2 introduces the problem formu-
lation, while Sect. 3 provides two improved versions of BoxRRT algorithm. Next,
Sect. 4 describes the new planner based on RRT∗. The resulting three proposed reli-
able and robust path planners are applied to plan paths of a non-holonomic vehicle in
Sect. 5, where the simulations results are provided. Finally, some concluding remarks
and perspectives are drawn in Section 6.

2 Problem Statement
This paper considers a mobile robot which has to be driven in a two-dimensional static
environment from an initial state to a desired one while avoiding obstacles represented
by polygons shapes.

The configuration space S= Sfree∪Sobs is therefore composed of two subsets: the
free region subset Sfree = S \Sobs where the mobile robot is allowed to move and the
obstacle region subset Sobs which the mobile robot needs to avoid. Moreover, uncer-
tainties related to its initial and final position and orientation w.r.t. a frame attached to
the environment are considered.

2.1 Problem formulation
Consider the differential system which can describe the evolution of a mobile robot
system:

ṡ(t) = f(s(t),u(t)) (1)

where s ∈ S is considered to be the measurable state of the system, while u(t) ∈ U is
the admissible control input. The exact solution of (1) from the inital condition s0 is
denoted by s(t;s0). From an initial state s0 which belongs to a known set s0 ∈ Sinit ⊂
Sfree the system needs to reach a given set of goal states Sgoal ⊂ Sfree. The problem
formulation comes from [21].

The purpose of the robust motion planner is to provide a sequence of control inputs
u ∈ U∆t

[u] bounded over intervals of time [K∆t,(K + 1)∆t[, with ∆t > 0 and K ∈ N,
which will drive the system to reach Sgoal while avoiding the non-admissible states
Sobs whatever the initial state s ∈ Sinit are. If such a sequence of control input u ∈ U∆t

[u]
is proved to drive the system from any initial state s ∈ Sinit to a final state in Sgoal then
the found robust planned path is reliable.

The formulation of such a robust motion planner for which there exists a sequence
of control input u ∈ U∆t

[u] to drive the system from an uncertain initial state to a set of
goal states Sgoal is as follows:

∃K > 0 and u ∈ U such that
∀s0 ∈ Sinit, ∀ s(K∆t;s0) ∈ Sgoal and
∀t ∈ [0,K∆t], s(t;s0) ∈ Sfree,

(2)

with s(t) the solution of (1).

3 Motion Planner Algorithms
This section recalls all necessary notation deployed in this study regarding interval
vectors or boxes ([7]) which are being used to represent the environment uncertainties.

Next, two new versions of BoxRRT motion planner: the random control input
BoxRRT (rciBoxRRT) motion planner algorithm and the selected control input
BoxRRT (sciBoxRRT) motion planner algorithm are introduced. Both algorithms
are based on RRT motion planner ([12, 13, 14, 10]) which is an incremental-based
method with the purpose of efficiently explore all the given configuration space from a
given starting configuration.

The idea of BoxRRT is not new, being previously proposed by [21, 20] for the case
where the uncertainties related to the configuration space are considered only on the
final state and not on the initial configuration state. While in this study the interest is to
consider uncertainties in the initial and final configuration state space. Moreover, the
improvements made on our new versions of BoxRRT are presented in the followings.

3.1 Interval analysis
A scalar (real) interval [x] = [x, x] is a closed and connected subset of R, where x
represents the lower bound and x represents the upper bound. Two intervals [u] and [v]
are equal if and only if u = v and u = v. An interval vector (or box) [x] is a subset of
Rn which is the Cartesian product of scalar intervals [x] = [x1]× [x2]×·· ·× [xn], where
the ith component is the projection of [x] onto the ith axis. The interval hull of a set A
is the smallest box which contains A, denoted by Hull(A). The inner approximation
of a set A, denoted Int(A), is a box included in A, i.e, Int(A) ⊂ A. The Hausdorff
distance [7, 17] of two intervals [x1] and [x2] is

d([x1], [x2]) = sup{|x1− x2|, |x1− x2|} (3)

Validated numerical integration methods are interval counterpart of numerical in-
tegration methods. A validated numerical integration of a differential equation, as de-
fined in (1) assuming piece-wise constant input, consists in a discretization of time,
such that t0 6 · · · 6 tend, and a computation of enclosures of the set of states of the
system s0, . . . , send, by the help of a guaranteed integration scheme. In details, a guar-
anteed integration scheme is made of:

• an integration method Φ(f ,s j, t j,h), starting from an initial value s j at time t j
and a finite time horizon h (the step-size), producing an approximation s j+1 at
time t j+1 = t j+h, of the exact solution s(t j+1;s j), i.e., s(t j+1;s j)≈Φ(f ,s j, t j,h);

• a truncation error function lteΦ(d,s j, t j,h), such that s(t j+1;s j) =Φ(f ,s j, t j,h)+
lteΦ(f ,s j, t j,h).

