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CONSTRUCTIVE TENSOR FIELD THEORY: THE T 4
4 MODEL

by

V. Rivasseau & F. Vignes-Tourneret

Abstract. — We continue our constructive study of tensor field theory through the next natural
model, namely the rank four tensor theory with quartic melonic interactions and propagator inverse
of the Laplacian on U(1)4. This superrenormalizable tensor field theory has a power counting quite
similar to ordinary φ4

3. We control the model via a multiscale loop vertex expansion which has to be
pushed quite beyond the one of the T 4

3 model and we establish its Borel summability in the coupling
constant. This paper is also a step to prepare the constructive treatment of just renormalizable
models, such as the T 4

5 model with quartic melonic interactions.
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Context and outline

Perturbative quantum field theory develops the functional integrals of Lagrangian quantum field the-
ories such as those of the standard model into a formal series of Feynman graphs and their amplitudes.
The latter are the basic objects to compute in order to compare weakly coupled theories with actual
particle physics experiments. However isolated Feynman amplitudes or even the full formal perturba-
tive series cannot be considered as a complete physical theory. Indeed the non-perturbative content of
Feynman functional integrals is essential to their physical interpretation, in particular when investigating
stability of the vacuum and the phase structure of the model.

Axiomatic field theory, in contrast, typically does not introduce Lagrangians nor Feynman graphs
but studies rigorously the general properties that any local quantum field theory ought to possess [SW64;
Haa96]. Locality is indeed at the core of the mathematically rigorous formulation of quantum field theory.
It is a key Wightman axiom [SW64] and in algebraic quantum field theory [Haa96] the fundamental
structures are the algebras of local observables.

Constructive field theory is some kind of compromise between both points of view. From the start
it was conceived as a model building program [VW73; GJ87; Riv91] in which specific Lagrangian field
theories, typically of the superrenormalizable and renormalizable type would be studied in increasing
order of complexity. Its main characteristic is the mathematical rigor with which it addresses the basic
issue of divergence of the perturbative series.

The founding success of constructive field theory was the construction of the ultraviolet [Nel65] and
thermodynnamic [GJS73] limits of the massive φ4

2 field theory [Sim74] in Euclidean space. Thanks to
Osterwalder-Schrader axioms it implied the existence of a Wightman theory in real (Minkowski) space-
time. Beyond this intial breakthrough, two other steps were critical for future developments. The first
one was the introduction of multiscale analysis by Glimm and Jaffe to build the more complicated φ4

3
model [GJ73]. It was developped as a kind of independent mathematical counterpoint to Wilson’s renor-
malization group. All the following progress in constructive field theory and in particular the construction
of just renormalizable models relied in some way on deepening this basic idea of renormalization group
and multiscale analysis [GK86; Fel+86].

A bit later an other key mathematical concept was introduced in constructive field theory, namely
Borel summability. It is a fundamental result of the constructive quantum field theory program that the
Euclidean functional integrals of many (Euclidean) quantum field theories with quartic interactions are
the Borel sum of their renormalized perturbative series [EMS74; MS77; Fel+86]. This result builds a
solid bridge between the Feynman amplitudes used by physicists and the Feynman-Kac functional integral
which generates them. Borel summable quantum field theories have indeed a unique non-perturbative
definition, independent of the particular cutoffs used as intermediate tools. Moreover all information
contained in such theories, including the so-called “non-perturbative” issues, is embedded in the list of
coefficients of the renormalized perturbative series. Of course to extract this information often requires
an analytic continuation beyond the domains which constructive theory currently controls.

As impressive as may be the success of the standard model, it does not include gravity, the funda-
mental force which is the most obvious in daily life. Quantization of gravity remains a central puzzle
of theoretical physics. It may require to use generalized quantum field theories with non-local interac-
tions. Indeed near the Planck scale, space-time should fluctuate so violently that the ordinary notion
of locality may no longer be the relevant concept. Among the many arguments one can list pointing
into this direction are the Doplicher-Fredenhagen-Roberts remark that to distinguish two objects closer
than the Planck scale would require to concentrate so much energy in such a little volume that it would
create a black hole, preventing the observation [DFR94]. String theory, which (in the case of closed
strings) contains a gravitational sector, is another powerful reason to abandon strict locality. Indeed
strings are one-dimensional extended objects, whose interaction cannot be localized at any space time
point. Moreover, closed strings moving in compactified background may not distinguish between small
and large such backgrounds because of dualities that exchange their translational and “wrapping around”
degrees of freedom. Another important remark is that in two and three dimensions pure quantum gravity
is topological. In such theories, observables, being functions of the topology only, cannot be localized in
a particular region of space-time.

Many approaches currently compete towards a mathematically consistent quantization of gravity, and
a constructive program in this direction may seem premature. Nevertheless random tensor models have
received recently increased attention, both as fundamental models for random geometry pondered by a
discretized Einstein-Hilbert action [Riv13] and as efficient toy models of holography in the vicinity of a
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horizon [Wit16; Gur17b; KT17; KSBS17; Fer17; Gur17a; BLT17].
Tensor models are background invariant and avoid (at least at the start) the formidable issue of

fixing the gauge invariance of general relativity under diffeomorphisms (change of coordinates). Another
advantage is that they remain based on functional integrals. Therefore they can be investigated with
standard quantum field theory tools such as the renormalization group, and in contrast with many other
approaches, with (suitably modified) constructive techniques. This paper is a step in that direction.

Random matrix and tensor models can be considered as a kind of simplification of Regge calculus
[Reg61], which one could call simplicial gravity or equilateral Regge calculus [Amb02]. Other important
discretized approaches to quantum gravity are the causal dynamical triangulations [LAJ05; Amb+13] and
group field theory [Bou92; Fre05; Kra12; BGMR10], in which either causality constraints or holonomy
and simplicity constraints are added to bring the discretization closer to the usual formulation of general
relativity in the continuum.

Random matrices are relatively well-developed and have been used successfully for discretization
of two dimensional quantum gravity [Dav85; Kaz85; DFGZJ95]. They have interesting field-theoretic
counterparts, such as the renormalizable Grosse-Wulkenhaar model [GW04a; GW04b; DR06; Dis+06;
GW09; GW13; GW14; GW16].

Tensor models extend matrix models and were therefore introduced as promising candidates for an ab
initio quantization of gravity in rank/dimension higher than 2 [ADJ91; Sas91; Gro92; Amb02]. However
their study is much less advanced since they lacked for a long time an analog of the famous ’t Hooft 1/N
expansion for random matrix models [Hoo74] to probe their large N limit. Their modern reformulation
[Gur10a; GR11b; Gur13b; BGR12b] considers unsymmetrized random tensors, a crucial improvement.
Such tensors in fact have a larger, truly tensorial symmetry (typically in the complex case a U(N)⊗d
symmetry at rank d instead of the single U(N) of symmetric tensors). This larger symmetry allows to
probe their large N limit through 1/N expansions of a new type [Gur10b; GR11a; Gur11; Bon13; BDR15;
Bon16].

Random tensor models can be further divided into fully invariant models, in which both propagator
and interaction are invariant, and field theories in which the interaction is invariant but the propagator is
not [BGR12a]. This propagator can incorporate or not a gauge invariance of the Boulatov group field the-
ory type. In such field theories the use of tensor invariant interactions is the critical ingredient allowing in
many cases for their successful renormalization [BGR12a; BGR13; OSVT13; BG14; COR14b; COR14a].
Surprisingly the simplest just renormalizable models turn out to be asymptotically free [BGR13; BG12b;
BG12a; OS13; Riv15].

In all examples of random matrix and tensor models, the key issue is to understand in detail the
limit in which the matrix or the tensor has many entries. Accordingly, the main constructive issue is
not simply Borel summability but uniform Borel summability with the right scaling in N as N → ∞.
In the field theory case the corresponding key issue is to prove Borel summability of the renormalized
perturbation expansion without cutoffs.

Recent progress has been fast on this front [Riv16]. Uniform Borel summability in the coupling
constant has been proven for vector, matrix and tensor quartic models [Riv07; Mag+09; Gur13a; DGR14;
GK15], based on the loop vertex expansion (LVE) [Riv07; MR07; RW13], which combines an intermediate
field representation1 with the use of a forest formula [BK87; AR95]. This relatively recent constructive
technique is adapted to the study of theories without any space-time, as it works more directly at the
combinatorial level and does not introduce any lattice. It was introduced precisely to make constructive
sense of ’t Hooft 1/N expansion for quartic matrix models [Riv07; GK15].

The constructive tensor field theory program started in [DR16], in which Borel summability of the
renormalized series has been proved for the simplest such theory which requires some infinite renormal-
ization, namely the U(1) rank-three model with inverse Laplacian propagator and quartic interactions
nicknamed T 4

3 . This model has power counting similar to the one of φ4
2. The main tool is the multiscale

loop vertex expansion (MLVE) [GR14], which combines an intermediate field representation with the use
of a more complicated two-level jungle formula [AR95]. An important additional technique is the iterated
Cauchy-Schwarz bounds which allow to bound the LVE contributions. They are indeed not just standard
perturbative amplitudes, but include resolvents which are delicate to bound.

1More recently the LVE has been extended to higher order interactions by introducing another related func-
tional integral representation called the loop vertex representation. It is based on the idea of forcing functional
integration of a single field per vertex [Riv17]. For quartic models like the one studied in this paper, this other
representation is however essentially equivalent to the intermediate field representation.
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The program has been also extended recently to similar models with Boulatov-type group field theory
projector [Lah15a; Lah15b].

The next natural step in this constructive tensor field theory program is to build the U(1) rank-four
model with inverse Laplacian propagator and quartic melonic interactions, which we nickname T 4

4 . This
model is comparable in renormalization difficulty to the ordinary φ4

3 theory, hence requires several addi-
tional non-trivial arguments. This is the problem we solve in the present paper.

The plan of this paper essentially extends the one of [DR16], as we follow roughly the same general
strategy, but with many important additions due to the more complicated divergences of the model. As
the proof of our main result, namely Theorem 2.1, is somewhat lengthy, we now outline its main steps
and use this occasion to give the actual plan of this paper and to define the various classes of Feynman
graphs we will encounter.

In Section 1 we provide the mathematical definition of the model. Its original or tensor representation
is given in Section 1.1 as well as the full list of its perturbative counterterms. This model is a quantum
field theory the fields of which are tensors namely elements of `2(Z)⊗4. As usual in quantum field theory, it
is convenient to represent analytical expressions by Feynman graphs. The latter will cover many different
graphical notions. As a first example, the Feynman graphs of the tensor field theory under study here
(see eqs. (1.1) and (1.4)) will be called tensor graphs. They will be depicted as (edge-)coloured graphs
like in figs. 3 to 5.

Section 1.2 then provides the intermediate field representation, at the heart of the Loop Vertex
Expansion. It rewrites the partition function as a functional integral over both a main Hermitian matrix
intermediate field σ and an auxiliary intermediate field τ (which is also a matrix). We will simply write
graphs for the Feynman graphs of the intermediate field representation of the model, whereas these
“graphs” are maps really, since intermediate fields are matrices.

A multiscale decomposition is introduced in Section 1.4.

Section 2 provides the multiscale loop vertex expansion (hereafter MLVE) for that model, which is
surprisingly close to the one used in [DR16], with just a little bit of extra structure due to a single one
of the ten divergent vacuum graphs of the theory. MLVE consists in an ordered Bosonic and Fermionic
2-jungle formula which expresses each “order” n of the partiton function Z (or the moments of the to-be-
defined functional measure) as a sum over forests on n nodes. One of the benefits of such an expansion is
that the free energey i.e. the logarithm of the partition function can very easily be expressed as a similar
sum but over connected jungles namely some sort of trees.

Definition 1 (Trees, forests and jungles). — A forest on [n] := {1, 2, . . . , n} is an acyclic graph
the vertex-set of which is [n]. A tree is a connected acyclic graph. Connected components of forests are
trees. Note that the graph with one vertex and no edges is considered a tree. A (2-)jungle is a forest
the edges of which are marked either 0 or 1. The vertices of a jungle are called nodes. ♠

Jungles on [n] will index the various terms composing order n of the Loop Vertex Expansion of the
partition function and of the free energy of our model. More precisely, a jungle comes equipped

• with a scale attribution of its nodes (i.e. a function from the set of its nodes to the non-negative
integers smaller than a general UV cutoff jmax),

• and intermediate field derivatives at both ends of each of its edges.

Each node a of a jungle represents a functional expression, namely Wja = e−Vja − 1 where Vja is the
quartic interaction of the model at scale ja. The MLVE expresses logZ as follows:

(2.3) W6jmax(g) := logZ6jmax(g) =
∞∑
n=1

1
n!

∑
J tree

jmax∑
j1=1
· · ·

jmax∑
jn=1∫

dwJ

∫
dνJ ∂J

[∏
B

∏
a∈B

(
−χBjaWja(σa, τa)χBja

)]
where B represents a connected component of the Bosonic part of the jungle J . Each Bosonic block B is
thus a subtree of J . Our main result, Theorem 2.1, consists in the analyticity of limjmax→∞W6jmax(g)
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in a non empty cardioid domain of the complex plane as well as the Borel summability of its perturbative
renormalised series. The rest of the paper is entirely devoted to its proof.

The jungles of the MLVE are considered hereafter abstract graphs. Each edge of an abstract forest
comes equipped with intermediate field derivatives at both of its ends (represented by the ∂J operator
in the preceding equation). The result of these derivatives (with respect to the σ- and χ-fields) on the
Wja ’s is a sum, the terms of which can be indexed by still another type of graphs that we name skeletons,
see Section 3.

Definition 2 (Skeleton graphs). — Skeleton graphs are plane forests possibly with external edges,
marked subgraphs, marked external edges and marked corners. External edges are unpaired half-edges.
We will denote skeleton graphs with sans serif characters such as G. The possibly marked subgraphs
are and . The marked ones will be depicted in gray and basically represent renormalised amplitudes
of 2-point subgraphs noted respectively D1 and D2. Unmarked external edges will be pictured and
marked ones by dotted lines . The latter represent resolvent insertions. Each vertex of a skeleton graph
has a unique marked corner (i.e. an angular sector between two consecutive half-edges, marked or not,
adjacent to a same vertex). Each such marked corner bears an integer between 1 and bm+1

2 c + 1 if the
graph has m vertices. ♠

Let us consider a skeleton graph G(J ) derived from a jungle J on [n]. Thanks to the Faà di Bruno for-
mula, eq. (3.1), each node a of J might be split into several (in fact up to the degree of a) vertices of G.
For a ∈ [n], let Va(G) be the subset of vertices of G originating from node a of J . The set {Va(G), a ∈ [n]}
forms a partition of V (G). For all a ∈ [n], the marked corners of the vertices in Va(G) bear integer a.

To reach analyticity ofW6jmax we prove that it converges normally. We must then compute an upper
bound on the module of its order n. The Fermionic integrale is standard and can be performed exactly,
see Section 5.1. It leads to the following bound

|W6jmax(g)| 6
∞∑
n=1

2n

n!
∑
J tree

∑
{ja}

(∏
B

∏
a,b∈B
a 6=b

(1− δjajb)
)( ∏

`F∈FF
`F=(a,b)

δjajb

) ∏
B
|IB|,

IB =
∫
dwB

∫
dνB ∂TB

∏
a∈B

(e−Vja − 1)(σa, τa).

The main difficulty resides in the estimation of the Bosonic contributions IB. A Hölder inequality rewrites
it as (see eq. (3.9))

|IB| 6 INP
B

∑
G

(∫
dνB |:AG(σ):|4︸ ︷︷ ︸
perturbative

)1/4
.

