Adina M Panchea
email: panchea@lix.polytechnique.fr

Alexandre Chapoutot
email: chapoutot@ensta-paristech.fr

David Filliat
email: filliat@ensta-paristech.fr

Extended Reliable Robust Motion Planners *

A new method to plan guaranteed to be safe paths in an uncertain environment, with an uncertain initial and final configuration space, while avoiding static obstacles is presented. First, two improved versions of the previously proposed BoxRRT algorithm are presented: both with a better integration scheme and one of them with the control input selected according to a desired objective, and not randomly, as in the original formulation. Second, a new motion planner, called towards BoxRRT*, based on optimal Rapidly-exploring Random Trees algorithm and using interval analysis is introduced. Finally, each of the described algorithms are evaluated on a numerical example. Results show that our algorithms make it possible to find shorter reliable paths with less iterations.

Introduction

The motion planning problem, as addressed in this paper, consists in finding a path, or a sequence of control policy which drives a mobile robot, with a given dynamics description, from a given initial state region to a given goal region while avoiding collisions with a given set of obstacles.

The development of efficient and intelligent motion planning algorithms used for autonomous navigation, which is at the core of autonomous mobile robotic devices, remains a challenge in particular when trying to guarantee the safety of the vehicle. The guarantee of vehicle's safety implies that the motion planning should take into account uncertainties usually resulting from the approximate initial mobile robot localization, from imperfect embedded sensors or from the approximate models used to describe the behaviour of the robotic devices.

Related work

Many motion planning algorithms have been proposed in the literature. When dealing with complex environments, non-holonomic vehicles or high-dimensional state-space, a popular approach is to use stochastic sampling to discretize the configuration space. Among the existing approaches, we focus on the Rapidly-exploring Random Trees (RRT) ([START_REF] Lavalle | Rapidly-exploring random trees: a new tool for path planning[END_REF][START_REF] Lavalle | Rapidly-exploring random trees: Progress and prospects[END_REF][START_REF] Kuffner | RRT-connect: An efficient approach to singlequery path planning[END_REF][START_REF] Lavalle | Planning Algorithms[END_REF]) path planning algorithm and its many variants. These algorithms have the advantage of rapidly covering the whole configuration space and of easily integrating complex robot models.

However, RRT lacks in guaranteeing an optimal solution. The (asymptotic) optimality of the solution is provided by the optimal Rapidly-exploring Random Trees (RRT*) first proposed in [START_REF] Karaman | Optimal kinodynamic motion planning using incremental sampling-based methods[END_REF] and recently used, for example to plan trajectories for aerial vehicle ([START_REF] Pharpatara | Shortest path for aerial vehicles in heterogeneous environment using RRT[END_REF][START_REF] Pharpatara | 3-d trajectory planning of aerial vehicles using RRT*[END_REF]). In [START_REF] Noreen | Optimal path planning using RRT* based approaches: A survey and future directions[END_REF], a survey on motion planning algorithms based on RRT * is given.

Uncertainty in path planning has been considered using several representations such as set-membership ([START_REF] Page | Robot motion planning for sensor-based control with uncertainties[END_REF][START_REF] Pepy | Reliable robust path planning with application to mobile robots[END_REF]) or covariance matrices ([START_REF] Lambert | Safe path planning in an uncertain-configuration space[END_REF][START_REF] Pepy | Safe path planning in an uncertain-configuration space using rrt[END_REF][START_REF] Censi | A bayesian framework for optimal motion planning with uncertainty[END_REF]). While the latter is able to find paths with a collision probability under a given threshold, setmembership approaches can guarantee safe trajectories under a bounded noise assumption.