Our validated numerical integration method is a two step method starting at time t j and
for which i) it computes an enclosure [s̃ j] of the solution of (1) over the time interval
[t j, t j+1] to bound lteΦ(d,s j, t j,h); ii) it computes a tight enclosure of the solution of
(1) for the particular time instant t j+1. There are many methods for these two steps
among Taylor series and Runge-Kutta methods see [16, 1] and the references therein
for more details.

As a result, validated numerical integration methods produce two functions depend-
ing on time

R :
{

R 7→ IRn

t→ [s] (4)

with for a given ti, R(ti) = {s(ti;s0) : ∀s0 ∈ [s0]} ⊆ [s], and

R̃ :
{

IR 7→ IRn

[t, t]→ [s̃] (5)

with R̃([t, t]) = {s(t;s0) : ∀s0 ∈ [s0]∧∀t ∈ [t, t]} ⊆ [s̃].

3.2 The rciBoxRRT and sciBoxRRT proposed motion planners
Let’s start by introducing the global description which is the same for both algorithms.
Next, the algorithm which gathers improvements regarding to the previously proposed
BoxRRT algorithm and which has the same formulation for both our new versions of
BoxRRT motion planner is introduced. Finally, each procedure of the algorithm is ex-
plained separately. The difference between the proposed algorithms lies in the choice
of the control input and it will be explained as follows.

Description: First the given initial configuration [sinit] is added to the exploration tree
G (Line 1). Then, a state [srand] ⊂ Sfree is randomly chosen by the procedure random-
box-GoalBias (Line 4). The nearest-neighbor procedure from Line 5 returns the closest
vertex [snear] to [srand] in the tree G, according to a certain metric d. A control input
u∈ [u] is chosen according to a specified criterion or randomly through the select input
procedure. Then, in the prediction procedure, (1) is integrated over a fix time interval
∆t with the initial condition [snear] and a constant control input u (given at Line 6) and
will result in a new state [snew] (Line 7). If it can be proved that all state values along the
trajectory between [snear] and [snew] lie in Sfree being a collision free path, then the path
between [snear] and [snew] is considered reliable and [snew] is added to G as a new vertex
and connected to its parent [snear] though the G.add-guaranteed-vertex procedure. Oth-
erwise, [snew] is not added to G. Lines 4 to 11 are repeated until a chosen number of
iterations MaxIter is reached or until a path is found meaning [snew] = [sgoal], or most
likely when [snew] ⊂ [sgoal]. Note that we have [sinit] = Hull(Sinit), [sobs] = Hull(Sobs)
and [sgoal] = Int(Sgoal) to ensure the soundness of the proposed algorithm.

input : [sinit]⊂ Sfree, [sgoal]⊂ Sfree, ∆t ∈ R+, MaxIter ∈ N
output: G

1 G.init([sinit]);
2 i← 0;
3 repeat
4 [srand]← random-box-GoalBias(Sfree);
5 [snear]← nearest-neighbor(G, [srand]);
6 u← select input([srand], [snear]);
7 [snew]← prediction([snear],u,∆t);
8 if collision free path ([snear], [snew],u,∆t) then
9 G.add-guaranteed-vertex([snear], [snew], u);

10 return [snew]

11 return /0
12 until i++< MaxIter or ([snew] 6= /0 and [snew]⊂ [sgoal]);
13 return G