This bound consists in two parts: a perturbative one, the terms of which are indexed by skeleton graphs G
and a non perturbative one, INP

B , made of exponentials of interaction terms and counterterms. Sections 4
and 5 are devoted to the non perturbative terms and lead in particular to Theorem 5.5. Section 4 is a
technical preparation for the next section and consists in proving two very different but essential bounds,
one of which is quadratic, see Lemma 4.1, and the other quartic, Corollary 4.6, on the main part of Vj . In
Section 5 we find some echo of the main Glimm and Jaffe idea of expanding more and more the functional
integral at higher and higher energy scale [GJ73]. Indeed to compensate for linearly divergent vacuum
graphs we need to push quite far a Taylor expansion of the non-perturbative factor. However of course a
key difference is that there are no geometrical objects such as the scaled “Russian dolls” lattices of cubes
so central to traditional multiscale constructive analysis.

In Section 6 we bound the perturbative terms in IB using an improved version of the Iterated Cauchy-
Schwarz bounds. Indeed the trees of the LVE and MLVE are not perturbative; they still resum infinite
power series through resolvents, which are however uniformly bounded in norm, see Lemma 1.4. The
ICS bound is a technique which allows to bound such “quasi-perturbative” LVE contributions by truly
perturbative contributions, but with no longer any resolvent included. More precisely, remember that
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skeleton graphs G are intermediate field graphs (thus maps) both with unmarked external edges (corre-
sponding to σ-fields still to be integrated out) and marked ones representing resolvents. We first get rid of
those external σ-fields by integrating by parts (with respect to the Gaussian measure dνB), see eq. (6.1),
in what we call the contraction process (see Section 6.1). Note that unmarked external edges will then
be paired both with marked and unmarked external edges. When an unmarked external edge contracts
to another unmarked external edge, it simply creates a new edge. But when it contracts to a marked
external edge, it actually creates a new corner, as depicted in fig. 1 and according to eq. (6.2). The result

=
Figure 1. Contraction of half-edges in skeleton graphs.

of all the possible contractions of all the unmarked external edges of a skeleton graph G consists in a set
of resolvent graphs.

Definition 3 (Resolvent graphs). — A resolvent graph is a map with external edges, marked sub-
graphs and marked corners. External edges, pictured , represent resolvents. Possible marked subgraphs
are the same than for skeleton graphs. Marked corners bear an integer between 1 and bm+1

2 c + 1 if the
graph has m vertices. Resolvent graphs will be denoted with calligraphic fonts such as G for example. We
also let s(G) be the set of marked corners of G and for any corner c in s(G), we let ic be the corresponding
integer. ♠

Let G be a skeleton graph and G(G) one of the resolvent graphs created from G by the contraction process.
As the latter does not create nor destroy vertices, the sets of vertices of G and G have the same cardinality.
Nevertheless the contraction process may create new corners. In fact it creates two new corners each
time an unmarked external edge is paired to a marked external one. Thus there is a natural injection ι
from the corners of G to the ones of G. Moreover it is such that the marked corners of G are the images
of the marked corners of G via ι.

Amplitudes of resolvent graphs still contain σ-fields in the resolvents. In Section 6.2 we will apply
iterated Cauchy-Schwarz estimates to such amplitudes in order to bound them by the geometric mean
of resolvent-free amplitudes, using that the norm of the resolvent is bounded in a cardioid domain of the
complex plane. To this aim, it will be convenient to represent resolvent graph amplitudes by the partial
duals of resolvent graphs with respect to a spanning subtree, see Section 6.2. It results in one-vertex
maps that we will actually represent as chord diagrams. Resolvents in such maps will not be pictured
anymore as dotted external edges but as encircled R’s. See fig. 2 for an example.

R

R

Figure 2. Example of the partial dual with respect to a spanning subtree of a resolvent
graph, represented as a chord diagram. Edges of the tree correspond to plain lines whereas
edges in the complement are dashed lines. Resolvent insertions are explicitely represented.

In Section 7 we prove that the good power counting of convergent amplitudes is sufficient to both
compensate the large combinatorial factors inherent in the perturbative sector of the theory and sum
over the scales ja of the jungle J .

Finally appendices contain some of the proofs and details.
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1. The model

1.1. Laplacian, bare and renormalized action. — Consider a pair of conjugate rank-4 tensor fields

Tn, Tn, with n = (n1, n2, n3, n4) ∈ Z4, n = (n1, n2, n3, n4) ∈ Z4.

They belong respectively to the tensor product H⊗ := H1⊗H2⊗H3⊗H4 and to its dual, where each Hi
is an independent copy of `2(Z) = L2(U(1)), and the colour or strand index i takes values in {1, 2, 3, 4}.
Indeed by Fourier transform these fields can be considered also as ordinary scalar fields T (θ1, θ2, θ3, θ4)
and T (θ1, θ2, θ3, θ4) on the four torus T4 = U(1)4 [BGR12a; DR16].

If we restrict the indices n to lie in [−N,N ]4 rather than in Z4 we have a proper (finite dimensional)
tensor model. We can consider N as the ultraviolet cutoff, and we are interested in performing the
ultraviolet limit N →∞.

Unless specified explicitly, short notations such as
∑

n,
∏

n mean either cutoff sums
∑

n∈[−N,N ]4 ,∏
n∈[−N,N ]4 in the initial sections of this paper, before renormalization has been performed, or simply∑
n∈Z4 and

∏
n∈Z4 in the later sections when renormalization has been performed.

We introduce the normalized Gaussian measure

dµC(T, T ) :=

∏
n,n

dTndTn
2iπ

 detC−1 e
−
∑

n,n
TnC

−1
nn
Tn

where the covariance C is the inverse of the Laplacian on T4 plus a unit mass term

Cn,n =
δn,n

n2 + 1 , n
2 := n2

1 + n2
2 + n2

3 + n2
4.

The formal2 generating function for the moments of the model is then

(1.1) Z0(g, J, J) = N
∫
eT ·J+J ·T e−

g
2

∑
c
Vc(T,T )dµC(T, T ),

where the scalar product of two tensors A·B means
∑

n AnBn, g is the coupling constant, the source
tensors J and J are dual respectively to T and T and N is a normalization. To compute correlation
functions it is common to choose N−1 =

∫
e−

g
2

∑
c
Vc(T,T )dµC(T, T ) which is the sum of all vacuum

amplitudes. However following the constructive tradition for such superrenormalizable models, we shall
limit N to be the exponential of the finite sum of the divergent connected vacuum amplitudes. The
interaction is

∑
c Vc(T, T ) with

(1.2) Vc(T, T ) := Trc(T Iĉ T )2 =
∑
nc,nc,
mc,mc

( ∑
nĉ,nĉ

TnTn δnĉnĉ

)
δncmcδmcnc

( ∑
mĉ,mĉ

TmTm δmĉmĉ

)
,

and where Trc means the trace over Hc, nĉ := {nc′ , c′ 6= c} (and similarly for nĉ, mĉ, mĉ) and (Iĉ)nĉnĉ =
δnĉnĉ . Hence it is the symmetric sum of the four quartic melonic interactions of random tensors at rank
four [DGR14] with equal couplings.

This model is globally symmetric under colour permutations and has a power counting almost similar
to the one of ordinary φ4

3 [GJ73; FO76; MS76]. It has eleven divergent graphs (regardless of their colours)
including two (melonic) two-point graphs: the tadpole M1, linearly divergent, and the graph M2 log
divergent (see fig. 3). Note that each of these eleven graphs has several coloured versions. For example,
there are four different coloured graphs corresponding to M1, sixteen to M2, and ten to the unique
melonic divergent vacuum graph of order two (see fig. 4).

2Here formal simply means that Z0 is ill-defined in the limit N →∞.
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c

a. Mc
1

c

b. Mc
2

Figure 3. The two divergent (melonic) two-point graphs. The melonic quartic vertex is
shown with gray edges, and the bold edges correspond to Wick contractions of T with T ,
hence bear an inverse Laplacian.

V1

V2

V3

V4

V5

V7

V6

Figure 4. The seven divergent melonic vacuum connected graphs.

a. N1

c c

b. N2 c. N3

Figure 5. The three divergent non-melonic vacuum connected graphs.
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The main problem in quantum field theory is to compute W(g, J, J) = logZ(g, J, J) which is the
generating function for the connected Schwinger functions

S2k(n1, . . . , nk;n1, . . . , nk) = ∂

∂Jn1

· · · ∂

∂Jnk

∂

∂Jn1

· · · ∂

∂Jnk
W(g, J, J)|J=J=0.

Thus our main concern in this work will be to prove the analyticity (in g) of W in some (non empty)
domain of the complex plane, in the limit N →∞. Of course there is no chance for Z0 to be well defined
in this limit and some (well-known) modifications of the action have to be done, namely it has to be
supplemented with the counterterms of all its divergent subgraphs.

Let G be a tensor Feynman graph and τG be the operator which sets to 0 the external indices of its
Feynman amplitude AG. The counterterm associated to G is given by

δG = −τG
( ∑
F/3G

∏
g∈F
−τg

)
AG

where the sum runs over all the forests of divergent subgraphs of G which do not contain G itself (including
the empty one). The renormalized amplitude of G is

Ar
G = (1− τG)

( ∑
F/3G

∏
g∈F
−τg

)
AG.

The behaviour of the renormalized amplitudes at large external momenta is a remainder of the initial
power counting of the graph. In particular, letM be the set of the two divergent 2-point graphs, namely
M = {M1,M2}. Their renormalized amplitudes are (neither including the coupling constants nor the
symmetry factors, and seen as linear operators on H⊗)

(1.3)



Ar
M1

(n,n) =
∑
c

a1(nc)δn,n,

Ar
M2

(n,n) =
∑
c

(
a2(nc) +

∑
c′ 6=c

ac
′

2 (nc)
)
δn,n,

a1(nc) =
∑
p∈Z4

δ(pc − nc)− δ(pc)
p2 + 1 =

∑
p∈Z3

n2
c

(n2
c + p2 + 1)(p2 + 1) ,

a2(nc) =
∑
p,q∈Z4

δ(pc − nc)− δ(pc)
p2 + 1

δ(qc − nc)− δ(qc)
(q2 + 1)2 ,

ac
′

2 (nc) =
∑
p,q∈Z4

δ(pc′ − qc′)− δ(pc′)
p2 + 1

δ(qc − nc)− δ(qc)
(q2 + 1)2 .

Remark that ac′2 is in fact independent of c′.

From now on we shall use the time-honored constructive practice of noting O(1) any inessential
constant. The large n behaviour of the renormalized graphs M1 and M2 is controlled by the following

Lemma 1.1. — Let n ∈ Z4 and ‖n‖ be
√∑4

i=1 n
2
i . Then

|Ar
M1(n,n)| 6 O(1)‖n‖δn,n, |Ar

M2(n,n)| 6 O(1) log(1 + ‖n‖)δn,n.

Proof. — Elementary from eq. (1.3).

Let V be the set of divergent vacuum graphs of the model (1.1). For any Feynman graph G, let |G|
be its order (a.k.a. number of vertices). Then the regularized generating function Z of the renormalized
Schwinger functions is defined by

ZN (g, J, J) := N
∫
eT ·J+J ·T e

− g2
∑

c
Vc(T,T )+T ·T

(∑
G∈M

(−g)|G|
SG

δG

)
dµC(T, T ).(1.4)
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where SG is the usual symmetry factor of the Feynman graph G, and the normalization N is, as an-
nounced, the exponential of the finite sum of the counterterms of the divergent vacuum connected graphs,
computed with cutoff N :

N := exp
( ∑
G∈V

(−g)|G|

SG
δG

)
.

As a final step of this section, let us rewrite eq. (1.4) a bit differently. We want to absorb the mass
counterterms in a translation of the quartic interaction. So let us define gδm :=

∑
G∈M

(−g)|G|
SG

δG and
δm =:

∑
c δ
c
m. Then the integrand of ZN contains e−g

∑
c
Ic with

Ic = 1
2Vc(T, T )− δcmT ·T = 1

2 Trc(T Iĉ T )2 − δcmT ·T .

By simply noting that for all c, T ·T = Trc(T Iĉ T ), we get

Ic = 1
2 Trc(T Iĉ T − δcm Ic)2 − 1

2 (2N + 1)(δcm)2.

Thus ZN rewrites as

ZN (g, J, J) = N eδt
∫
eT ·J+J ·T e−

g
2

∑
c
V r
c (T,T ) dµC(T, T ),

where V r
c (T, T ) := Trc(T Iĉ T − δcm Ic)2 and

δt := g
2

∑
c

Trc Ic(δcm)2 = g
2 (2N + 1)

∑
c

(δcm)2,

where the last equality uses the particular form of the cutoff [−N,N ].

1.2. Intermediate field representation. — The main message of the Loop Vertex Expansion (a.k.a.
LVE) is that it is easier (and to a certain extent better) to perform constructive renormalization within
the intermediate field setting. Initially designed for matrix models [Riv07] LVE has proven to be very
efficient for tensor models in general [Gur13a].

1.2.1. Integrating out the tensors. — So we now decompose the four interactions V r
c by introducing

four intermediate Hermitian N × N matrix fields σTc acting on Hc (here the superscript T refers to
transposition). To simplify the formulas we put g =: λ2 and write

e−
λ2
2 V

r
c (T,T ) =

∫
eiλTrc

[
(T Iĉ T−δcm Ic)σTc

]
dν(σTc )

where dν(σTc ) = dν(σc) is the GUE law of covariance 1. ZN (g, J, J) is now a Gaussian integral over
(T, T ), hence can be evaluated:

ZN (g, J, J) = N eδt
∫ (∏

c

dν(σc)
)
dµC(T, T ) eT ·J+J ·T eiλ(TσT−

∑
c
δcm Trc σc)

= N eδt
∫ (∏

c

dν(σc)
)
eJC

1/2R(σ)C1/2J−Tr log(I−Σ)−iλ
∑

c
δcm Trc σc(1.5)

where σ := σ1⊗I2⊗ I3⊗ I4 + I1⊗σ2⊗I3⊗ I4 + I1⊗ I2⊗σ3⊗I4 + I1⊗ I2⊗ I3⊗σ4, I is the identity operator
on H⊗, Tr denotes the trace over H⊗,

Σ(σ) := iλC1/2σC1/2 =: iλH

is the σ operator sandwiched3 with appropriate square roots C1/2 of propagators and includes the iλ
factor, hence H is always Hermitian and Σ is anti-Hermitian for g real positive. The symmetrized
resolvent operator is

R(σ) := (I−iλC1/2σC1/2)−1 = (I−Σ)−1.

3Using cyclicity of the trace, it is possible to work either with Cσ operators or with symmetrized “sandwiched”
operators but the latter are more convenient for the future constructive bounds of Section 5.
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In the sequel it will also be convenient to consider the inner product space L(H)× := L(H1)×L(H2)×
L(H3) × L(H4) where each L(Hi) is the space of linear operators on Hi. Let a and b be elements of
L(H)×. Their inner product, denoted a ·b, is defined as

∑
c Trc(a†cbc). For any a ∈ L(H)×, to simplify

notations, we will write its c-component (a)c as ac. Similarly we define σ as the element of L(H)× the
c-component of which is σc. Finally let I be the multiplicative identity element (Icc′ = δcc′ Ic) of the
linear operators L(L(H)×) on L(H)×.

The Gaussian measure
∏
c dν(σc) is now interpreted as the normalized Gaussian measure on L(H)×

of covariance I and denoted dνI(σ).

1.2.2. Renormalized action. — It is well known that each order of the Taylor expansion aroung g = 0
of ZN (see eq. (1.4)) is finite in the limit N → ∞. The counterterms added to the action precisely
compensate the divergences of the Feynman graphs created by the bare action. Proving such a result is
by now very classical but still somewhat combinatorially involved. We exhibit here one of the advantages
of the intermediate field representation. We are indeed going to rewrite eq. (1.5) in such a way that the
compensations between terms and counterterms are more explicit. Such a new form of an action will
be called renormalized σ-action. The idea is to Taylor expand log(I−iλCσ) “carefully”, i.e. order by
order in a way somewhat similar in spirit to the way multiscale analysis teaches us how to renormalize a
quantum field theory.