The localization information provided by imperfect proprioceptive sensors, while represented by Gaussian functions ([START_REF] Lambert | Safe path planning in an uncertain-configuration space[END_REF][START_REF] Pepy | Safe path planning in an uncertain-configuration space using rrt[END_REF]) can guarantee the safety of the path at a certain confidence threshold. Recently, [START_REF] Pepy | Reliable robust path planner[END_REF] provided the guarantee of a safe path to imperfect proprioceptive sensors, while considering the uncertainties bounded with know bounds. Under the latter uncertainty representation, [START_REF] Pepy | Reliable robust path planning with application to mobile robots[END_REF] introduced a preliminary conceptual reliable and robust path planner based on RRT principles and solved in an interval analysis ([START_REF] Moore | Interval Analysis[END_REF][START_REF] Jaulin | Applied Interval Analysis[END_REF]) framework. The interval analysis framework was previously used ([START_REF] Jaulin | Path planning using intervals and graphs[END_REF]) along with graph algorithms to find collision-free short paths in a given configuration space.

Contributions

This study presents motion planning algorithms which can guarantee safe paths in an uncertain configuration space, where all approximate initial and final mobile robot localisation are bounded with known bounds. Improving the motion planner (denoted BoxRRT) proposed in [START_REF] Pepy | Reliable robust path planning with application to mobile robots[END_REF], our first contribution consists in an improved BoxRRT planner which makes use of modern and new tools ([START_REF] Dit Sandretto | Validated explicit and implicit Runge-Kutta methods[END_REF][START_REF] Dit Sandretto | Validated simulation of differential algebraic equations[END_REF]) for the guaranteed numerical integration employed by the motion planner combined with methods coming from constraint satisfaction problems. The second contribution consists in a second improved BoxRRT algorithm which makes use of the guaranteed numerical integration improvements along with the choice of the control input according to a desired objective and not randomly, as already proposed in the literature. As a third contribution, a preliminary attempt towards a new reliable and robust motion planning algorithm based on RRT * principles is introduced.

This paper is organized as follows. First, Sect. 2 introduces the problem formulation, while Sect. 3 provides two improved versions of BoxRRT algorithm. Next, Sect. 4 describes the new planner based on RRT * . The resulting three proposed reliable and robust path planners are applied to plan paths of a non-holonomic vehicle in Sect. 5, where the simulations results are provided. Finally, some concluding remarks and perspectives are drawn in Section 6.

Problem Statement

This paper considers a mobile robot which has to be driven in a two-dimensional static environment from an initial state to a desired one while avoiding obstacles represented by polygons shapes.

The configuration space S = S free ∪ S obs is therefore composed of two subsets: the free region subset S free = S \ S obs where the mobile robot is allowed to move and the obstacle region subset S obs which the mobile robot needs to avoid. Moreover, uncertainties related to its initial and final position and orientation w.r.t. a frame attached to the environment are considered.

Problem formulation

Consider the differential system which can describe the evolution of a mobile robot system:

ṡ(t) = f(s(t), u(t)) (1)
where s ∈ S is considered to be the measurable state of the system, while u(t) ∈ U is the admissible control input. The exact solution of (1) from the inital condition s 0 is denoted by s(t; s 0). From an initial state s 0 which belongs to a known set s 0 ∈ S init ⊂ S free the system needs to reach a given set of goal states S goal ⊂ S free . The problem formulation comes from [START_REF] Pepy | Reliable robust path planning with application to mobile robots[END_REF].

The purpose of the robust motion planner is to provide a sequence of control inputs u ∈ U ∆t

[u] bounded over intervals of time [K∆t, (K + 1)∆t[, with ∆t > 0 and K ∈ N, which will drive the system to reach S goal while avoiding the non-admissible states S obs whatever the initial state s ∈ S init are. If such a sequence of control input u ∈ U ∆t is proved to drive the system from any initial state s ∈ S init to a final state in S goal then the found robust planned path is reliable.

The formulation of such a robust motion planner for which there exists a sequence of control input u ∈ U ∆t

[u] to drive the system from an uncertain initial state to a set of goal states S goal is as follows:

∃K > 0 and u ∈ U such that ∀s 0 ∈ S init , ∀ s(K∆t; s 0) ∈ S goal and ∀t ∈ [0, K∆t], s(t; s 0) ∈ S free , [START_REF] Dit Sandretto | Validated simulation of differential algebraic equations[END_REF] with s(t) the solution of (1).