Algorithm 1: BoxRRT motion planner algorithm

Random box GoalBias procedure: This procedure, previously proposed in [21], con-
sists in choosing the random state in the final configuration state [srand]⊂ [sgoal] with a
probability p > 0. Other techniques towards a more improved random procedure can
be thought of, such as the use of the artificial potential field algorithms (APFs) as pro-
posed in [24, 23].
Nearest neighbor procedure: Finds the closest vertex to the [srand] one according to
a chosen metric d. The Hausdorff distance between two intervals as defined in (3) is
considered.
Prediction procedure: Finds a new state [snew] while integrating (1) with the selected
control input, given by the select input procedure, over an interval of time ∆t. This step
is based on validated numerical integration methods as explained in Section 3.1 and
using function R(t).
Collision free path procedure: If [sinit] and [sgoal] are, respectively, the imperfect initial
and final states, one has to show before starting the path planner that both sets of states
belong to Sfree. When it is proved that no collision occurs between any two consecutive
vertices of the tree, one proves by induction that the path between [sinit] and [sgoal] is

robustly reliable, if it exists. The techniques used in this procedure are based on new
tool and functions proposed by [3], which are capable of testing during the integration
procedure if a collision occurred. Therefore this procedure differs from the previously
BoxRRT one which uses wrap techniques [21, 20]. More precisely, using the enclosure
R̃(t) of the trajectory of (1), checking that no collision occurs is simply an interval test
which checks if R̃(t) does not intersect [sobs] for all t.
Select input procedure: This procedure is used to find a control input which finds a new
state starting from a given initial state. The difference between the two new versions
of BoxRRT is made in this procedure: the rciBoxRRT motion planner uses a control
input chosen randomly among the set of admissible values u ∈ U, while sciBoxRRT
motion planner uses a designed control input according to a desired behaviour or to a
chosen criterion (see Section 5 for an example).

4 Towards BoxRRT* Motion Planner Algorithm
This section introduces a new reliable robust path planner for uncertain environments
based on optimal RRTs (RRT∗)([8, 24, 23]), which is denoted tBoxRRT∗. A general
description of the algorithm is presented, followed by the description of the used pro-
cedures.
Description: As in RRT, the tree G is initialized with the given initial configuration
[sinit]. Then, a state [srand] ∈ Sfree is randomly chosen by random-box-GoalBias pro-
cedure and its nearest vertex [snearest] according to a defined metric d is provided by
the nearest-neighbor procedure. Steer procedure designs a control input according to
a desired behaviour or according to a specific criterion. Eq. (1) is integrated over a
fixed time interval ∆t with the initial condition [snearest] and a constant control input
u. Then a new state [snew] is found. If the trajectory between [snearest] and [snew] lie
in Sfree, then the path between [snearest] and [snew] is reliable and [snew] is a new ver-
tex added to G, with the cost function (cost([snew])) associated with the distance from
[sinit] to [snew] through its parent [snearest]. Next, the near procedure checks if a better
parent for [snew] can be found. Therefore, a list of potential vertices in a neighborhood
[snear] ∈Snear of [snew] is selected. For each vertex ([snear]) from the list of potential
parents Snear is checked if the cost (according to the distance metric as defined in (3))
to arrive in [snew] through [snear] is better than cost([snew]). If it is the case and the path
is collision free then the rewire-parent procedure will update [snew] parent with [snear]
and its cost([snew]) accordingly. These steps (Lines 4 to 13) are repeated until the al-
gorithm reaches the MaxIter iterations or until [snew] = [sgoal], or more likely when
[snew]⊂ [sgoal]. Note that here as in Subsect. 3.2 [sinit] = Hull(Sinit), [sobs] = Hull(Sobs)
and [sgoal] = Int(Sgoal).
Random-box-GoalBias, Nearest-neighbor and Collision-free-path are already described
in Section 3.2.
Steer procedure: The control input used by this procedure is the same as the one
proposed for the sciBoxRRT motion planner, i.e. designed according to a desired be-
haviour or to a chosen criterion.
Near procedure: In this study, the k-nearest neighbors algorithm is employed to de-
termine the set of vertices nearest to the state [snew], according to the metric d, de-
fined in (3). At each iteration, Snear will contain the closest vertices with the metric
d([snew],G) < r. This means that the vertices contained in Snear are searched within
the area of a ball of radius r(n) = γ log(n), with γ > ε(1+ 1

dim) or γ = 2ε as suggested
in [9] where ε is Euler’s number, n is the number of vertices in the tree at a given iter-

input : [sinit]⊂ Sfree, [sgoal]⊂ Sfree, MaxIter ∈ N
output: G

1 G.init([sinit]);
2 i← 0 ;
3 repeat
4 [srand]← random-box-GoalBias (Sfree);
5 [snearest]← nearest-neighbor(G, [srand]);
6 ([snew],u)← steer([snearest], [srand]);
7 if collision-free-path([snearest], [snew]) then
8 cost([snew])← cost([snearest]) + d([snearest], [snew]);
9 Snear← near(G, [snew]);