Order 1. So let us start with the first order of the log:

log(I−iλCσ) =: −iλCσ + log2(I−iλCσ),

where logp(1 − x) =
∑p−1
k=1 x

k/k + log(1 − x). The integrand now includes the exponential of a linear
term in σ, namely iλ(Tr(Cσ) −

∑
c δ
c
m Trc σc). Recall that δcm = −δMc

1
+ λ2δMc

2
(see Appendix A.1 for

the explicit expressions). Let us rewrite (part of) this linear term as follows:

iλ
(

Tr(Cσ) +
∑
c

δMc
1

Trc σc
)

=: iλAr
M1
·σ, (Ar

M1
)c = Trĉ C + δMc

1
Ic .

Note that (Ar
M1

)c is, up to a factor Iĉ, the truncated renormalized amplitude of Mc
1, considered here as

a linear operator on Hc. Therefore

ZN (g, J, J) = N eδt
∫
dνI(σ) eJC

1/2R(σ)C1/2J−Tr log2(I−Σ)+iλ ~ArM1 ·~σ−iλ
3
∑

c
δMc

2
Trc σc .

The next step consists in translating the σ field in order to absorb the iλAr
M1
·~σ term in the preceding

equation through a translation of integration contour for the diagonal part of σ: σ → σ + B1, where
B1 := iλAr

M1
:

ZN (g, J, J) = N eδt
∫
dνI(σ −B1) eJC

1/2R(σ)C1/2J−Tr log2(I−Σ)−iλ3
∑

c
δMc

2
Trc σc+

1
2 ( ~B1)2

.

To simplify the writing of the result of the translation, we introduce the following notations:

Ar
M1

=
∑
c

(Ar
M1

)c ⊗ Iĉ ∈ L(H⊗), B1 := iλAr
M1

,

D1 := iλC1/2B1C
1/2, U1 := Σ +D1,

R1(σ) := (I−U1)−1.

Remark that as (Ar
M1)c is diagonal (i.e. proportional to Ic), the operator B1 is diagonal too:

(1.6) (B1)mn =:
∑
c

b1(mc)δmn.

The partition function thus rewrites as

ZN (g, J, J) = N1

∫
dνI(σ) eJC

1/2R1(σ)C1/2J−Tr log2(I−U1)−iλ3
∑

c
δMc

2
Trc σc

N1 := N eδte
1
2 ( ~B1)2−iλ3

∑
c
δMc

2
Trc( ~B1)c ,
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provided the contour translation does not cross any singularity of the integrand (which is proven in
Lemma 1.5).

Order 2. We go on by pushing the Taylor expansion of the log to the next order:

log2(I−U1) = − 1
2U

2
1 + log3(I−U1).

Using Tr[D1Σ] − iλ3∑
c δMc

2
Trc σc = −iλ3Ar

M2
·σ, and adding and subtracting a term Tr[D1Σ2] to

prepare for the cancellation of the vacuum non-melonic graph in fig. 5c, we obtain

(1.7) ZN (g, J, J) = N1 e
1
2 TrD2

1

∫
dνI(σ) eJC

1/2R1(σ)C1/2J−Tr log3(I−U1)

× e 1
2 Tr[Σ2(I+2D1)]−Tr[D1Σ2]−iλ3 ~ArM2 ·~σ

where, as for M1, (Ar
M2

)c is the truncated renormalized amplitude of Mc
2. We now define the operator

Q ∈ L(L(H)×) as the real symmetric operator such that

λ2σ ·Qσ = −Tr[Σ2(I+2D1)].

Using eq. (1.6),

(1.8) (Q)cc′;mcnc,pc′qc′ := δcc′δmcpcδncqc
∑
mĉ

1
(m2

c +m2
ĉ + 1)(n2

c +m2
ĉ + 1)

×
(
1 + 2iλ

∑
c”

b1(mc”)
m2
c +m2

ĉ + 1
)

+ (1− δcc′)δmcncδpc′qc′
∑

r∈[−N,N ]2

1
(m2

c + p2
c′ + r2 + 1)2

×
(

1 + 2iλ
m2
c + p2

c′ + r2 + 1
(
b1(mc) + b1(pc′) +

∑
c” 6=c,c′

b1(rc”)
))
.

It is also convenient to give a special name, Q0, to the leading part of Q. More precisely Q0 is a diagonal
operator, both in colour and in index space, defined by:

(Q0)cc′;mcnc,pc′qc′ = δcc′
∑

mĉ,pĉ

C qcnc
pĉmĉ

Cmcpc
mĉpĉ

= δcc′δmcpcδncqc
∑
mĉ

1
(m2

c +m2
ĉ + 1)(n2

c +m2
ĉ + 1) ,(1.9)

so that minus half of its trace, which is linearly divergent, is precisely canceled by the δN1 counterterm

−λ
2

2 TrQ0 = −δN1 = −λ
2

2

∑
mc,nc,mĉ

1
(m2

c +m2
ĉ + 1)(n2

c +m2
ĉ + 1) .

We also define Q1 := Q − Q0. Remark that in TrQ1, only the diagonal part of Q contributes, hence
TrQ1 is exactly canceled by the counterterm for the graph N3: −λ

2

2 TrQ1 = −δN3 . Consequently

(1.10) − λ2

2 σ ·Qσ + δN1 + δN3 = −λ
2

2 (σ ·Qσ − TrQ) = −λ
2

2 :σ ·Qσ:

is nothing but a Wick-ordered quadratic interaction with respect to the Gaussian measure dνI(σ). There-
fore we can rewrite eq. (1.7) as

ZN (g, J, J) = N2

∫
dνI(σ) eJC

1/2R1(σ)C1/2J−Tr log3(I−U1)−λ2
2 :~σ ·Q~σ:−Tr[D1Σ2]−iλ3 ~ArM2 ·~σ

with N2 := N1e
1
2 TrD2

1−δN1−δN3 .
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The counterterm δN2 for N2 is a bit more difficult to express in this language since it corresponds
to the Wick ordering of λ4

4 σ ·Q
2
0σ. It is in fact a square: δN2 = −λ

4

4 TrQ2
0. We first represent it as an

integral over an auxiliary tensor τ which is also a collection of four random matrices τ cmn:

eδN2 =
∫
dνI(τ) ei

λ2
√

2
Q0 ·~τ

where the scalar product is taken over both colour and m,n indices i.e.

Q0 ·τ :=
∑
c,m,n

(Q0)cc;mn,mnτ cmn.

Then

ZN (g, J, J) = N3

∫
dνI(σ, τ) eJC

1/2R1(σ)C1/2J−Tr log3(I−U1)

× e−
λ2
2 :~σ ·Q~σ:+i λ2

√
2
Q0 ·~τ−Tr[D1Σ2]−iλ3 ~ArM2 ·~σ

with N3 := N2 e
−δN2 and dνI(σ, τ) := dνI(σ) ⊗ dνI(τ). The next step of the rewriting of the σ-action

consists in one more translation of the σ field: B2 := −iλ3Ar
M2 ,

ZN (g, J, J) = N3 e
1
2
~B2 · ~B2

∫
dνI(σ −B2, τ) eJC

1/2R1(σ)C1/2J−Tr log3(I−U1)

× e−
λ2
2 :~σ ·Q~σ:+i λ2

√
2
Q0 ·~τ−Tr[D1Σ2]

.

Finally we introduce the following notations:

(1.11)

Ar
M2

:=
∑
c

(Ar
M2

)c ⊗ Iĉ, B2 := −iλ3Ar
M2

,

D2 := iλC1/2B2C
1/2, U := Σ +D1 +D2 =: Σ +D,

R(σ) := (I−U)−1, Ṽ >3(σ) := Tr log3(I−U).

Remark indeed that −Tr log3(I−U) expands as
∑
q>3 Tr U

q

q , which can be interpreted as a sum over
cycles (also called loop vertices) of length at least three with σ or D insertions. We get

ZN (g, J, J) = N4

∫
dνI(σ, τ) eJC

1/2R(σ)C1/2J−Ṽ >3(σ)−V 62(σ,τ)−Tr[D1Σ2]

V 62(σ, τ) := λ2

2 :σ ·Qσ:− i λ
2
√

2Q0 ·τ − Tr[D2Σ]

N4 := N3 e
1
2
~B2 · ~B2+ 1

2 Tr[D2
2 ]

provided the contour translation does not cross any singularity of the integrand, see again Lemma 1.5.

Returning to figs. 3 to 5, we see that Feynman graphs made out solely of loop vertices of length
at least three are all convergent at the perturbative level, except the last three of the seven divergent
vacuum melonic graphs in fig. 4, which correpond respectively to a loop vertex of length three with three
M1 insertions, a loop vertex of length three with two M1 insertions and one M2 insertion, and a loop
vertex of length 4 with fourM1 insertions. The three missing terms corresponding to the three remaining
divergent vacuum graphs are E := Tr( 1

3D
3
1 + D2

1D2 + 1
4D

4
1). Once again, we add and substract those

missing terms from the action. Thus, defining V >3(σ) := Ṽ >3(σ) + Tr[D1Σ2] + E , we get

ZN (g, J, J) = N5

∫
dνI(σ, τ) eJC

1/2R(σ)C1/2J−V >3(σ)−V 62(σ,τ),

N5 := N4 e
E .

Lemma 1.2. — Z(0)(g) := logN5 = 0.
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The proof is given in Appendix A.3.

The goal is therefore from now on to build the N →∞ limit of

WN (g, J, J) = logZN (g, J, J)

and to prove that it is the Borel sum of its (well-defined and ultraviolet finite) perturbative expansion in
g = λ2. In fact, like in [DR16], we shall only prove the convergence theorem for the pressure

(1.12) WN (g) :=WN (g, J, J)|J=J=0 = logZN (g), ZN (g) :=
∫
dνI(σ, τ) e−V ,

where the intermediate field interaction V is

V := V >3(σ) + V 62(σ, τ),

since adding the external sources leads to inessential technicalities that may obscure the essential con-
structive argument, namely the perturbative and non perturbative bounds of Sections 5 and 6.

1.3. Justifying contour translations. — In this subsection we prove that the successive translations
performed in the previous subsection did not cross singularities of the integrand. This will lead us to
introduce some basic uniform bounds on D and R when g varies in the small open cardioid domain Cardρ
defined by |g| < ρ cos2( 1

2 arg g) (see fig. 6).

Lemma 1.1 easily implies

Lemma 1.3 (D,D1, D2 estimates). — D, D1 and D2 are compact operators on H⊗, diag-
onal in the momentum basis, with

sup(|(D)mn|, |(D1)mn|) 6
O(1)|g|
1 + ‖n‖δmn, |(D2)mn| 6

O(1)|g|2[1 + log(1 + ‖n‖)]
1 + ‖n‖2 δmn.

Lemma 1.4 (Resolvent bound). — For g in the small open cardioid domain Cardρ, the
translated resolvent R = (I−U)−1 is well defined and uniformly bounded:

‖R‖ 6 2 cos−1(1
2 arg g).

Proof. — In the cardioid domain we have |arg g| < π. For any self-adjoint operator L, by the spectral
mapping theorem [RS80, Theorem VII.1], we have

(1.13) ‖(I−i√gL)−1‖ 6 cos−1( 1
2 arg g).

Applying to L = H, remembering that λ = √g, the lemma follows from the power series expansion

‖(I−U)−1‖ = ‖(I−iλH −D)−1‖ 6 ‖J−1‖
∞∑
q=0
‖DJ−1‖q,

with J := I−iλH. Indeed by eq. (1.13), ‖J−1‖ 6 cos−1( 1
2 arg g), and, by Lemma 1.3,

‖DJ−1‖ 6 O(1)|g| cos−1( 1
2 arg g) 6 O(1)ρ.

Taking ρ small enough, we can ensure ‖DJ−1‖ < 1/2, hence
∑∞
q=0‖DJ−1‖q < 2. �

Lemma 1.5 (Contour translation). — For g in the cardioid domain Cardρ, the contour
translation from (σc)ncnc to (σc)ncnc+B1 does not cross any singularity of Tr log2(I−iλC1/2σC1/2),
and the translation (σc)ncnc +B2 does not cross any singularity of Tr log3(I−iλC1/2σC1/2 +D1).



CONSTRUCTIVE TFT: THE T 4
4 MODEL 15

Proof. — To prove that Tr log2(I−iλC1/2σC1/2) is analytic in the band corresponding to (σc)ncnc +B1
for the (σc)ncnc variables, one can write

log2(1− x) = x−
∫ 1

0

x

1− txdt = −
∫ 1

0

tx2

1− txdt

and then use the previous Lemma to prove that, for g in the small open cardioid domain Cardρ, the
resolvent R(t) := (I−itλC1/2σC1/2)−1, is also well-defined for any t ∈ [0, 1] by a power series uniformly
convergent in the band considered.

For the second translation, we use a similar argument, writing
�

log3(1− x) = x+ x2

2 −
∫ 1

0

x

1− txdt =
∫ 1

0

x2(1− 2t− tx))
2(1− tx) dt.

1.4. Multiscale analysis. — The cutoff [−N,N ]4 of the previous section is not well adapted to the
rotation invariant n2 term in the propagator, nor very convenient for multi-slice analysis as in [GR14].
From now on we introduce other cutoffs, which are still sharp in the “momentum space” `2(Z)4, hence
equivalent4 to the previous ones, but do not longer factorize over colours5.

We fix an integer M > 1 as ratio of a geometric progression M j , where j ∈ N∗ is the slice index and
define the ultraviolet cutoff as a maximal slice index jmax so that the previous N roughly corresponds to
M jmax . More precisely, our notation convention is that 1x is the characteristic function of the event x,
and we define the following diagonal operators on H⊗:

(161)mn = (11)mn := 11+‖n‖26M2δmn,

(16j)mn := 11+‖n‖26M2jδmn for j > 2,
1j := 16j − 16j−1 for j > 2.

(Beware we choose the convention of lower indices for slices, as in [GR14], not upper indices as in [Riv91].)
We also write C1/2

6j for 16jC
1/2 and C

1/2
j for 1jC1/2. Since our cutoffs are sharp (projectors) we still

have the natural relations

(C1/2
6j )2 = C6j , (C1/2

j )2 = Cj .

We start with the (σ, τ) functional integral (1.12) which we have reached in the previous section, and
organize it according to the new cutoffs, so that the previous limit N → ∞ becomes a limit jmax → ∞.
The interaction with cutoff j is obtained by cutting the propagators in the loop vertices. Remark that
we do not need to introduce cutoffs on the propagators hidden in Ar

M1
or Ar

M2
, as these are convergent

integrals anyway. It means we define the cutoff version of the quantities introduced in the previous
subsection as

V6j(σ, τ) := V >3
6j (σ) + V 62

6j (σ, τ),(1.14a)

V >3
6j (σ) := Tr log3(I−U6j) + Tr[D1,6jΣ2

6j ] + E6j ,(1.14b)
E6j := Tr(1

3D
3
1,6j +D2

1,6jD2,6j + 1
4D

4
1,6j),(1.14c)

V 62
6j := λ2

2 :σ ·Q6jσ:− i λ
2
√

2Q0,6j ·τ − Tr[D2,6jΣ6j ],(1.14d)

Q6j = Q0,6j +Q1,6j ,(1.14e)

R6j := 1
I−U6j

, U6j := Σ6j +D6j , Σ6j := iλC
1/2
6j σC

1/2
6j ,(1.14f)

D1,6j := iλC
1/2
6j B1C

1/2
6j , D2,6j := iλC

1/2
6j B2C

1/2
6j , D6j := D1,6j +D2,6j .(1.14g)

The functional integral (1.12) with cutoff jmax is then defined as

W6jmax(g) := logZ6jmax(g), Z6jmax(g) :=
∫
dνI(σ, τ) e−V6jmax .

4The sup and square norm in our finite dimension four are equivalent.
5We could also use parametric cutoffs as in [Riv91; BGR12a], but sharp cutoffs are simpler.
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Defining V60 := 0 and, for all 1 6 j 6 jmax, Vj := V6j − V6j−1, we note that V6jmax =
∑jmax
j=1 Vj so that

(1.15) Z6jmax(g) =
∫
dνI(σ, τ)

jmax∏
j=1

e−Vj .