Motion Planner Algorithms

This section recalls all necessary notation deployed in this study regarding interval vectors or boxes ([START_REF] Jaulin | Applied Interval Analysis[END_REF]) which are being used to represent the environment uncertainties.

Next, two new versions of BoxRRT motion planner: the random control input BoxRRT (rciBoxRRT) motion planner algorithm and the selected control input BoxRRT (sciBoxRRT) motion planner algorithm are introduced. Both algorithms are based on RRT motion planner ([START_REF] Lavalle | Rapidly-exploring random trees: a new tool for path planning[END_REF][START_REF] Lavalle | Planning Algorithms[END_REF][START_REF] Lavalle | Rapidly-exploring random trees: Progress and prospects[END_REF][START_REF] Kuffner | RRT-connect: An efficient approach to singlequery path planning[END_REF]) which is an incremental-based method with the purpose of efficiently explore all the given configuration space from a given starting configuration.

The idea of BoxRRT is not new, being previously proposed by [START_REF] Pepy | Reliable robust path planning with application to mobile robots[END_REF][START_REF] Pepy | Reliable robust path planner[END_REF] for the case where the uncertainties related to the configuration space are considered only on the final state and not on the initial configuration state. While in this study the interest is to consider uncertainties in the initial and final configuration state space. Moreover, the improvements made on our new versions of BoxRRT are presented in the followings.

Interval analysis

A scalar (real) interval [x] = [x, x] is a closed and connected subset of R, where x represents the lower bound and x represents the upper bound. Two intervals [u] and [v] are equal if and only if u = v and u = v. An interval vector (or box)

[x] is a subset of R n which is the Cartesian product of scalar intervals [x] = [x 1] × [x 2] × • • • × [x n],
where the ith component is the projection of [x] onto the ith axis. The interval hull of a set A is the smallest box which contains A, denoted by Hull(A). The inner approximation of a set A, denoted Int(A), is a box included in A, i.e, Int(A) ⊂ A. The Hausdorff distance [START_REF] Jaulin | Applied Interval Analysis[END_REF][START_REF] Neumaier | Interval Methods for Systems of Equations[END_REF]

of two intervals [x 1] and [x 2] is d([x 1], [x 2]) = sup{|x 1 -x 2 |, |x 1 -x 2 |} (3)
Validated numerical integration methods are interval counterpart of numerical integration methods. A validated numerical integration of a differential equation, as defined in (1) assuming piece-wise constant input, consists in a discretization of time, such that t 0 • • • t end , and a computation of enclosures of the set of states of the system s 0 , . . . , s end , by the help of a guaranteed integration scheme. In details, a guaranteed integration scheme is made of:

• an integration method Φ(f , s j ,t j , h), starting from an initial value s j at time t j and a finite time horizon h (the step-size), producing an approximation s j+1 at time t j+1 = t j +h, of the exact solution s(t j+1 ; s j), i.e., s(t j+1 ; s j) ≈ Φ(f , s j ,t j , h);

• a truncation error function lte Φ (d, s j ,t j , h), such that s(t j+1 ; s j) = Φ(f , s j ,t j , h) + lte Φ (f , s j ,t j , h).
Our validated numerical integration method is a two step method starting at time t j and for which i) it computes an enclosure [s j] of the solution of (1) over the time interval [t j ,t j+1] to bound lte Φ (d, s j ,t j , h); ii) it computes a tight enclosure of the solution of (1) for the particular time instant t j+1 . There are many methods for these two steps among Taylor series and Runge-Kutta methods see [START_REF] Nedialkov | validated solutions of initial value problems for ordinary differential equations[END_REF][START_REF] Dit Sandretto | Validated explicit and implicit Runge-Kutta methods[END_REF] and the references therein for more details. As a result, validated numerical integration methods produce two functions depending on time

R : R → IR n t → [s] (4)
with for a given t i , R(t i) = {s(t i ; s 0) :

∀s 0 ∈ [s 0]} ⊆ [s], and
R : IR → IR n [t,t] → [s] (5) with R([t,t]) = {s(t; s 0) : ∀s 0 ∈ [s 0] ∧ ∀t ∈ [t,t]} ⊆ [s].