10 ([snear],u)← NewParent(Snear, [snearest], [snew]);
11 G← Rewire-Parent([snear], [snew],G);
12 return [snew]

13 return /0
14 until (i++< MaxIter) or ([snew] 6= /0 and [snew]⊂ [sgoal]);
15 return G

Algorithm 2: Towards BoxRRT∗ motion planning algorithm

ation and dim represents the dimension of the configuration space.
NewParent procedure: When a vertex is added in G its cost is defined as: cost([snew])=
cost([snearest]) + d([snearest], [snew]), where cost([snearest]) represents the distance from
the initial state ([sinit]) to the vertex initial parent [snearest]. This procedure verifies if
among the vertices in Snear a better parent can be found. For each vertex [snear]∈Snear
it is checked if the total cost to arrive to [snew], passing through [snear] is smaller than
cost([snew]). When a better parent for [snew] is found, the steer procedure is applied
from [snear] to [snew]. The control input applied can drive [snear]: (a) to [snew] state, (b)
inside [snew] state or (c) as close as possible and with as small cost to [snew].
Rewire-Parent procedure: If a better parent is found along with a control input which
connects it to [snew], by the NewParent procedure, the Rewire-Parent procedure will
update [snew] parent and cost value.

Even though the tBoxRRT∗ motion planner is build upon the original RRT∗ planner
principles, the rewire procedure, now denoted Rewire-Parent, searches only potential
parents and not potential children, as done in the original RRT∗ planner. Moreover,
the original RRT∗ planner stops the algorithm when a given number of iterations is
reached, while as seen in Algo. 2 our proposed planner stops when a solution is found.
Even if the choice of the stop criteria can have an impact in proving a near-optimal
solution for the proposed algorithm, the latter benefits of different advantages such as
guaranteeing the reliability and robustness of the found solution, if exists.

5 Numerical Example
The three proposed motion planners are applied on four different scenarios for which
the configuration space size is 0.6m ×0.6m×2πrad. The initial state [sinit] size for
each environment is: 0.2m×0.2m×0.02rad, 0.3m×0.3m×0.02rad, 0.4m×0.4m×
0.02rad, 0.2m× 0.2m× 0.02rad and has to reach the following final state [sgoal] size:
2m×2m×πrad, 3m×3m×πrad, 3m×3m×πrad, 6m×6m×πrad.

Each algorithm performs 50 iterations for each proposed scenario on a Intel Core
m7-6Y75 CPU at 1.20GHz×4. The used software consists in DynIBEX1 [5] which is
a library providing operators to deal with constraint satisfaction problems embedding
differential equations.

5.1 Robot mobile modelling
The considered mobile robot is represented by a simple car model, evolving in a 2D
environment. The car moves in a configuration s = (x y θ) with its position (x y) and
orientation θ w.r.t. a frame attached to the environment. The simple car model which
involves non-holonomic constraints is as follows:

ẋ = vcosθ , ẏ = vsinθ , θ̇ = v
L tan(δ), (6)

where the control input u = [v δ] is represented by the longitudinal speed v ∈ [−1 1]
and the steering angle δ ∈ [−π

2
π

2]. L = 1.5 represents the distance between the front
and back axes of the car.

While the control input employed by the rciBoxRRT planner is randomly chosen
in the admissible set, the one used by sciBoxRRT and tBoxRRT∗ planners is designed
in two steps, as follows. First, the car is oriented towards the target, case in which the
control input is obtained by considering the error between the orientation and direction
to the goal equal to zero: atan(ytarget−ystart

xtarget−xstart
)−θtarget = 0, and using it to simulate (6) for

∆t. Once the car is oriented towards the target a second control input is designed to
move the car straight ahead to the target. The steering angle is equal to 0, while the
longitudinal speed is obtained from: v = ẋ

sin(θ) . Finally, (6) is simulated for ∆t with
this last control input.