To define the specific part of the interaction which should be attributed to scale j we introduce

16j(tj) = 16j−1 + tj1j

where tj ∈ [0, 1] is an interpolation parameter for the j-th scale. Remark that

12
6j(tj) = 16j−1 + t2j1j .

The interpolated interaction and resolvents are defined as V6j(tj), Σ6j(tj), D6j(tj), R6j(tj) and so on
by eqs. (1.14a) to (1.14g) in which we substitute 16j(tj) for 16j . When the context is clear, we write
simply V6j for V6j(tj), U6j for U6j(tj), U ′j for d

dtj
U6j and so on. In these notations we have

(1.16)



Vj = V >3
j + V 62

j ,

V >3
j = Ej +

∫ 1

0
dtj Tr

[
U ′j(I+U6j −R6j) +D′1,jΣ2 +D1,6jΣ′jΣ +D1,6jΣΣ′j

]
,

V 62
j = λ2

2 :σ ·(Q0,j +Q1,j)σ:− i λ
2
√

2Q0,j ·τ − 3
∫ 1

0
dtj Tr

[
D′2,jΣ6j

]
,

Ej = E6j − E6j−1, Q1,j = Q1,6j −Q1,6j−1, Q0,j = Q0,6j −Q0,6j−1.

Finally, as in [GR14], we define

Wj(σ, τ) := e−Vj − 1

and encode the factorization of the interaction in (1.15) through Grassmann numbers as

Z6jmax(g) =
∫
dνI(σ, τ)

(jmax∏
j=1

dµ(χj , χj)
)
e
−
∑jmax

j=1
χjWj(σ,τ)χj ,

where dµ(χ, χ) = dχdχ e−χχ is the standard normalized Grassmann Gaussian measure with covariance
1.

2. The Multiscale Loop Vertex Expansion

We perform now the two-level jungle expansion of [AR95; GR14; DR16]. This section is almost
identical to those of [GR14; DR16], as it was precisely the goal of [GR14] to create a combinatorial
constructive “black box” to automatically compute and control the logarithm of a functional integral of
the type of ZN . Nevertheless we reproduce the section here, in abridged form, since the MLVE technique
is still relatively recent and since there is a slight change compared to the standard version. Indeed we
have now two sets of Bosonic fields, the main σ field and the auxiliary τ field, and the τ field requires
slightly different interpolation parameters, namely w2 instead of w parameters.

Considering the set of scales S := J1, jmaxK, we denote IS the |S| by |S| identity matrix. The product
Gaussian measure on the χi’s and χi’s can then be recast into the following form:

jmax∏
j=1

dµ(χj , χj) = dµIS (χ,χ), χ := (χi)16i6jmax , χ := (χi)16i6jmax

so that the partition function rewrites as

Z6jmax(g) =
∫
dνS e

−W , dνS := dνI(σ, τ) dµIS (χ,χ), W =
jmax∑
j=1

χjWj(σ, τ)χj .
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The first step expands to infinity the exponential of the interaction:

Z6jmax(g) =
∞∑
n=0

1
n!

∫
dνS (−W )n.

The second step introduces Bosonic replicas for all the nodes6 in [n] := J1, nK:

Z6jmax(g) =
∞∑
n=0

1
n!

∫
dνS,[n]

n∏
a=1

(−Wa),

so that each node Wa =
∑jmax
j=0 χ

a
jWj(σa, τa)χaj has now its own set of Bosonic matrix fields σa =(

(σ1)a, (σ2)a, (σ3)a, (σ4)a
)

and τa =
(
(τ1)a, (τ2)a, (τ3)a, (τ4)a

)
, and its own Fermionic replicas (χaj , χaj ).

The sequence of Bosonic replicas (σa; τa)a∈[n] will be denoted by (σ; τ) and belongs to the product space
for the σ and τ fields (which is also a direct sum)

Ṽ[n] := [L(H)× ⊗ Rn]× [L(H)× ⊗ Rn] = [L(H)× ⊕ L(H)×]⊗ Rn.

The replicated normalised measure is completely degenerate between replicas (each of the four colours
remaining independent of the others):

dνS,[n] := dνI⊗1[n](σ, τ) dµIS ⊗1[n](χ,χ)

where 1 means the “full” matrix with all entries equal to 1.

The obstacle to factorize the functional integral Z over nodes and to compute logZ lies in the degenerate
blocks 1[n] of both the Bosonic and Fermionic covariances. In order to remove this obstacle we simply
apply the 2-level jungle Taylor formula of [AR95] with priority to Bosonic links over Fermionic links.
However beware that since the τ field counts for two σ fields, we have to introduce the parameters w
differently in σ and τ namely we interpolate off-diagonal covariances between vertices a and b 6= a with
ordinary parameters w for the σ covariance but with parameters w2 for the τ covariance. Indeed with
this precise prescription a sigma tree link (a, b) of type σ ·Q0,jaQ0,jbσ term will be exactly Wick-ordered
with respect to the interpolated dν(σ) measure by the associated tau link ` = (a, b), see Section 3. In
other words the N2 graph when it occurs as such a link, is exactly renormalized.

It means that a first Taylor forest formula is applied to 1[n] in dνI⊗1[n](σ, τ), with weakening pa-
rameters w for the σ covariance and parameters w2 for the σ covariance. The forest formula simply
interpolates iteratively off-diagonal covariances between 0 and 1. The prescription described is legiti-
mate since when w monotonically parametrizes the [0, 1] interval, w2 also parametrizes the [0, 1] interval
monotonically; hence a Taylor formula can be written just as well as F (1) = F (0) +

∫ 1
0 F
′(x)dx or as

F (1) = F (0) +
∫ 1

0 2xF ′(x2)dx.
It is then followed by a second Taylor forest formula of 1[n] in dµIS ⊗1[n](χ,χ), decoupling the con-

nected components B of the first forest.
The definition of m-level jungle formulas and their equivalence to m successive forests formulas is

given in [AR95]; the application (with m = 2) to the current context is described in detail in [GR14;
DR16], so we shall not repeat it here.

The 2-jungle Taylor formula rewrites our partition function as:

(2.1) Z6jmax(g) =
∞∑
n=0

1
n!
∑
J

jmax∑
j1=1
· · ·

jmax∑
jn=1

∫
dwJ

∫
dνJ ∂J

[∏
B

∏
a∈B

(
−χBjaWja(σa, τa)χBja

)]
,

where

• the sum over J runs over all 2-level jungles, hence over all ordered pairs J = (FB ,FF ) of two (each
possibly empty) disjoint forests on [n], such that FB is a (Bosonic) forest, FF is a (Fermonic) forest

6We use the new word “node” rather than “vertex” for the W factors, in order not to confuse them with
the ordinary vertices of the initial perturbative expansion, nor with the loop vertices of the intermediate field
expansion, which are not equipped with Fermonic fields.
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and J = FB ∪ FF is still a forest on [n]. The forests FB and FF are the Bosonic and Fermionic
components of J . Fermionic edges `F ∈ E(FF ) carry a scale data j.

•
∫
dwJ means integration from 0 to 1 over parameters w`, one for each edge ` ∈ E(J ), namely∫
dwJ =

∏
`∈E(J )

∫ 1
0 dw`. There is no integration for the empty forest since by convention an empty

product is 1. A generic integration point wJ is therefore made of m(J ) parameters w` ∈ [0, 1],
one for each ` ∈ E(J ).

• In any J = (FB ,FF ), each block B corresponds to a tree TB of FB .

∂J := ∂F∂B , ∂B :=
∏
B∈FB

∂TB ,(2.2a)

∂F :=
∏

`F∈E(FF ),
`F=(d,e)

δjdje

( ∂

∂χ
B(d)
jd

∂

∂χ
B(e)
je

+ ∂

∂χ
B(e)
je

∂

∂χ
B(d)
jd

)
,(2.2b)

∂TB :=
∏

`B∈E(TB),
`B=(a,b)

[ 4∑
c=1

∑
m,n

( ∂

∂(σcmn)a
∂

∂(σcmn)b + 2w`
∂

∂(τ cmn)a
∂

∂(τ cmn)b
)]

(2.2c)

where B(d) denotes the Bosonic block to which the node d belongs. Remark the factor 2w` in
(2.2c) corresponding to the use of w2 parameters for τ .

• The measure dνJ has covariance I⊗X(wB) on Bosonic variables σ, covariance I⊗X◦2(wB) on
Bosonic variables τ and IS ⊗Y (wF ) on Fermionic variables, hence∫

dνJ F =
[
e

1
2

∑n

a,b=1

∑4
c=1

∑
m,n

(
Xab(wB) ∂

∂(σcmn)a
∂

∂(σcmn)b
+X◦2

ab (wB) ∂
∂(τcmn)a

∂

∂(τcmn)b

)
e

∑
B,B′

YBB′ (wF )
∑

a∈B,b∈B′
δjajb

∂

∂χB
ja

∂

∂χB′
jb F

]
σ=τ=χ=χ=0

where X◦2 means the Hadamard square of the matrix, hence the matrix whose elements are the
squares of the matrix elements of X, not the square in the ordinary matrix product sense.

• Xab(wB) is the infimum of the w`B parameters for all the Bosonic edges `B in the unique path
PFBa→b from node a to node b in FB . The infimum is set to zero if such a path does not exist and
to 1 if a = b.

• YBB′(wF ) is the infimum of the w`F parameters for all the Fermionic edges `F in any of the paths
PFB∪FFa→b from some node a ∈ B to some node b ∈ B′. The infimum is set to 0 if there are no such
paths, and to 1 if B = B′ (i.e. if such paths exist but do not contain any Fermionic edges).

Remember that a main property of the forest formula is that the symmetric n by n matrices Xab(wB) or
X◦2ab (wB) are positive for any value of wJ , hence the Gaussian measure dνJ is well-defined. The matrix
YBB′(wF ) is also positive.

Since the slice assignments, the fields, the measure and the integrand are now factorized over the connected
components of J , the logarithm of Z is easily computed as exactly the same sum but restricted to 2-level
spanning trees:

(2.3) W6jmax(g) = logZ6jmax(g) =
∞∑
n=1

1
n!

∑
J tree

jmax∑
j1=1
· · ·

jmax∑
jn=1∫
dwJ

∫
dνJ ∂J

[∏
B

∏
a∈B

(
−χBjaWja(σa, τa)χBja

)]
where the sum is the same but conditioned on J = FB ∪ FF being a spanning tree on [n].

Our main result is similar to the one of [DR16] in the more convergent three dimensional case:
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Theorem 2.1. — Fix ρ > 0 small enough. The series (2.3) is absolutely and uniformly in
jmax convergent for g in the small open cardioid domain Cardρ (defined by |arg g| < π and
|g| < ρ cos2(1

2 arg g), see fig. 6). Its ultraviolet limit W∞(g) := limjmax→∞ logZ6jmax(g) is there-
fore well-defined and analytic in that cardioid domain; furthermore it is the Borel sum of its
perturbative series in powers of g.

Figure 6. A Cardioid Domain

The rest of the paper is devoted to the proof of this Theorem.

3. Block Bosonic integrals

Since the Bosonic functional integral factorizes over the Bosonic blocks, it is sufficient to compute
and bound the Bosonic functional integrals over a fixed block B.

3.1. The single node case. — Let us consider first the simple case in which the Bosonic block B is
reduced to a single node a. We have then a relatively simple contribution∫

dνI(σa, τa)Wja =
∫
dνI
(
e−Vja − 1

)
=
∫ 1

0
dt

∫
dνI e

−tVja (−Vja).

We consider in the term −Vja down from the exponential two particular pieces of V 62
ja

, namely the
terms −λ

2

2 :σ ·Q0,jaσ: and i λ
2
√

2Q0,ja ·τ . In the first one, we integrate by parts one of its two σ fields,
obtaining tλ

4

2 σ ·Q
2
0,jaσ plus (perturbatively convergent) terms

PCja(σ) = tλ
2

2 σ ·Q0,ja
∂

∂σ

(
λ2

2 σ ·Q1,jaσ + 3
∫ 1

0
dtj Tr

[
D′2,jΣ6j

]
+ V >3

ja
(σ)
)
.

We also integrate by parts the τ term in V 62
ja

and remark that it gives −tλ
4

2 Tr[Q2
0,ja ], hence exactly

Wick-orders the previous σ ·Q2
0,jaσ term. Finally we integrate out the τ field, which gives back the

t2δN2,a counterterm. Hence altoghether we have proven:

Lemma 3.1. — The result of this computation is∫
dνI(σ, τ)Wja(σ, τ) = −

∫ 1

0
dt et

2δN2,a

∫
dνI(σ) e−tVja (σ)::Vja(σ)::

where

::Vja(σ):: := V >3
ja

(σ)− tλ4

2 :σ ·Q2
0,jaσ:− PCja(σ) + λ2

2 :σ ·Q1,jσ:− 3
∫ 1

0
dtj Tr

[
D′2,jΣ6j

]
.

This Lemma will be sufficient to bound the single node contribution by O(1)M−O(1)ja , see next sections.
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In order to treat the single node case and the cases of Bosonic blocks with more than one node in a
unified manner, it is convenient to regard ::Vja(σ):: as a sum of (Wick-ordered) skeleton graph amplitudes,
see Definition 2. These Feynman graphs are one-vertex maps except those which correspond to the terms
in PCja(σ) which are trees with only one edge. Therefore we will write

::Vja(σ):: =:
∑

G
:AG(σ):.

3.2. Blocks with more than one node. — In a Bosonic block with two or more nodes, the Bosonic
forest FB is a non-empty Bosonic tree TB. Consider a fixed such block B, a fixed tree TB and the fixed
set of frequencies {ja}, a ∈ B, all distinct. We shall write simply dνB for dνTB(σ, τ). The corresponding
covariance of the Gaussian measure dνB is also a symmetric matrix on the vector space ṼB, whose vec-
tors, in addition to the colour and double momentum components and their type σ or τ have also a node
index a ∈ B; hence ṼB = R|B| ⊗

[
L(H)× ⊕ L(H)×

]
. It can be written as XB := I⊗[X(wB) +X◦2(wB)]

where X acts on the σ part hence on the first factor in
[
L(H)× ⊕ L(H)×

]
and X◦2 on the τ part hence

on the second factor in
[
L(H)× ⊕ L(H)×

]
.

3.2.1. From trees to forests. — We want to compute

IB :=
∫
dνB ∂TB

∏
a∈B

(e−Vja − 1)(σa, τa).

When B has more than one node, since TB is a tree, each node a ∈ B is touched by at least one derivative
and we can replace Wja = e−Vja − 1 by e−Vja (the derivative of 1 giving 0). The partial derivative ∂TB
can be rewritten as follows:

∂TB =
( ∏
`∈E(TB),
`=(a,b)

4∑
c`=1

∑
m`,n`

) ∏
a∈B

∏
s∈SaB

(∂σs + ∂τs)

where SaB is the set of edges of TB which ends at a, and

∂σs := ∂

∂(σcsmsns)a
, ∂τs := ∂

∂(τ csmsns)a
.

We thus have to compute

IB =
∫
dνB

∏
`∈E(TB),
`=(a,b)

4∑
c`=1

∑
m`,n`

FB, FB :=
∏
a∈B

[ ∏
s∈SaB

(∂σs + ∂τs)e−Vja
]
.