The rciBoxRRT and sciBoxRRT proposed motion planners

Let's start by introducing the global description which is the same for both algorithms.

Next, the algorithm which gathers improvements regarding to the previously proposed BoxRRT algorithm and which has the same formulation for both our new versions of BoxRRT motion planner is introduced. Finally, each procedure of the algorithm is explained separately. The difference between the proposed algorithms lies in the choice of the control input and it will be explained as follows.

Description: First the given initial configuration [s init] is added to the exploration tree G (Line 1 Steer procedure: The control input used by this procedure is the same as the one proposed for the sciBoxRRT motion planner, i.e. designed according to a desired behaviour or to a chosen criterion.

Near procedure: In this study, the k-nearest neighbors algorithm is employed to determine the set of vertices nearest to the state [s new], according to the metric d, defined in (3). At each iteration, S near will contain the closest vertices with the metric d([s new], G) < r. This means that the vertices contained in S near are searched within the area of a ball of radius r(n) = γ log(n), with γ > ε(1 + 1 dim) or γ = 2ε as suggested in [START_REF] Karaman | Sampling-based algorithms for optimal motion planning[END_REF] where ε is Euler's number, n is the number of vertices in the tree at a given iter- Rewire-Parent procedure: If a better parent is found along with a control input which connects it to [s new], by the NewParent procedure, the Rewire-Parent procedure will update [s new] parent and cost value. Even though the tBoxRRT * motion planner is build upon the original RRT * planner principles, the rewire procedure, now denoted Rewire-Parent, searches only potential parents and not potential children, as done in the original RRT * planner. Moreover, the original RRT * planner stops the algorithm when a given number of iterations is reached, while as seen in Algo. 2 our proposed planner stops when a solution is found. Even if the choice of the stop criteria can have an impact in proving a near-optimal solution for the proposed algorithm, the latter benefits of different advantages such as guaranteeing the reliability and robustness of the found solution, if exists.

input : [s init] ⊂ S free , [s goal] ⊂ S free , MaxIter ∈ N output: G 1 G.init([s init]); 2 i ← 0 ; 3 repeat 4 [s rand] ← random-box-GoalBias (S free); 5 [s nearest] ← nearest-neighbor(G, [s rand]); 6 ([s new], u) ← steer([s nearest], [s rand]); 7 if collision-free-path([s nearest], [s new]) then 8 cost([s new]) ← cost([s nearest]) + d([s nearest], [s new]); 9 S near ← near(G, [s new]); 10 ([s near], u) ← NewParent(S near , [s nearest], [s new]); 11 G ← Rewire-Parent([s near], [s new], G);

Numerical Example

The three proposed motion planners are applied on four different scenarios for which the configuration space size is 0.6m ×0.6m×2πrad. The initial state [s init] size for each environment is: 0.2m × 0.2m × 0.02rad, 0.3m × 0.3m × 0.02rad, 0.4m × 0.4m × 0.02rad, 0.2m × 0.2m × 0.02rad and has to reach the following final state [s goal] size: 2m × 2m × πrad, 3m × 3m × πrad, 3m × 3m × πrad, 6m × 6m × πrad.

Each algorithm performs 50 iterations for each proposed scenario on a Intel Core m7-6Y75 CPU at 1.20GHz×4. The used software consists in DynIBEX1 [START_REF] Dit Sandretto | DynIBEX: a differential constraint library for studying dynamical systems[END_REF] which is a library providing operators to deal with constraint satisfaction problems embedding differential equations.