5.2 Simulations
All scenarios are performed with ∆t = 1s, a probability p = 0.33 mentioned in Sec-
tion 3.1 and the maximum limit of iterations fixed to MaxIter = 20.000. The three
proposed motion planners are performed on four different environments denoted env
i with i = 1..4 and illustrated on Fig. 3. On the same figure a solution found by each
algorithm is represented along with the exhibited total number of vertices and the com-
putation time (CPU [s]). When the complexity of the environment increase, as well
the algorithm’s performances in terms of CPU, number of vertices and distance for the
planned path will increase.

Fig. 1 reports the number of iterations necessary for the convergence of each al-
gorithm. We observe that rciBoxRRT which applies a random control input requires
the most iterations for convergence, while sciBoxRRT and tBoxRRT∗ which use a de-
signed control, presented above, converged after less iterations. Fig. 2 illustrates the
mean and standard deviation of computational time, number of vertices and length of
the planned path, for all simulations performed by the three planners. For all environ-
ments, as Fig. 2 stands for, while comparing the planners two different classifications
can be made which is the same for all 4 environments: (a) in terms of CPU time, the
order of the planners performance enumerated from the more expensive to the less one
is: rciBoxRRT, tBoxRRT∗ and sciBoxRRT; (b) in terms of number of vertices and
length of the planned path, the order of the planners performances given in decreasing
order is: rciBoxRRT, sciBoxRRT and tBoxRRT∗.

1http://perso.ensta-paristech.fr/∼chapoutot/dynibex/

These results suggest that the two planners for which a control input is designed
have better performances than the one in which a random control input is used. More-
over, it was not a surprise to see that tBoxRRT∗ is more time consuming than sci-
BoxRRT while the first one recalls multiples times the steer procedure (Lines 10-11 in
Algo. 2) so that better length path performances to be obtained.

6 Conclusion and Perspectives
Improved versions of the previously proposed boxRRT algorithm and a new motion
planner tBoxRRT∗ based on RRT∗ are presented in this paper. All motion planners are
able to find reliable and robust paths in an uncertain environment, where the uncertain
quantities are assumed to belong to boxes.

If the imperfections on the initial states are too large, the imprecision at each new
uncertain state can increase. This issue, which will be the topic of future studies, can
be encountered by our proposed planners and by the original BoxRRT planner as well.
For this reason, in practical settings the motion planners can be updated from time to
time by using observers to estimate the state evolution using informations provided by
sensors. This can be very useful in decreasing the large imperfections of these uncertain
new states. Also, the use of different control inputs between two states can limite the
uncertain new states growth.

In the presented version, the tBoxRRT∗ has a basic form in which not all the RRT∗

principles are employed (in particular the stop criteria and the rewire procedure). Ap-
plying those principles would improve the planned path length value. The proposed
planners can be adapted for cases where the free subspace of the configuration space
varies with time, to describe moving obstacles. Moreover, model or/and sensorial un-
certainties along with a more complex model of the mobile robot which takes into
account its dynamics can be considered. This should form the subject of future studies.

Acknowledgment
The authors would like to thank Oliver Mullier, Julien Alexandre dit Sandretto, Eric
Goubault and Benjamin Martin for useful comments and discussions.

Figure 1: Number of iteration for convergence required by each of the three proposed
algorithms.

(a) Computational time (s) re-
quired by the three proposed
algorithms for convergence

(b) Number of vertices for the
planned path obtained by the
three proposed algorithms

(c) Planned path length (cm)
obtained by the three pro-
posed algorithms.

Figure 2: The rciBoxRRT, sciBoxRRT and tBoxRRT∗ path planner found perfor-
mances for each of the four proposed scenarios.

References
[1] J. Alexandre dit Sandretto and A. Chapoutot. Validated explicit and implicit

Runge-Kutta methods. Reliable Computing, 2016.

[2] J. Alexandre dit Sandretto and A. Chapoutot. Validated simulation of differential
algebraic equations. Reliable Computing, 2016.

[3] J. Alexandre dit Sandretto, A. Chapoutot, and O. Mullier. Formal Verification
of Robotic Behaviors in Presence of Bounded Uncertainties. In Conference on
Robotic Computation. IEEE, 2017.

[4] A. Censi, D. Calisi, A. De Luca, and G. Oriolo. A bayesian framework for op-
timal motion planning with uncertainty. In Proc. IEEE Int. Conf. Robotics and
Automation, pages 1798–1805, May 2008.