We can evaluate the derivatives in the preceding equation through the Faà di Bruno formula:∏
s∈S

[∂σs + ∂τs ]f
(
g(σ, τ)

)
=
∑
π

f |π|
(
g(σ, τ)

)∏
b∈π

((∏
s∈b

[∂σs + ∂τs ]
)
g(σ, τ)

)
,

where π runs over the partitions of the set S, b runs through the blocks of the partition π, and |π| denotes
the number of blocks of π. In our case f , the exponential function, is its own derivative, hence the formula
simplifies to

(3.1) FB =
∏
a∈B

e−Vja
(∑
πa

∏
ba∈πa

[[∏
s∈ba

(∂σs + ∂τs)
]
(−Vja)

])
,

where πa runs over partitions of SaB into blocks ba. The Bosonic integral in a block B can be written
therefore in a simplified manner as:

(3.2) IB =
∑

G

∫
dνB

(∏
a∈B

e−Vja (~σa,~τa)
)
AG(σ),
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where we gather the result of the derivatives as a sum over graphs G of corresponding amplitudes AG(σ).
Indeed, the dependence of Vj being linear in τ , the corresponding τ derivatives are constant, hence am-
plitudes AG(σ) do not depend on τ . The graphs G will be called skeleton graphs, see Definition 2.
They are still forests, with loop vertices7, one for each ba ∈ πa, a ∈ B. We now detail the different types
of those four-stranded loop vertices.

To this aim, let us actually compute ∂ba :=
[∏

s∈ba(∂σs + ∂τs)
]
(−Vja), part of eq. (3.1). First of all,

remark that as Vj is linear in τ and ∂τsVj is independent of σ, if |ba| > 2, ∂ba =
[∏

s∈ba ∂σs
]
(−Vja).

Then, we rewrite eq. (1.16) using I+U −R = −U2R:

(3.3) Vj = Ej + λ2

2 :σ ·Qjσ:− i λ
2
√

2Q0,j ·τ +
∫ 1

0
dtj Tr

[
−U ′jU2

6jR6j

+D′1,jΣ2
6j +D1,6j(Σ′jΣ6j + Σ6jΣ′j)− 3D′2,jΣ6j

]
.

Remembering that ∂σs and ∂τs stand for derivatives with well defined colour and matrix elements, we
introduce the notations

∆s6j := ∂U6j

∂σcsmsns
= ∂Σ6j

∂σcsmsns
= iλC

1/2
6j δ

sC
1/2
6j ,

∆sj :=
∂U ′j

∂σcsmsns
=

∂Σ′j
∂σcsmsns

= iλ(C1/2
j δsC

1/2
6j + C

1/2
6j δ

sC
1/2
j )

where δs, defined as (δs)mn := ∂σ
∂σcsmsns

= ∂τ
∂τcsmsns

, equals emsns ⊗ Iĉs where emsns has zero entries every-
where except at position msns where it has entry one.

As noticed above, only one τ derivative needs to be applied to −Vj :

∂τs(−Vj) = i λ
2
√

2 Trcs [(Q0,j)cscsemsns ].

We now concentrate on the σ derivatives. Since ∂σsR6j = R6j∆s6jR6j , we get

(3.4) ∂σs(−Vj) = −λ2 Trcs [emsns(Qjσ)cs ]

+
∫ 1

0
dtj Tr

[
∆s
j
U2
6jR6j + U ′j∆

s
6jU6jR6j + U ′jU6j∆s6jR6j + U ′jU

2
6jR6j∆s6jR6j

−D′1,j(∆
s
6jΣ6j + Σ6j∆s6j)−D1,6j(∆sjΣ6j + Σ′j∆

s
6j + ∆s6jΣ

′
j + Σ6j∆sj) + 3D′2,j∆

s
6j

]
.

In this formula notice the first term which is the σ derivative of :σ ·Qjσ:, the sum of the next four terms,
depending on whether ∂σs acts on R or on one of the three explicit U -like numerators, and also the seven
simpler terms with explicit D-like factors.
Notation

From now on, to shorten formulas and since j is fixed, we shall omit most of the time the 6 j
subscripts (but not the all-important j subscript).

The explicit formula for k = 2 is also straightforward but longer. We give it here for completeness:

(3.5) ∂σs2
∂σs1

(−Vj) = −λ2 Tr[ems1ns1
(Qj)cs1cs2

ems2ns2
]

+
∫ 1

0
dtj Tr

[
∆s1
j ∆s2UR+ ∆s1

j U∆s2R+ ∆s1
j U

2R∆s2R

+ ∆s2
j ∆s1UR+ U ′j∆s1∆s2R+ U ′j∆s1UR∆s2R

+ ∆s2
j U∆s1R+ U ′j∆s2∆s1R+ U ′jU∆s1R∆s2R

+ ∆s2
j U

2R∆s1R+ U ′j∆s2UR∆s1R+ U ′jU∆s2R∆s1R+ U ′jU
2R∆s2R∆s1R+ U ′jU

2R∆s1R∆s2R
−D′1,j(∆s1∆s2 + ∆s2∆s1)−D1(∆s1

j ∆s2 + ∆s2
j ∆s1 + ∆s1∆s2

j + ∆s2∆s1
j )
]
.

7We recall that loop vertices are the traces obtained by σ derivatives acting on the intermediate field action
[Riv07].
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The formula for k > 3 is similar but has no longer the D terms: as they are quadratic in σ, they “die
out” for k > 3 derivatives. Derivatives can only hit p times the U terms and k− p times the resolvent R,
for 0 6 p 6 3. All in all, the application of k > 3 σ-derivatives on −Vj gives:

(3.6)
( k∏
i=1

∂σi

)
(−Vj) =

∫ 1

0
dtj Tr

[ ∑
τ∈S[k]

U ′jU
2R
( k∏
i=1

∆sτ(i)R
)

+
k∑

i0=1

∑
τ∈S[k]\{i0}

(∆si0j U2 + U ′j∆si0U + U ′jU∆si0 )R
( k∏
i=1
i 6=i0

∆sτ(i)R
)

+
k∑

i0,i1=1
i0<i1

∑
τ∈S[k]\{i0,i1}

(∆si0j ∆si1U + ∆si0j U∆si1 + ∆si1j ∆si0U + U ′j∆si0 ∆si1

+ ∆si1j U∆si0 + U ′j∆si1 ∆si0 )R
( k∏
i=1

i 6=i0,i1

∆sτ(i)R
)

+
k∑

i0,i1,i2=1
i0<i1<i2

∑
κ∈S{i0,i1,i2}

∑
τ∈S[k]\{i0,i1,i2}

∆sκ(i0)
j ∆sκ(i1)∆sκ(i2)R

( k∏
i=1

i 6=i0,i1,i2

∆sτ(i)R
)]

where for any finite set E, SE denotes the permutations on E. Remark that the special Cj propagator
is never lost in such formulas. They express the derivatives of Vj as a sum over traces of four-stranded
cycles (also called loop vertices) corresponding to the trace of an alternating product of propagators (C6j

or, only once, Cj) and other operators on H⊗ nicknamed insertions. The number and nature of these
insertions depend on the number of derivatives applied to Vj . For k < 3 derivatives, loop vertices contain
between 4 and 8 insertions of type δ, σ + B,R, D1, D

′
1 or D′2. For k > 3, loop vertices of length `, i.e.

having exactly ` insertions, with 2k − 2 6 ` 6 2k + 4, bear insertions of type δ, σ + B or R. Each loop
vertex has exactly one marked propagator Cj which breaks the cyclic symmetry. All the other ones are
C6j . The corresponding sum over all possible choices of insertions and their number is constrained by
the condition that there must be exactly k δ insertions in the cycle. A particular example is shown in
fig. 7.

Each effective vertex of G now bears exactly |ba| δ derivative insertions, which are paired together
between vertices via the coloured edges of the tree TB, plus some additional (see above) remaining
insertions. Note that to each initial Wja may correspond several loop vertices Vba , depending on the
partitioning of SaB in (3.1). Therefore although at fixed |B| the number of edges m(G) for any G in the
sum (3.2) is exactly |B| − 1, the number of connected components c(G) is not fixed but simply bounded
(above) by |B| − 1 (each edge can belong to a single connected component). Similarly the number
n(G) = c(G) + e(G) of effective loop vertices of G is not fixed, and simply obeys the bounds

(3.7) |B| 6 n(G) 6 2(|B| − 1).

From now on we shall simply call “vertices” the loop vertices of G.
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j

C1/2

C1/2 C1/2

C1/2

or σ + Bδ or σ + Bδ 

or σ + Bδ 

or σ + Bδ 

CC

RR

Figure 7. An example of a four-stranded vertex of length four with its typical cycle of
insertions. Black (matrix type) dots correspond to δ or σ + B operators. Each has its
well-defined colour, hence opens a well-defined strand. Any δ insertion is in fact an half
edge of the tree TB, hence pairs with another vertex (not shown in the picture). The
marked insertion (pictured a bit larger and in red, together with its neighboring corners)
indicates the presence of the slice j propagator Cj . Resolvents are pictured as green
squares. The sum is constrained to have exactly k derived insertions of the δ type, the
others are σ +B.

3.2.2. Wick ordering by the τ field. — Each ` = (a, b) for which the τ derivatives have been chosen,
see eq. (2.2c), creates exactly a divergent vacuum graph N2 (see fig. 5b) obtained by contracting two
quadratic Q0 factors, one with scale ja and the other with scale jb. Fortunately this cancels out with a
very special potentially divergent quadratic σ link. To check it, let us perform exactly the remaining τ
integral. The result is expressed in the following Lemma.

Lemma 3.2. — After integrating out the τ field, the expansion is the same as if there had
never been any τ fields, but with two modifications:

• there exists an exponential of the counterterm

δN2,B(w) = −λ4

4
∑
a,b∈B

X◦2(a, b) Tr[Q0,jaQ0,jb ],

• each σ link for ` = (a, b) made of exactly one link between two Q0 factors, is exactly Wick
ordered with respect to the dνB(σ) covariance, namely its value in AG is :σa ·Q0,jaQ0,jbσ

b:.

In other words

IB =
∑
G

∫
dνB(σ) eδN2,B(w)

(∏
a∈B

e−Vja (~σa)
)
:AG(σ):,

where :AG(σ): is obtained by the same formula as if there had never been any τ field, but with
one modification: the Wick ordering indicates that each link of the type σa ·Q0,jaQ0,jbσ

b is Wick
ordered with respect to the dνB(σ) measure.

Proof. — The first part of the statement is obvious: integrating the linear ei
λ2
√

2
Q0 ·~τa terms with the

dνB(τ) interpolated covariance must give back the exponential of the full δN2 counterterm but with the
weakening covariance factors X◦2(a, b) between nodes a and b. The second statement is also not too
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surprising since the counterterm δN2 should compensate the divergent graphs N2 which are brought
down the exponential by the MLVE expansion. But let us check it explicitly. Any tree link ` = (a, b) in
the Faà di Bruno formula either is a τ link hence created a term

2w`
(
iλ2
√

2

)2
Tr[Q0,jaQ0,jb ] = −w`λ4 Tr[Q0,jaQ0,jb ],

or a σ link. In this case it either has joined two Q0 loop vertices each with one σ field at its free end, or
done something else. In the first case, the expectation value of the corresponding term is∫

dνB(σ)
(
−λ2

2

)2
22 σa ·Q0,jaQ0,jbσ

b = w`λ
4 Tr[Q0,jaQ0,jb ].

This proves the second statement: such σ links are exactly Wick-ordered by the τ links. �

From now on we can therefore forget the auxiliary τ field. Its only purpose was to effectuate the
compensations expressed by Lemma 3.2, without disturbing too much the “black box” of the MLVE.
Moreover, anticipating on Section 6, notice that the functional integration (with respect to the Gaussian
measure νB) of the “graphs” G would result in (perturbative series of) purely convergent Feynman graphs.

3.2.3. Perturbative and non-perturbative contributions. — In all cases (including the single isolated block
case) we apply a Hölder inequality with respect to the positive measure dνB to separate four parts: the
perturbative part “down from the exponential”, the particular λ2

2 :σ ·Q0,jσ:X Wick-ordered term (which
requires special care, since without the Wick ordering it would lead to a linearly divergent bound which
could not be paid for), the other non perturbative quadratic or less than quadratic factors, which we
define as

(3.8) Ṽ 62
j := λ2

2 :σ ·Q1,jσ:X − 3
∫ 1

0
dtj Tr[D′2,jΣ6j ]

(remember the τ field has been integrated out, hence replaced by the δN2,B(w) counterterm), and fi-
nally the higher order non-perturbative factor V >3

j . This last factor will require extra care and the full
Section 5.2 for its non perturbative bound.

Remark. — The careful reader would have noticed the extra index X associated to the Wick ordering
of both σ ·Q0,jσ and σ ·Q1,jσ. The Wick ordering of those terms were originally defined with respect
to the Gaussian measure of covariance I i.e. before the jungle formula and thus before the interpolation
of the covariance (see eq. (1.10)). Nevertheless the contraction of the two σ’s (in both expressions)
corresponds to a tadpole intermediate graph and is thus never accompanied by weakening factors w. We
can therefore equally well consider that the two terms above-mentionned are Wick ordered with respect
to the interpolated measure of covariance X.

Finally we write:

(3.9) |IB| 6 |eδN2,B(w)|
(∫

dνB
∏
a∈B

e−2<(λ2):~σ ·Q0,ja~σ:X

︸ ︷︷ ︸
I1, non-perturbative

)1/4 (∫
dνB

∏
a∈B

e−4<(Ṽ 62
ja

(~σa))

︸ ︷︷ ︸
I2, non-perturbative

)1/4

×
(∫

dνB
∏
a∈B

e4|V >3
ja

(~σa)|

︸ ︷︷ ︸
I3, non-perturbative

)1/4 ∑
G

(∫
dνB |:AG(σ):|4︸ ︷︷ ︸
I4, perturbative

)1/4
.

To bound such expressions, and in particular the “non-perturbative” terms, requires to now work out in
more details explicit formulae which in particular show the compensation between the terms of eq. (3.3).
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4. Estimates for the interaction

This section is a technical interlude before estimating the non-perturbative terms of eq. (3.9) in
Section 5.2. In its first subsection, we make explicit the cancellations at work in Vj and derive a quadratic
bound (in Σ) on |V >3

j |. It will be used to prove Proposition 5.7 which constitutes one step towards the
bound on I3 of eq. (3.9). In its second subsection, we get a quartic bound on |V >3

j | used both in Section 6
and in Section 5.2 but this time to prove another step of our final bound on I3, namely Lemma 5.8.

4.1. Cancellations and quadratic bound. — In this section, we first derive a new expression for
V >3
j (eq. (4.1)) in order to explicitely show the cancellation involving the Ej counterterm. Then we prove

a so-called quadratic bound on |V >3
j | (Lemma 4.1) in terms of a quadratic form in σ. This estimate will

be useful in Section 5.2.

In the sequel, we will be using repeatedly the few following facts:

[U,R] = 0, 1j = d16j

dt
(tj), 12

j = 1j ,

[D1,1j ] = [D2,1j ] = 0, D′j = D1j , Σ′j = 1jΣ + Σ1j .

Notation
From now on, in order to simplify long expressions, we will mainly trade the ′ notation ( e.g. D′,Σ′)
for the ones with explicit cutoff 1j ( e.g. D1j ,1jΣ + Σ1j).

So let us return to eq. (1.16), using cyclicity of the trace, (I+U −R) = (I−R)U = U(I−R) = −URU ,
and D = D1 +D2, we define

V >3
j =: Ej +

∫ 1

0
dtj ṽj ,

ṽj = Tr
[
U ′j(I+U6j −R6j) +D′1,jΣ2 +D1,6jΣ′jΣ +D1,6jΣΣ′j

]
= Tr

[
(U1jΣ + Σ1jU)(I−R)− U1jD1jUR+ 3D11jΣ21j + 2D1Σ1jΣ

]
= Tr

[
(U1jΣ + Σ1jU + Σ1jD1jΣ)(I−R)−D31jR−D21jΣR− Σ1jD2R

−D21jΣ21j + 2D1(Σ1jΣ + 1jΣ21j).

In order to show the compensation involving Ej , we now expand the D31jR term, as

Tr
[
D31jR

]
= Tr

[
D31j +D41j +D51jR+D3(1j +D1j)ΣR

]
.