Robot mobile modelling

The considered mobile robot is represented by a simple car model, evolving in a 2D environment. The car moves in a configuration s = (x y θ) with its position (x y) and orientation θ w.r.t. a frame attached to the environment. The simple car model which involves non-holonomic constraints is as follows: While the control input employed by the rciBoxRRT planner is randomly chosen in the admissible set, the one used by sciBoxRRT and tBoxRRT * planners is designed in two steps, as follows. First, the car is oriented towards the target, case in which the control input is obtained by considering the error between the orientation and direction to the goal equal to zero: atan(y target -y start x target -x start)θ target = 0, and using it to simulate (6) for ∆t. Once the car is oriented towards the target a second control input is designed to move the car straight ahead to the target. The steering angle is equal to 0, while the longitudinal speed is obtained from: v = ẋ sin(θ) . Finally, (6) is simulated for ∆t with this last control input.

ẋ = v cos θ , ẏ = v sin θ , θ = v L tan(δ), (6)

Simulations

All scenarios are performed with ∆t = 1s, a probability p = 0.33 mentioned in Section 3.1 and the maximum limit of iterations fixed to MaxIter = 20.000. The three proposed motion planners are performed on four different environments denoted env i with i = 1..4 and illustrated on Fig. 3. On the same figure a solution found by each algorithm is represented along with the exhibited total number of vertices and the computation time (CPU [s]). When the complexity of the environment increase, as well the algorithm's performances in terms of CPU, number of vertices and distance for the planned path will increase.

Fig. 1 reports the number of iterations necessary for the convergence of each algorithm. We observe that rciBoxRRT which applies a random control input requires the most iterations for convergence, while sciBoxRRT and tBoxRRT * which use a designed control, presented above, converged after less iterations. Fig. 2 illustrates the mean and standard deviation of computational time, number of vertices and length of the planned path, for all simulations performed by the three planners. For all environments, as Fig. 2 stands for, while comparing the planners two different classifications can be made which is the same for all 4 environments: (a) in terms of CPU time, the order of the planners performance enumerated from the more expensive to the less one is: rciBoxRRT, tBoxRRT * and sciBoxRRT; (b) in terms of number of vertices and length of the planned path, the order of the planners performances given in decreasing order is: rciBoxRRT, sciBoxRRT and tBoxRRT * . These results suggest that the two planners for which a control input is designed have better performances than the one in which a random control input is used. Moreover, it was not a surprise to see that tBoxRRT * is more time consuming than sci-BoxRRT while the first one recalls multiples times the steer procedure (Lines 10-11 in Algo. 2) so that better length path performances to be obtained.

Conclusion and Perspectives

Improved versions of the previously proposed boxRRT algorithm and a new motion planner tBoxRRT * based on RRT * are presented in this paper. All motion planners are able to find reliable and robust paths in an uncertain environment, where the uncertain quantities are assumed to belong to boxes.

If the imperfections on the initial states are too large, the imprecision at each new uncertain state can increase. This issue, which will be the topic of future studies, can be encountered by our proposed planners and by the original BoxRRT planner as well. For this reason, in practical settings the motion planners can be updated from time to time by using observers to estimate the state evolution using informations provided by sensors. This can be very useful in decreasing the large imperfections of these uncertain new states. Also, the use of different control inputs between two states can limite the uncertain new states growth.

In the presented version, the tBoxRRT * has a basic form in which not all the RRT * principles are employed (in particular the stop criteria and the rewire procedure). Applying those principles would improve the planned path length value. The proposed planners can be adapted for cases where the free subspace of the configuration space varies with time, to describe moving obstacles. Moreover, model or/and sensorial uncertainties along with a more complex model of the mobile robot which takes into account its dynamics can be considered. This should form the subject of future studies.

2 π 2]

 22 where the control input u = [v δ] is represented by the longitudinal speed v ∈ [-1 1] and the steering angle δ ∈ [-π . L = 1.5 represents the distance between the front and back axes of the car.

Figure 1 :

 1 Figure 1: Number of iteration for convergence required by each of the three proposed algorithms.

Figure 2 :

 2 Figure 2: The rciBoxRRT, sciBoxRRT and tBoxRRT * path planner found performances for each of the four proposed scenarios.