[5] J. Alexandre dit Sandretto and A. Chapoutot. DynIBEX: a differential constraint
library for studying dynamical systems (poster). In Conference on Hybrid Sys-
tems: Computation and Control. ACM, 2016.

[6] L. Jaulin. Path planning using intervals and graphs. Reliable Computing, 7(1):1–
15, fevrier 2001.

[7] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis.
Springer-Verlag, 2001.

[8] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incre-
mental sampling-based methods. In Conference on Decision and Control, pages
7681–7687. IEEE, 2010.

[9] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The international journal of robotics research, 30(7):846–894, 2011.

[10] J. J. Jr Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-
query path planning. In Conference on Robotics and Automation, volume 2, pages
995–1001. IEEE, 2000.

(a) rci-
BoxRRT env
1

(b) rciBoxRRT
env 2

(c) rciBoxRRT
env 3

(d) rciBoxRRT
env 4

(e) sciBoxRRT
env 1

(f) sciBoxRRT
env 2

(g) sciBoxRRT
env 3

(h) sciBoxRRT
env 4

(i) tBoxRRT∗
env 1

(j) tBoxRRT∗
env 2

(k) tBoxRRT∗
env 3

(l) tBoxRRT∗
env 4

Figure 3: (a) - (d) rciBoxRRT ((a) total vertices 2200 in 28 [s]; (b) total vertices 5880
in 103 [s]; (c) total vertices 3416 in 51 [s]; (d) total vertices 7802 in 141[s]). (e) - (h)
sciBoxRRT((e) total vertices 570 in 11 [s]; (f) total vertices 1149 in 32 [s]; (g) total
vertices 278 in 5[s]; (h) total vertices 978 in 26[s]). (i) - (l) tBoxRRT∗((i) total vertices
156 in 3 [s]; (j) total vertices 1088 in 38 [s]; (k) total vertices 786 in 20 [s]; (l) total
vertices 963 in 28[s]).

[11] A. Lambert and D. Gruyer. Safe path planning in an uncertain-configuration
space. Conference on Robotics and Automation, 2003.

[12] S. M. LaValle. Rapidly-exploring random trees: a new tool for path planning.
Technical report, Iowa State University, 1998.

[13] S. M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.

[14] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In Workshop on the Algorithmic Foundations of Robotics, 2000.

[15] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[16] N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. validated solutions of initial
value problems for ordinary differential equations. Applied Mathematics and
Computation, 105:21–68, 1999.

[17] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, 1990.

[18] I. Noreen, A. Khan, and Z. Habib. Optimal path planning using RRT* based
approaches: A survey and future directions. Advanced Computer Science and
Applications, 7(11), 2016.

[19] L. A. Page and A. C. Sanderson. Robot motion planning for sensor-based control
with uncertainties. In Int. Conf. Robotics and Automation, volume 2, pages 1333–
1340 vol.2, May 1995.

[20] R. Pepy, M. Kieffer, and E. Walter. Reliable robust path planner. In Int. Conf.
Intelligent Robots and Systems. IEEE, 2008.

[21] R. Pepy, M. Kieffer, and E. Walter. Reliable robust path planning with application
to mobile robots. Int. J. Appl. Math. Comput. Sci., 19(3):413 – 424, 2009.

[22] R. Pepy and A. Lambert. Safe path planning in an uncertain-configuration space
using rrt. In Int. Conf. Intelligent Robots and Systems, pages 5376–5381. IEEE,
2006.

[23] P. Pharpatara, B. Hérissé, and Y. Bestaoui. 3-d trajectory planning of aerial vehi-
cles using RRT*. Trans. on Control Systems Technology, PP(99), 2016.

[24] P. Pharpatara, B. Hérissé, R. Pepy, and Y. Bestaoui. Shortest path for aerial vehi-
cles in heterogeneous environment using RRT*. In International Conference on
Robotics and Automation. IEEE, 2015.

	Introduction
	Problem Statement
	Problem formulation

	Motion Planner Algorithms
	Interval analysis
	The rciBoxRRT and sciBoxRRT proposed motion planners

	Towards BoxRRT* Motion Planner Algorithm
	Numerical Example
	Robot mobile modelling
	Simulations

	Conclusion and Perspectives