We further expand the pure D terms as Tr
[
D31j +D41j

]
=: Dconv,j +Ddiv,j with

Dconv,j := Dconv,6j −Dconv,6j−1, Ddiv,j := Ddiv,6j −Ddiv,6j−1,

Dconv,6j := Tr
[ 1

3D
3
2,6j +D1,6jD

2
2,6j + 1

4
(
(D1,6j +D2,6j)4 −D4

1,6j
)]
,

Ddiv,6j := Tr
[ 1

3D
3
1,6j +D2

1,6jD2,6j + 1
4D

4
1,6j

]
= E6j .

Clearly,
∫ 1

0 dtj Ddiv,j = Ej . Hence, redefining V >3
j =:

∫ 1
0 dtj vj and vj := v

(0)
j + v

(1)
j + v

(2)
j , we have

(4.1)


v

(0)
j = −Tr

[
D51jR

]
−Dconv,j ,

v
(1)
j = Tr

[
(D1jΣ + Σ1jD)(I−R)−D21jΣR− Σ1jD2R−D31jΣR−D41jΣR

]
,

v
(2)
j = Tr

[
(2Σ1jΣ + Σ1jD1jΣ)(I−R)−D21jΣ21j + 2D1(Σ1jΣ + 1jΣ21j)

]
.

This has shown the desired cancellation of the Ej counterterm with the −Ddiv,j term.

We now turn to the proof of the following Lemma, suited to a non-perturbative sector of the model
analysis, which bounds |Vj | in terms of a quadratic form Qj(σ) := 1

|g| Tr
[
Σ∗1jΣ

]
, since higher order

bounds can certainly not be integrated out with respect to the Gaussian measure dνB.
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Lemma 4.1 (Quadratic bound). — For g in the cardioid domain Cardρ, there exists a real
positive number k such that

|V >3
j | 6 kρ (1 +Qj(σ)).

The proof of Lemma 4.1 requires the following upper bounds

Proposition 4.2 (Norms and traces). — For all 0 < ε < 1, for any tj ∈ [0, 1] and g in the
cardioid,

‖R‖ 6 2ρ/|g|, Tr[D41j ] 6 O(1)|g|4,
‖D‖ 6 O(1)|g|, |Tr[D51j ]| 6 O(1)|g|5M−j ,

|Dconv,j | 6 O(1)|g|5M−(1−ε)j , Tr[D61j ] 6 O(1)|g|6M−2j ,

Tr[D81j ] 6 O(1)|g|8M−4j .

Proof. — Apart from the bound on ‖R‖ which uses Lemma 1.4 and the definition of the cardioid domain,
the other ones are standard exercises in perturbative power counting. �

Finally, before we prove Lemma 4.1, let us state the following inequalities that we shall use extensively
in this section and the next one.

Proposition 4.3 (Trace inequalities). — Let A,B,C,E be complex square matrices of the
same size. Let ‖A‖2 denote (Tr[AA∗])1/2 where ∗ denotes the Hermitian conjugation. We have:

1. Hilbert-Schmidt bound (hereafter HS)

(4.2) |Tr[AB]| 6 ‖A‖22 + ‖B‖22.

2. L1/L∞ bound: if A is Hermitian (and B bounded),

(4.3) |Tr[AB]| 6 ‖B‖Tr[|A|]

where ‖·‖ denotes the operator norm.

3. Cauchy-Schwarz inequality:

(4.4) |Tr[ABCE]| 6 ‖A‖‖C‖‖B‖2‖E‖2.

The proofs are very standard and anyway simple enough to be avoided here.

Proof of Lemma 4.1. — We first notice that |V >3
j | 6

∫ 1
0 dtj |vj |. Then |vj | is smaller than the sum of the

modules of each of its terms. As all our bounds will be uniform in tj , we can simply focus on the modules
of each of the terms of vj . Starting with v

(0)
j , and according to Proposition 4.2, we have |v(0)

j | 6 O(1)ρ.

As |Tr[D2]| = O(M2j), a price we cannot afford to pay, we cannot simply apply a HS bound (see
eq. (4.2)) to the first two terms of v(1)

j . We need to expand the resolvent one step further:

v
(1)
j = Tr

[
−(Σ +D)D1jΣ− Σ1jD(D + Σ)R−D21jΣR− Σ1jD2R−D31jΣR−D41jΣR

]
= −Tr

[
2Σ1jD1jΣR+ 2D21jΣR+ 2Σ1jD2R+D31jΣR+D41jΣR

]
.

To the first term we apply the bound (4.4) with A = R, B = Σ1j , C = D,E = 1jΣ to get

|Tr
[
Σ1jD1jΣR

]
| 6 ‖R‖‖D‖ |Tr

[
Σ1jΣ

]
| 6 O(1)ρQj(σ).
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All the other terms of v(1)
j are bounded the same way: first a HS bound then a L1/L∞ one. For example:

|Tr[D21jΣR]| 6 Tr[R∗RD41j ]− Tr[Σ1jΣ]
6 ‖R∗R‖Tr[D41j ] + |g|Qj(σ) 6 O(1)ρ (1 +Qj(σ)).

The other terms of v(1)
j are in fact better behaved.

Finally let us turn to v(2)
j . For each term, we apply the bound (4.4) with B = Σ1j and E = 1jΣ.

We let the reader check that it leads to the desired result. �

4.2. Convergent loop vertices and quartic bound. — We want to establish a second bound on
|V >3
j |, more suited to perturbation theory than Lemma 4.1. The idea is to get a bound in a finite

number of loop vertices types which have been freed of any resolvent through the successive use of a
Hilbert-Schmidt inequality and a L1/L∞ bound.

The constraints are many. We want first the loop vertices to be convergent (i.e. any graph built
solely out of them must converge). This excludes loop vertices of the type Tr[Σ2] or Tr[D1Σ2]. Another
important constraint will be to keep a propagator of scale exactly j in each piece A and B which are
to be separated by a HS inequality. This forces us to be careful about the ordering of our operators, to
ensure that the HS “cut” keeps one 1j cutoff both in the two halves A and B.

Definition 4.4 (Convergent loop vertices). — Let us define the following convergent and positive
loop vertices

U0,a
j := 1

|g|6 Tr[D61j ], U2,a
j := 1

|g|3 Tr[D21j |Σ|2], U2,d
j := 1

|g|3 Tr[D21j |Σ|2],

U0,b
j := 1

|g|5 Tr
[
D51j

]
, U2,b

j := 1
|g|3 Tr[D2Σ∗1jΣ], U2,e

j := 1
|g|3 Tr[D2Σ∗1jΣ],

U0,c
j := 1

|g|5Dconv,j , U2,c
j := 1

|g|5 Tr[D41j |Σ|2], U4
j := 1

|g|2 Tr[|Σ|41j ].

as well as the following convergent ones

U1,a
j := 1

|g|5/2 Tr[D21jΣ], U1,b
j := 1

|g|7/2 Tr[D31jΣ], U3
j := 1

|g|3/2 Tr[Σ31j ]. ♠

Lemma 4.5 (Quartic bound). — Let us define the following finite sets: A3 = A4 := {a},
A0 := {a, b, c}, A1 := {a, b} and A2 := {a, b, c, d, e}. Let U i,aj be defined as U ij for i ∈ {3, 4}. For
all 0 6 i 6 4, let Uij be

∑
α∈Ai |U

i,α
j |. Then, for any g in the cardioid domain,

|V >3
j | 6 O(1)(ρ2U4

j + ρ3/2U3
j + ρ3U2

j + ρ5/2U1
j + ρ5U0

j ).

Corollary 4.6. — For all 0 < ε < 1, for any g in the cardioid,

|V >3
j |

2 6 O(1)ρ3(M−(2−ε)j +
4∑
i=1

∑
α∈Ai
|U i,αj |

2).

Proof. — From Lemma 4.5, we use Proposition 4.2, ρ 6 1 and the Cauchy-Schwarz inequality (
∑p
i=1 ai)2 6

p
∑p
i=1 a

2
i . �

We postpone the proof of Lemma 4.5 to Appendix A.4 and give here only its main structure. Starting
with eq. (4.1), the idea is to apply, to each term of |V >3

j |, a HS bound (4.2) (to get positive vertices)
followed by a L1/L∞ inequality (4.3) (to get rid of the resolvents). The only problem is that not all
terms in eq. (4.1) would result in convergent vertices under such a procedure. Thus we need to expand
the resolvent until the new terms are ready for a HS bound, always taking great care of the operator
order in such a way that both sides of the HS cut receive a cut-off operator 1j . All details are given in
Appendix A.4.
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5. Non perturbative functional integral bounds

5.1. Grassmann integrals. — They are identical to those of [GR14; DR16], resulting in the same
computation:∫ ∏

B

∏
a∈B

(dχBjadχ
B
ja)e−

∑n

a,b=1
χ
B(a)
ja

Yabχ
B(b)
jb

∏
`F∈FF
`F=(a,b)

δjajb

(
χ
B(a)
ja

χ
B(b)
jb

+ χ
B(b)
jb

χ
B(a)
ja

)

=
(∏
B

∏
a,b∈B
a 6=b

(1− δjajb)
)( ∏

`F∈FF
`F=(a,b)

δjajb

)(
Y b̂1...b̂k
â1...âk

+ Y â1...b̂k
b̂1...âk

+ · · ·+ Y â1...âk
b̂1...b̂k

)
,

where k = |FF |, the sum runs over the 2k ways to exchange an ai and a bi, and the Y factors are
(up to a sign) the minors of Y with the lines b1 . . . bk and the columns a1 . . . ak deleted. The factor(∏
B
∏

a,b∈B
a 6=b

(1− δjajb)
)

ensures that the scales obey a hard core constraint inside each block. Positivity
of the Y covariance means as usual that the Y minors are all bounded by 1 [AR98; GR14], namely for
any a1, . . . ak and b1, . . . bk, ∣∣∣Y â1...b̂k

b̂1...âk

∣∣∣ 6 1.

5.2. Bosonic integrals. — This section is devoted to bound the non perturbative terms

(5.1) INP
B := |eδN2,B(w)|

(∫
dνB

∏
a∈B

e4|V >3
ja

(~σa)|
)1/4 (∫

dνB
∏
a∈B

e2<(λ2):~σa ·Q0,ja~σ
a:X
)1/4

×
(∫

dνB
∏
a∈B

e−4<(Ṽ 62
ja

(~σa))
)1/4

in eq. (3.9). Thus we work within a fixed Bosonic block B and a fixed set of scales SB := {ja}a∈B, all
distinct. To simplify, we put b = |B| 6 n where n is the order of perturbation in eq. (2.1).

Theorem 5.1. — For ρ small enough and for any value of the w interpolating parameters,
there exist positive O(1) constants such that for |B| > 2

INP
B 6 O(1) eO(1)ρ3/2|B|.

If B is reduced to a single isolated node a, hence b = 1∣∣∣ ∫ dνa(σa)
(
e−Vja (~σa) − 1

)∣∣∣ 6 O(1)ρ3/2.

Those results are similar to [DR16] but their proof is completely different. Since our theory is more
divergent, we need to Taylor expand much farther. The rest of this section is devoted to the proof of
Theorem 5.1.

Let us first of all give some definitions:

Definition 5.2 (Q(1)
1 , Q(2)

1 and Q(01)). — Let Q(1)
1 ∈ L(L(H)×) be given by its entries in the momen-

tum basis:

(Q(1)
1 )cc′;mn,m′n′ = (1− δcc′)δmnδm′n′

∑
r∈[−N,N ]2

1
(m2 +m′2 + r2 + 1)2

and λ2Q(2)
1 be Q−Q0 −Q(1)

1 , see eqs. (1.8) and (1.9) for the definitions of Q and Q0. Finally let Q(01) be
Q0 +Q(1)

1 . ♠



CONSTRUCTIVE TFT: THE T 4
4 MODEL 29

Definition 5.3 (Operators on VB). — Let eab be the |B|× |B| real matrix the elements of which are
(eab)mn := δamδbn. Let A be a subset of B and for all P ∈ L(L(H)×), let PA be the following linear
operator on VB := R|B| ⊗ L(H)×:

PA :=
∑
a∈A

P1ja ⊗ eaa.

Let Q̃1 be (<λ2)Q(1)
1 + (<λ4)Q(2)

1 . ♠

The first step consists in estimating certain determinants:

Proposition 5.4 (Determinants). — Let A0, A1, A2 stand respectively for ρXBQ0,A, XBQ̃1,A
and ρXBQ(01)

A . Then, for ρ small enough, we have

det2(I−A0)−1 6 eO(1)ρ2|A|, det2(I−A1)−1 6 eO(1)ρ2
, det(I−A2)−1 6 eO(1)ρMj1

where I is the identity operator on VB, det2(I−·) := eTr log2(I−·) and j1 := supa∈A ja.

Proof. — Let us start with A2. Since Q(01)
A =

∑
a∈AQ

(01)
ja
⊗ eaa, we find that

TrA2 = ρTr[XBQ
(01)
A ] = ρ

∑
a∈A

Xaa(wB) TrQ(01)
ja = ρ

∑
a∈B′

TrQ(01)
ja .

Using Lemma A.1, we have ∑
a∈B′

TrQ(01)
ja 6 O(1)

∑
a∈A

M ja 6 O(1)M j1

where in the last inequality we used that all vertices a ∈ B have different scales ja.
Furthermore by the triangular inequality and Lemma A.1 again,

‖A2‖ 6 ρ
∑
a∈A
‖X(wB)eaa‖ ‖Q

(01)
ja ‖ 6 ρ

∑
a∈A
‖Q(01)

ja ‖ 6 O(1)ρ
∞∑
j=0

M−j = O(1)ρ

where we used that ‖X(wB)eaa‖ = 1 and again that all vertices a ∈ B have different scales.
Remarking that by the above upper bounds on TrA2 and ‖A2‖, for ρ small enough, the series∑∞

n=1
1
n Tr[An] converges, we have

det(I−A2)−1 = e−Tr[log(I−A2)] = e
∑∞

n=1
1
n Tr[An2 ]

6 eTr[A2]
∑∞

n=1
‖A2‖n−1

= eO(1)ρMj1
.

The cases of A0 and A1 are very similar. For example,

TrA2
0 = ρ2

∑
a,a′∈A

Tr[X(wB)eaaX(wB)ea′a′ ⊗Q0,jaQ0,ja′ ] = ρ2
∑
a,a′

δaa′XaaXaa Tr[Q2
0,ja ] 6 O(1)ρ2|A|

by Lemma A.1. Likewise,

TrA2
1 6 O(1)ρ2, ‖A0‖ 6 O(1)ρ, ‖A1‖ 6 O(1)ρ.

Finally, using det2(I−A) 6 e
1
2 Tr[A2]

∑
n>2
‖A‖n−2

, we conclude the proof. �

We can now treat the easy parts of INP
B . It is obvious that

|eδN2,B(w)| 6 O(1)eO(1)ρ2|B|,

since the counterterm δN2 is logarithmically divergent, hence it can be bounded by a constant per slice
j (times ρ2, see Lemma 3.2).
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The piece
(∫

dνB
∏
a e

2(<λ2):~σa ·Q0,ja~σ
a:
)1/4

can be bounded through an explicit computation:∫
dνB

∏
a

e2(<λ2):~σa ·Q0,ja~σ
a: = det2(I−A0

B)−1/2

where A0
B equals 4(<λ2)XBQ0,B. Using Proposition 5.4, we get

det2(I−A0
B)−1/2 6 eO(1)ρ2|B|

which reproduces the desired bound. Remark that the Wick-ordering here is absolutely essential to sup-
press the Tr[A0

B] term, since that term is linearly divergent.