Figure 3 :

 3 Figure 3: (a) -(d) rciBoxRRT ((a) total vertices 2200 in 28 [s]; (b) total vertices 5880 in 103 [s]; (c) total vertices 3416 in 51 [s]; (d) total vertices 7802 in 141[s]). (e) -(h) sciBoxRRT((e) total vertices 570 in 11 [s]; (f) total vertices 1149 in 32 [s]; (g) total vertices 278 in 5[s]; (h) total vertices 978 in 26[s]). (i) -(l) tBoxRRT * ((i) total vertices 156 in 3 [s]; (j) total vertices 1088 in 38 [s]; (k) total vertices 786 in 20 [s]; (l) total vertices 963 in 28[s]).

). Then, a state [s rand] ⊂ S free is randomly chosen by the procedure randombox-GoalBias (Line 4). The nearest-neighbor procedure from Line 5 returns the closest vertex [s near] to [s rand] in the tree G, according to a certain metric d. A control input u ∈ [u] is chosen according to a specified criterion or randomly through the select input procedure. Then, in the prediction procedure, (1) is integrated over a fix time interval ∆t with the initial condition [s near] and a constant control input u (given atLine 6) and will result in a new state [s new] (Line 7). If it can be proved that all state values along the trajectory between [s near] and [s new] lie in S free being a collision free path, then the path between [s near] and [s new] is considered reliable and [s new] is added to G as a new vertex and connected to its parent [s near] though the G.add-guaranteed-vertex procedure. Otherwise, [s new] is not added to G. Lines 4 to 11 are repeated until a chosen number of iterations MaxIter is reached or until a path is found meaning [s new] = [s goal], or most likely when [s new] ⊂ [s goal]. Note that we have [s init] = Hull(S init), [s obs] = Hull(S obs) and [s goal] = Int(S goal) to ensure the soundness of the proposed algorithm. Other techniques towards a more improved random procedure can be thought of, such as the use of the artificial potential field algorithms (APFs) as proposed in[START_REF] Pharpatara | Shortest path for aerial vehicles in heterogeneous environment using RRT[END_REF][START_REF] Pharpatara | 3-d trajectory planning of aerial vehicles using RRT*[END_REF]. Nearest neighbor procedure: Finds the closest vertex to the [s rand] one according to a chosen metric d. The Hausdorff distance between two intervals as defined in (3) is considered. Prediction procedure: Finds a new state [s new] while integrating (1) with the selected control input, given by the select input procedure, over an interval of time ∆t. This step is based on validated numerical integration methods as explained in Section 3.1 and using function R(t). Collision free path procedure: If [s init] and [s goal] are, respectively, the imperfect initial and final states, one has to show before starting the path planner that both sets of states belong to S free . When it is proved that no collision occurs between any two consecutive vertices of the tree, one proves by induction that the path between [s init] and [s goal] is robustly reliable, if it exists. The techniques used in this procedure are based on new tool and functions proposed by[START_REF] Dit Sandretto | Formal Verification of Robotic Behaviors in Presence of Bounded Uncertainties[END_REF], which are capable of testing during the integration procedure if a collision occurred. Therefore this procedure differs from the previously BoxRRT one which uses wrap techniques[START_REF] Pepy | Reliable robust path planning with application to mobile robots[END_REF][START_REF] Pepy | Reliable robust path planner[END_REF]. More precisely, using the enclosure R(t) of the trajectory of (1), checking that no collision occurs is simply an interval test which checks if R(t) does not intersect [s obs] for all t. Select input procedure: This procedure is used to find a control input which finds a new state starting from a given initial state. The difference between the two new versions of BoxRRT is made in this procedure: the rciBoxRRT motion planner uses a control input chosen randomly among the set of admissible values u ∈ U, while sciBoxRRT motion planner uses a designed control input according to a desired behaviour or to a chosen criterion (see Section 5 for an example).