The bound on
∫
dνB

∏
a e
−4<(Ṽ 62

ja
(~σa)) is similar. It consists in an exact Gaussian integration but this

time with a source term
∫ 1

0 dtj Tr[D′2,jΣ6j ], see eq. (3.8). Let us define D2,j as C1/2D′2,jC
1/2, D2,j as

1
λ5

∫ 1
0 dtj D2,j and D2,j such that (D2,j)c := TrĉD2,j . Then,∫

dνB
∏
a∈B

e−4<(Ṽ 62
ja

(~σa)) = det2(I+4XBQ̃1,B)−1/2 exp
(

72[<(λ5)]2
(
D2,B,

XB

I+4XBQ̃1,B
D2,B

))

where D2,B is the vector of vectors such that (D2,B)a := D2,ja for all a ∈ B and ( , ) denotes the natural
scalar product on VB inherited from the one on L(H)×. Using Proposition 5.4 the determinant prefactor
is bounded by exp(O(1)ρ2). As the norm of XBQ̃1,B is bounded above by O(1)ρ and the one of XB is
not greater than |B|, we have, for ρ small enough,

∣∣∣(D2,B,
XB

I+4XBQ̃1,B
D2,B

)∣∣∣ 6 O(1)|B|‖D2,B‖2 = O(1)|B|
∑
a∈B

4∑
c=1

Trc[
(
(D2,ja)c

)2].

From the definition of D2, see eq. (1.11), and the bound on Ar
M2

(Lemma 1.1), one easily gets ‖D2,B‖2 6
O(1) which implies ∫

dνB
∏
a∈B

e−4<(Ṽ 62
ja

(~σa)) 6 eO(1)ρ2|B|.

But by far the lengthiest and most difficult bound is the one for
∫
dνB

∏
a e

4|V >3
j
|, which we treat

now. We will actually bound a slightly more general expression.

Theorem 5.5. — For all B′ ⊂ B, for all real number α, for ρ small enough and for any value
of the w interpolating parameters, there exist positive numbers K(1)

α and K(2)
α depending on α

such that

I
(3)
B′ (α) :=

∫
dνB

∏
a∈B′

eα|V
>3
ja

(~σa)| 6 K(1)
α 2|B′|eK

(2)
α ρ3/2|B′|.

Corollary 5.6. — For ρ small enough and for any value of the w interpolating parameters, if
b > 2 ∫

dνB
∏
a∈B

e4|V >3
ja

(~σa)| 6 O(1)|B|eO(1)ρ3/2|B|.

From now on we fix a subset B′ of B. For any j ∈ SB′ and any integer pj > 0 we write

(5.2) eα|V
>3
j
| = Pj +Rj , Pj :=

pj∑
k=0

α|V >3
j |k

k! , Rj :=
∫ 1

0
dtj(1− tj)pj

α|V >3
j |pj+1

pj !
eαtj |V

>3
j
|.
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We choose pj = M j (assuming M integer for simplicity) and, in
∏
a∈B′ e

α|V >3
ja
|, we distinguish the set A

of indices in which we choose the remainder term from its complement A = B′ \ A. The result is:∏
a∈B′

eα|V
>3
ja
| =

∑
A⊂B′

∏
a∈A
Rja

∏
a∈A

Pja =
∑
A⊂B′

(∏
a∈A

αpja+1

pja !

)

×
{pja}∑

{ka:a∈A}=0

(∏
a∈A

αka

ka!

)
I(A, {ka})

with

I(A, {ka}) =
∏
a∈A

(∫ 1

0
dtja(1− tja)pja |V >3

ja
|pja+1eαtja |Vja |

) ∏
a∈A

|V >3
ja
|ka .

To simplify the notations we put by convention ka := pja + 1 for a ∈ A. Remember there is no sum over
ka for such a ∈ A. Hence we write

∏
a∈B′

eα|V
>3
ja
| =

∑
A⊂B′

{pja}∑
{ka:a∈A}=0

(∏
a∈B′

αka

ka!
)(∏
a∈A

ka
)
I(A, {ka}).

Let us fix from now on both the subset A and the integers {ka}a∈A and bound the remaining
integral of I(A, {ka}) with the measure dνB. We bound trivially the tja integrals and separate again the
perturbative from the non-perturbative terms through a Cauchy-Schwarz inequality:

(5.3)
∫
dνB I(A, {ka}) 6

(∫
dνB

∏
a∈A

e2α|V >3
ja
|

︸ ︷︷ ︸
non-perturbative

)1/2(∫
dνB

∏
a∈B′
|V >3
ja
|2ka︸ ︷︷ ︸

perturbative

)1/2
.

Note that the non-perturbative term is I (3)
A (2α). Thus in order to get the bound of Theorem 5.5 on

I (3)
B′ (α), we need a (fortunately cruder) bound on it. This is the object of Proposition 5.7. This bound is

actually much worse than in [DR16], as it is growing with a power M j1 rather than logarithmically. But
ultimately it will be controlled by the expansion (5.2).

Proposition 5.7. — For all B′ ⊂ B, let j1 stand for supa∈B′ ja. For all real number α, for ρ
small enough and for any value of the w interpolating parameters, there exists positive numbers
K and Kα (the latter depending on α solely) such that

I
(3)
B′ (α) =

∫
dνB

∏
a∈B′

eα|V
>3
ja

(~σa)| 6 K |B
′|eKαρM

j1
.

Proof. — We use the quadratic bound of Lemma 4.1. Note that Qj(σ) = σ ·(Q0,j +Q(1)
1,j)σ =: σ ·Q(01)

j σ.
Thus ∫

dνB
∏
a∈B′

eα|V
>3
ja

(~σa)| 6 ekαρ|B|
′
∫
dνB e

kαρ
∑

a∈B′
~σa ·Q(01)

ja
~σa =: K |B|

′
∫
dνB e

kαρ(~σ,Q(01)
B′ ~σ)

where Q(01)
B′ is now a linear operator on VB. Defining A := kαρXBQ

(01)
B′ , we have∫

dνB e
kαρ(~σ,Q(01)B′~σ) = [det(I−A)]−1/2,

and we conclude with Proposition 5.4. �

We turn now to the second (perturbative) factor in eq. (5.3), namely
∫
dνB

∏
a∈B′ |V

>3
ja
|2ka . We

replace each |V >3
ja
|2 by its quartic bound (see Corollary 4.6)

|V >3
j |

2 6 O(1)ρ3(M−(2−ε)j +
4∑
i=1

∑
α∈Ai

|U i,αj |
2)
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and Wick-contract the result. It is indexed by graphs of order 2
∑
a∈A ka. More precisely, any such graph

has, for all a ∈ B and all i ∈ {1, 2, 3, 4}, qa,i pairs of loop vertices of the U ija type (their subindex α will
play no further role), and qa,0 pairs of constants ρ10M−(2−ε)ja , with

qa,4 + qa,3 + qa,2 + qa,1 + qa,0 = ka.

Let us put

(5.4)

qr :=
∑
a∈B

qa,r for r ∈ [4]0 := {0, 1, . . . , 4} , q :=
∑
a∈B

ka =
4∑
r=0

qr,

Qadm :=
{
qa,r ∈ N, a ∈ A, r ∈ [4]0 : ∀a ∈ A,

4∑
r=0

qa,r = ka

}
, ϕ :=

4∑
r=0

2rqr.

q = n/2 is the total number of |V >3|2 vertices in the second factor of eq. (5.3) (and half the order n
of our graphs), ϕ is the number of σ-fields for a given choice of a sequence (qa,r) ∈ Qadm. Each Wick-
contraction results in a graph G equipped with a scale attribution ν : V (G) := {loop vertices} → [jmax]0
which associates to each (loop) vertex a ∈ B of G an integer ja reminding us that exactly one of the
propagators C of this vertex a bears a cut-off 1ja . In the sequel such a contraction will be denoted Gν .

The quartic bound of Corollary 4.6 having exactly ten terms, developing a product of q such factors
produces 10q terms. The number of graphs obtained by Wick contracting 2r fields is simply (2r)!! 6
O(1)rr!. But if these graphs have uniformly bounded coordination at each vertex and a certain number
t of tadpoles (i.e. contractions of fields belonging to the same vertex), the combinatorics is lower. Indeed
the total number of Wick contractions with 2r fields and vertices of maximal degree four leading to graphs
with exactly t tadpoles is certainly bounded by O(1)r(r − t)!.

Hence using these remarks we find:

(5.5)
∫
dνB

∏
a∈B′
|V >3
ja
|2ka 6 (O(1)ρ3)q sup

(qa,r)∈Qadm,
06t6ϕ/2

M−(2−ε)
∑

a
qa,0ja(ϕ/2− t)! sup

G, t(G)=t
AGν

where the supremum is taken over graphs G with qa,r pairs of loop vertices of length r and highest scale
ja for all r ∈ [4] and all a ∈ A, and t is the total number of tadpoles of G. In the right-hand side of
eq. (5.5), the scale attribution ν is fixed i.e. the supremum is not taken over it. The following lemma
gives an estimate of AGν .

Lemma 5.8. — There exists 0 < ε� 1 such that any intermediate field graph Gν of order n,
made of propagators joining nr,j loop vertices U rj of length r with tr,j loop vertices U rj bearing
at least a tadpole, for r in [4], obeys the bound

|AG| 6 O(1)n
∏

j∈ν(V (G))
M−

1
2 j[n1,j+3n2,j−(1+ε)t2,j+3n3,j−t3,j+3n4,j−t4,j ].(5.6)

Proof. — As usual such a power counting result is obtained thanks to multiscale analysis. Each graph Gν
is already equipped with one scale per loop vertex: for all vertex a ∈ B there is exactly one C-propagator
Ca of scale ja = ν(a) (namely in the trace represented by that vertex we have the combination Ca1ja).
We further decompose all remaining C-propagators (C16j) using 16j =

∑j
k=0 1k. Each graph Gν is now

a sum over scale attributions µ (depending on ν) of graphs Gνµ which bear one scale per C-propagator.
We will first estimate AGνµ and then sum over µ to get eq. (5.6).

The intermediate-field graph Gνµ is made of edges, of faces f and of loop-vertex corners (in short
LVC) ` which correspond to C-propagators, hence to the edges of the underlying ordinary graph in
the standard representation. Each LVC ` has exactly one scale index j(`), and we can assume that
the r LVCs of a loop vertex v of order r(v) = r (in short, a rLV) are labelled as `1, `2, . . . , `r so that
j(`1) =: j1 > j(`2) =: j2 > · · · > j(`r) =: jr. Each sum over a face index costs therefore O(1)M jm(f)

where jm(f) is the minimum over indices of all the LVCs through which the face runs. Hence

(5.7) AGνµ 6 O(1)n
∏
`

M−2j(`)
∏
f

M jm(f).
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This bound is optimal but difficult to analyse. In particular it depends on the topology of G, see [BGR12a;
OSVT13]. In our context of a super-renormalisable model, we can afford to weaken it and consequently
get a new bound which will be factorised over the loop vertices of G. It will have the advantage of
depending only on the types and number of vertices of G, thus furnishing also an upper bound for the
supG in eq. (5.5).

We call a face f local with respect to a loop vertex (hereafter LV) v if it runs only through corners
of v. The set of faces and local faces of G are denoted respectively F (G) and Floc(G). The complement
of Floc in F is Fnl, the set of non-local faces of G. Let f be a face of G and v be one of the vertices of G.
If f is incident with v, we define jvm(f) as the minimum over indices of all the LVCs of v through which
the face f runs. Otherwise, jvm(f) := 0. If f is non-local then it visits at least two LVs. In that case,
we replace jm(f) by the bigger factor

∏
v←f M

jvm(f)/2 where the product runs over the vertices incident
with f :

AGνµ 6 O(1)n
∏

v∈V (G)

r(v)∏
i=1

M−2ji
∏

f∈Floc(G)

M jm(f)
∏

f∈Fnl(G)

∏
v←f

M jvm(f)/2

= O(1)n
∏

v∈V (G)

(r(v)∏
i=1

M−2ji
∏

f∈Floc(G),
f→v

M jvm(f)
∏

f∈Fnl(G)
f→v

M jvm(f)/2

︸ ︷︷ ︸
=:W (v)

)
.

Our bound is now factorised over the loop vertices of G and we can simply bound the contribution W (v)
of each vertex v according to its type.

Consider a 3LV; it can be of type c3, c21c2 or c1c2c3, depending on whether the three lines hooked to
it have the same colour c, two different colours c1, c2 or three different colours c1, c2, c3, see fig. 8. Only

c

c

c

a. The c3-case

c1

c1

c2

b. The c21c2-case

c1

c2

c3

c. The c1c2c3-case

Figure 8. The three coloured versions of a U3-loop vertex.

in the two first cases can it have a tadpole, and then one local face incident with a single LVC i.e. of
length one. Hence:
• In case c3, the three faces of length 3 and colour c′ 6= c are local, see fig. 9a, and their total cost

is M3j3 . In case there is a tadpole (of colour c and LVC t ∈ {1, 2, 3}), its local face, see fig. 9c,
costs M jt and the other (non-local) face of colour c, see fig. 9d, costs at most inft′ 6=tM jt′/2. The
worst case is when t = 1, in which case the total cost of colour c faces is M j1+j3/2. In case there
is no tadpole, the faces of colour c are non-local. There are at most three of them, so their cost is
at worst M j1/2+j2/2+j3/2. The worst case is therefore the tadpole case with t = 1, where the total
face cost is M j1+7j3/2. Joining to the M−2(j1+j2+j3) factor the vertex weight W (v) is therefore
bounded in the c3 case by M−j1−j2/2−3(j2−j3)/2.

• In case c21c2, the two local faces of length three (and colour c 6= c1, c2) cost M2j3 and the non-
local face of colour c2, see fig. 9b, costs M j3/2. In case there is a tadpole (of colour c1 and
LVC t ∈ {1, 2, 3}), its face costs M jt and the other local face of colour c1 (and length 2) costs
inft′ 6=tM jt′ ; in case there is no tadpole, the single or the two non-local faces of colour c1 cost at
most M j1/2+j3/2. The worst case is therefore again the tadpole case with t = 1, where the total
face cost is again M j1+7j3/2, and the vertex weight W (v) is therefore again bounded in the c21c2
case by M−j1−j2/2−3(j2−j3)/2.
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• Finally the case c1c2c3 is simpler as there can be no tadpole. The three non-local faces cost in total
M3j3/2, the local face costs M j3 , and the vertex weight W (v) is therefore bounded by the better
factor M−2j1−3j2/2−(j2−j3)/2.

c

c

c

a. A local face of length 3

c1

c1

c2

b. A non-local face of colour c2

c

c

c. A local face of length 1

c

c

d. A non-local face of length > 3

Figure 9. Some faces of a U3-vertex

The same analysis can be repeated for 4LV’s. As it is somewhat tedious, we postpone it to Ap-
pendix A.5.1. There, it can be checked that the worst total face cost is:

• with two tadpoles, M j1+j2+4j4 ,

• with one tadpole, M j1+j2/2+7j4/2,

• without tadpole, M (j1+j2+j3+7j4)/2.

The vertex weight W (v) is therefore, when tadpole(s) are present, at worst M−j1−j2−2(j3−j4), and when
they are not M−3j1/2−3j2/2−3(j3−j4)/2. The worst total face costs for loop vertices of degree one and two
are available in Appendix A.5.

With a bound on AGνµ , there remains to sum over µ to get eq. (5.6). We decompose this sum into
two parts: first a sum over the relative positions of j2, . . . , jr at all vertices of degree r > 2. This costs
at worst 3!n. Then a sum over j2 > · · · > jr at each loop vertex. The analysis above has shown that this
is convergent and leads to the bound (5.6) and thus to Lemma 5.8. �

Coming back to the notations of eqs. (5.4) and (5.5) and remembering that the qa,r’s are meant for
pairs of vertices,

sup
G, t(G)=t

AGν 6 O(1)n
∏
a∈B

M−ja[qa,1+3qa,2−( 1
2 +ε)ta,2+3qa,3− 1

2 ta,3+3qa,4− 1
2 ta,4],

where ta,r := tr,ja , r = 2, 3, 4, is the total number of vertices of length r and scale ja in G which
bear at least one tadpole. We put τa,r = ta,r/2 and τr =

∑
a τa,r/2. In eq. (5.5) we remark that

t =
∑
r>2

∑
a ta,r = 2

∑
r τr. Since q1 + q2 + q3 + q4 6 q, the factor (ϕ/2 − t)! = (

∑4
r=1 rqr − t)! in
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eq. (5.5) is bounded by O(1)q
∏
r(qr!)r(τr!)−2 (we put τ1 = 0 and interpret n! for n not integer as Γ(n)).