	4 Towards BoxRRT* Motion Planner Algorithm

input : [s init] ⊂ S free , [s goal] ⊂ S free , ∆t ∈ R + , MaxIter ∈ N output: G 1 G.init([s init]); 2 i ← 0; 3 repeat 4 [s rand] ← random-box-GoalBias(S free); 5 [s near] ← nearest-neighbor(G, [s rand]); 6 u ← select input([s rand], [s near]); 7 [s new] ← prediction([s near], u, ∆t); 8 if collision free path ([s near], [s new], u, ∆t) then 9 G.add-guaranteed-vertex([s near], [s new], u); 10 return [s new] 11 return / 0 12 until i + + < MaxIter or ([s new] = / 0 and [s new] ⊂ [s goal]); 13 return G Algorithm 1: BoxRRT motion planner algorithm Random box GoalBias procedure: This procedure, previously proposed in [21], consists in choosing the random state in the final configuration state [s rand] ⊂ [s goal] with a probability p > 0. This section introduces a new reliable robust path planner for uncertain environments based on optimal RRTs (RRT *)([8, 24, 23]), which is denoted tBoxRRT * . A general description of the algorithm is presented, followed by the description of the used procedures. Description: As in RRT, the tree G is initialized with the given initial configuration [s init]. Then, a state [s rand] ∈ S free is randomly chosen by random-box-GoalBias procedure and its nearest vertex [s nearest] according to a defined metric d is provided by the nearest-neighbor procedure. Steer procedure designs a control input according to a desired behaviour or according to a specific criterion. Eq. (1) is integrated over a fixed time interval ∆t with the initial condition [s nearest] and a constant control input u. Then a new state [s new] is found. If the trajectory between [s nearest] and [s new] lie in S free , then the path between [s nearest] and [s new] is reliable and [s new] is a new vertex added to G, with the cost function (cost([s new])) associated with the distance from [s init] to [s new] through its parent [s nearest]. Next, the near procedure checks if a better parent for [s new] can be found. Therefore, a list of potential vertices in a neighborhood [s near] ∈ S near of [s new] is selected. For each vertex ([s near]) from the list of potential parents S near is checked if the cost (according to the distance metric as defined in (3)) to arrive in [s new] through [s near] is better than cost([s new]). If it is the case and the path is collision free then the rewire-parent procedure will update [s new] parent with [s near] and its cost([s new]) accordingly. These steps (Lines 4 to 13) are repeated until the algorithm reaches the MaxIter iterations or until [s new] = [s goal], or more likely when [s new] ⊂ [s goal]. Note that here as in Subsect. 3.2 [s init] = Hull(S init), [s obs] = Hull(S obs) and [s goal] = Int(S goal). Random-box-GoalBias, Nearest-neighbor and Collision-free-path are already described in Section 3.2.

 MaxIter) or ([s new] = / 0 and [s new] ⊂ [s goal]);

	12	return [s new]
	13	return / 0
	14 until (i + + < 15 return G
		Algorithm 2: Towards BoxRRT

* motion planning algorithm ation and dim represents the dimension of the configuration space. NewParent procedure: When a vertex is added in G its cost is defined as: cost([

s new]) = cost([s nearest]) + d([s nearest], [s new]),

where cost([s nearest]) represents the distance from the initial state ([s init]) to the vertex initial parent [s nearest]. This procedure verifies if among the vertices in S near a better parent can be found. For each vertex [s near] ∈ S near it is checked if the total cost to arrive to [s new], passing through [s near] is smaller than cost([s new]). When a better parent for [s new] is found, the steer procedure is applied from [s near] to [s new]. The control input applied can drive [s near]: (a) to [s new] state, (b) inside [s new] state or (c) as close as possible and with as small cost to [s new].

http://perso.ensta-paristech.fr/∼chapoutot/dynibex/

Acknowledgment

The authors would like to thank Oliver Mullier, Julien Alexandre dit Sandretto, Eric Goubault and Benjamin Martin for useful comments and discussions.

* This work was supported by DGA MRIS.