Hence the perturbative factor of eq. (5.3) obeys (τ1 = 0)

(∫
dνB

∏
a∈B′
|V >3
ja
|2ka

)1/2
6 (O(1)ρ3/2)q sup

(qa,r)∈Qadm,
06τa,r6qa,r

( 4∏
r=1

(qr!)r/2(τr!)−1
)

×
∏
a∈B

M−
1
2 ja[(2−ε)qa,0+qa,1+

∑4
r=2

(3qa,r−τa,r)−ετa,2].

Joining this last estimate with Proposition 5.7, the term to be bounded in Theorem 5.5 obeys

∫
dνB

∏
a∈B′

eα|V
>3
ja

(~σa)| 6
∑
A⊂B′

K |A| eK
(1)
α ρMj1

{pja}∑
{ka,a∈A}=0

(O(1)ρ3/2)q
(∏
a∈B′

αka

ka!

)
(
∏
a∈A

ka
)

sup
(qa,r)∈Qadm,
06τa,r6qa,r

( 4∏
r=1

(qr!)r/2(τr!)−1
) ∏
a∈B

M−
1
2 ja[(2−ε)qa,0+qa,1+

∑4
r=2

(3qa,r−τa,r)−ετa,2]

where again j1 = supa∈A ja. Note that we use, and will go on using, the symbols K, Kα, K (1)
α , K (2)

α etc es-
sentially the same way as we do with O(1) i.e. to denote generic constants possibly depending on α. In the
rest of this proof, our strategy will be to use the power counting namely the powers of M−ja to compen-
sate both for the large number of Wick contractions (the qr!’s) and for the crude bound of Proposition 5.7.

As τr =
∑
a τa,r, (τr!)−1 6

∏
a(τa,r!)−1. Similarly, since ka =

∑
r qa,r, (ka!)−1 6

∏
r(qa,r!)−1.

Moreover we remark that
∏
a∈B′ α

ka
∏
a∈A ka 6 (sup {2, α})q. Hence

(5.8)
∫
dνB

∏
a∈B′

eα|V
>3
ja
| 6

∑
A⊂B′

K |A| eK
(1)
α ρMj1

{pja}∑
{ka,a∈A}=0

(K (2)
α ρ

3/2)q sup
(qa,r)∈Qadm,
06τa,r6qa,r

4∏
r=1

(
(qr!)r/2

∏
a∈B′

(qa,r! τa,r!)−1
) ∏
a∈B′

M−
1
2 ja[(2−ε)qa,0+qa,1+

∑4
r=2

(3qa,r−τa,r)−ετa,2].

For r = 2, 3, 4 we remark that if τa,r 6 qa,r/2, we have

(τa,r!)−1M−
1
2 ja(3qa,r−τa,r) 6M−

5
4 jaqa,r ,

and if τa,r > qa,r/2 (and of course τa,r 6 qa,r),

(τa,r!)−1M−
1
2 ja(3qa,r−τa,r) 6 2qa,r (qa,r!)−1/2M−jaqa,r .

In the sequel we will use the following simple bound several times: for any η ∈ R∗+,

(5.9) M−ηjaqa,r 6 Kηqa,r (qa,r!)−η,

This is an easy consequence of qa,r 6 ka 6M ja+1. Thus, using eq. (5.9) with η = 1/4, we have that for
all τa,r,

(τa,r!)−1M−
1
2 ja(3qa,r−τa,r) 6 O(1)qa,r (qa,r!)−1/4M−jaqa,r .

Using τa,2 6 qa,2, eq. (5.8) then becomes

∫
dνB

∏
a∈B′

eα|V
>3
ja
| 6

∑
A⊂B′

K |A| eK
(1)
α ρMj1

{pja}∑
{ka,a∈A}=0

(K (2)
α ρ

3/2)q sup
(qa,r)∈Qadm

(q1!)1/2
∏
a∈B′

(qa,1!)−1

4∏
r=2

(
(qr!)r/2

∏
a∈B′

(qa,r!)−5/4
) ∏
a∈B′

M−ja[(1−ε)qa,0+ 1
2 qa,1+(1−ε)qa,2+qa,3+qa,4].
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Crude bound versus power counting. We can now take care of the eK
(1)
α ρMj1 factor by using a part of

the power counting. Let η be a real positive number. Remembering that for all a ∈ A, ka = M ja+1,∏
a∈A

M−ηja
∑4

r=0
qa,r =

∏
a∈A

M−ηjaka 6
∏
a∈A

M−ηjaM
ja
6M−ηj1M

j1
.

But

eK
(1)
α ρMj1

∏
a∈A

M−ηja
∑4

r=0
qa,r 6 eK

(1)
α ρMj1

M−ηj1M
j1
6 Kα,η

so that

(5.10)
∫
dνB

∏
a∈B′

eα|V
>3
ja
| 6 Kα,η

∑
A⊂B′

K |A|
{pja}∑

{ka,a∈A}=0

(K (2)
α ρ

3/2)q sup
(qa,r)∈Qadm

(q1!)1/2
∏
a∈B′

(qa,1!)−1

4∏
r=2

(
(qr!)r/2

∏
a∈B′

(qa,r!)−5/4
) ∏
a∈B′

M−ja[(1−ε)qa,0+ 1
2 qa,1+(1−ε)qa,2+qa,3+qa,4−ηka].

Combinatorics versus power counting. In order to beat the qr!’s, we need to boost the powers of some
of the qa,r!’s. We use eq. (5.9) for the couples (r, η) equal to (3, 1/4) and (4, 3/4). Eq. (5.10) becomes

∫
dνB

∏
a∈B′

eα|V
>3
ja
| 6 Kα,η

∑
A⊂B′

K |A|
{pja}∑

{ka,a∈A}=0

(K (2)
α ρ

3/2)q sup
(qa,r)∈Qadm

4∏
r=1

(
(qr!)r/2

∏
a∈B′

(qa,r!)−r/2
) ∏
a∈B′

M−ja[(1−ε)qa,0+ 1
2 qa,1+(1−ε)qa,2+ 3

4 qa,3+ 1
4 qa,4−ηka].

Then for ε 6 3/4 and η < 1/4,

∫
dνB

∏
a∈B′

eα|V
>3
ja
| 6 Kα,η

∑
A⊂B′

K |A|
{pja}∑

{ka,a∈A}=0

(K (2)
α ρ

3/2)q sup
(qa,r)∈Qadm

4∏
r=1

(
qr!

∏
a∈B′

(qa,r!)−1M−
2
r ( 1

4−η)jaqa,r
)r/2

.

Now we remark that for all r, by the multinomial theorem, qr!
∏
a∈B′(qa,r!)−1M−

2
r ( 1

4−η)jaqa,r is one
of the terms in the multinomial expansion of (

∑
a∈B′M

− 2
r ( 1

4−η)ja)qr . Since the ja’s are all distinct,
(qr!

∏
a∈B′(qa,r!)−1M−

2
r ( 1

4−η)jaqa,r )r/2 6 (
∑
j>0M

− 2
r ( 1

4−η)j)qrr/2 = (Kr,η)qr 6 O(1)q. Hence

∫
dνB

∏
a∈B′

eα|V
>3
ja
| 6 Kα,η

∑
A⊂B′

K |A|
{pja}∑

{ka,a∈A}=0

(K (2)
α ρ

3/2)q.

Let qA denote
∑
a∈A ka. Then we have

∫
dνB

∏
a∈B′

eα|V
>3
ja
| 6 Kα,η

∑
A⊂B′

K |A|(K (2)
α ρ

3/2)qA
∏
a∈A

pja∑
ka=0

(K (2)
α ρ

3/2)ka

6 Kα,η

∑
A⊂B′

K |A|(K (2)
α ρ

3/2)qA
∏
a∈A

1− (K (2)
α ρ

3/2)pja+1

1−K (2)
α ρ

3/2

6 Kα,η

∑
A⊂B′

K |A|(K (2)
α ρ

3/2)qA2|A| for ρ small enough
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6 Kα,η

∑
A⊂B′

K |A|(K (2)
α ρ

3/2)|A|2|A| ka > 1, a ∈ A

6 Kα,η(2 +Kαρ
3/2)|B

′|

6 Kα,η2|B
′|eKαρ

3/2|B′|.

This completes the proof of Theorem 5.5. �

To conclude this section, let us briefly comment on the case of a block B with a single node (|B| = 1)
in Corollary 5.6. The proof of the single node case in Theorem 5.1 is very similar, even easier, than the
proof of Theorem 5.5 but we need to remember that there is no term with k = 0 vertices, because we are
dealing with e−V

>3
ja

(~σa) − 1 rather than e−V
>3
ja

(~σa).

6. Perturbative functional integral bounds

We still have to bound the fourth “perturbative” factor in eq. (3.9), namely

I4 =
(∫

dνB |:AG(σ):|4
)1/4

.

It is not fully perturbative though because of the resolvents still present in AG. If |B| = 1, we recall
that the graphs G are either one-vertex maps or one-edge trees. For |B| > 2, they are forests with
e(G) = |B|−1 (coloured) edges joining n(G) = c(G) + e(G) (effective) vertices, each of which has a weight
given by eqs. (3.4) to (3.6). The number of connected components c(G) is bounded by |B| − 1, hence
n(G) 6 2(|B| − 1), see eq. (3.7). I4

4 can be reexpressed as
∫
dνB AG′′(σ) where G′′ is the (disjoint) union

of two copies of the graph G and two copies of its mirror conjugate graph G′ of identical structure but on
which each operator has been replaced by its Hermitian conjugate. This overall graph G′′ has thus four
times as many vertices, edges, resolvents, σa insertions and connected components than the initial graph
G.

6.1. Contraction process. — To evaluate the amplitude AG” =
∫
dνB|:AG(σ):|4, we first replace any

isolated vertex of type V >3
j by its quartic bound, Lemma 4.5, and then contract every σa insertion, which

means using repeatedly integration by parts until there are no σa numerators left, thanks to the formula

(6.1)
∫

(σa)c;mnF (σ) dν(σ) = −
∑
k,l

∫
δmlδnk

∂F (σ)
∂(σa)c;kl

dν(σ),

where dν(σ) is the standard Gaussian measure of covariance I. We call this procedure the contraction
process. The derivatives ∂

∂(~σa)c will act on any resolvent R6ja or any remaining σa insertion of G”,
creating a new contraction edge8. When such a derivative acts on a resolvent,

(6.2) ∂σsR
(†)
6j = R(†)

6j∆
s
6jR

(†)
6j ,

it creates two new corners representing
√
C6jaR6ja

√
C6ja or

√
C6jaR

†
6ja

√
C6ja product of operators.

Remark that at the end of this process we have therefore obtained a sum over new resolvent graphs G, the
amplitudes of which no longer contain any σa insertion. Nevertheless the number of edges, resolvents and
connected components at the end of this contraction process typically has changed. However we have a
bound on the number of new edges generated by the contraction process. Since each vertex of G contains
at most three σa insertions9 , G” contains at most 12n(G), hence using eq. (3.7) at most 24(|B| − 1)
insertions to contract. Each such contraction creates at most one new edge. Therefore each resolvent
graph G contains the initial 4(|B| − 1) coloured edges of G” decorated with up to at most 24(|B| − 1)

8The combinatorics for these contractions will be paid by the small factors earned from the explicit j-th scale
propagators, see Section 7.

9We focus here on Bosonic blocks with more more than one vertex. The case of isolated vertices will only lead
to O(1)|B| combinatorial factors which will be easily compensated by powers of the coupling constant g.
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additional new edges.

Until now, the amplitude AG contains
√
C6j =

∑
j′<j

√
Cj′ + tj

√
Cj operators. We now develop the

product of all such factors as a sum over scale assignments µ, as in [Riv91]. It means that each former√
C6j is replaced by a fixed scale

√
Cj′ operator with scale attribution j′ 6 j (the tj factor being bounded

by 1). The amplitude at fixed scale attribution µ is noted AGµ . The sum over µ will be standard to bound
after the key estimate of Lemma A.2 is established. Similarly the sums over G and over G only generate
a finite power of |B|!, hence will be no problem using the huge decay factors of Theorem 6.12, see Section 7.

We shall now bound each amplitude AGµ . Were it not for the presence of resolvents, the graph
G, which is convergent, would certainly obey the standard bound on convergent amplitudes in super-
renormalisable theories. A precise statement can be found in Lemma A.2. The only problem is therefore
to get rid of these resolvents, using that their norm is bounded by a constant in the cardioid domain.
This can be done through the technique of iterated Cauchy-Schwarz bounds or ICS, introduced for the
first time in a similar tensor field theoretic context in [Mag+09].

6.2. Iterated Cauchy-Schwarz estimates. — Let us first give a crude description of the steps
necessary to bound the amplitude of a (connected) graph G by a product of amplitudes freed of resolvents.

6.2.1. ICS algorithm 1.0b. — Let G be a connected graph in the intermediate field representation ob-
tained after the contraction process i.e. a connected component of a resolvent graph. The following steps
constitute the core of the ICS method:

1. Write the amplitude AG of G as a single trace over L(H⊗) times a product of Kronecker deltas.
This trace contains some resolvents.

2. Write AG as a scalar product of the form 〈α, (R⊗ S ⊗ I)β〉 or 〈α, (R⊗ S ⊗RT )β〉 where α and β
are vectors of an inner product space and S is a permutation operator.

3. Apply Cauchy-Schwarz inequality to the previous expression to get

|AG | 6 ‖R‖(2)
√
〈α, α〉

√
〈β, β〉.

4. Notice that 〈α, α〉 and 〈β, β〉 are also amplitudes of some graphs. If they still contain some resol-
vents, iterate the process by going back to step 1.

In the rest of this section, we give a bound on the number of iterations of this algorithm before it stops.
We also refine it in order to avoid pathological situations. But before that, to give the reader a more
concrete idea of the method, we illustrate it now with examples. It will be the occasion to go through
all steps of the iterated Cauchy-Schwarz method, and understand why the rough algorithm given above
needs to be modified.

6.2.2. Concrete examples. — Let us consider the convergent graph G of fig. 10, in intermediate field
representation, obtained after the contraction process. Stricto sensu it represents a sum of different
amplitudes. As any spanning tree of it contains a single edge, the possible vertices associated to this
graph can be found in eq. (3.4). Let us choose to study the following expression

(6.3) AG =
( 3∏
i=1

∑
mi,ni,m′i,n

′
i
∈Z

)
Tr
[
(ec1
m1n1

⊗ Iĉ1)C(ec2
m2n2

⊗ Iĉ2)C]

× Tr[
√
C(ec2

m′2n
′
2
⊗ Iĉ2)C(ec3

m3n3
⊗ Iĉ3)C(ec3

m′3n
′
3
⊗ Iĉ3)

√
CR
√
C(ec1

m′1n
′
1
⊗ Iĉ1)

√
CR

]
× δm1n′1

δn1m′1
δm2n′2

δn2m′2
δm3n′3

δn3m′3
.

Vertices of G correspond to traces and edges to pairs of Kronecker deltas, e.g. δm1n′1
δn1m′1

is represented
by edge number 1.
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1

2

3

Figure 10. A convergent graph with resolvents

The first step consists in writing AG as a single trace. To this aim, we apply the following identity
twice (for a general graph, we need to apply it several times): let c be any non empty proper subset of
{1, 2, 3, 4} and ec

mn be the tensor product
⊗

c∈c e
c
mcnc . Then

(6.4)
∑

m,n,m′,n′∈Z|c|
(ec

mn)ab(ec
m′n′)de δ

|c|
mn′δ

|c|
nm′ = δ|c|aeδ

|c|
bd.

We apply it first to ec1
m1n1

ec1
m′1n

′
1

in AG then to the two remaining Iĉ1 factors but in the reverse direction
(i.e. from right to left in eq. (6.4)). We get

(6.5) AG =
∑

m1,n1,m′1n′1∈Z3

( 3∏
i=2

∑
mi,ni,m′i,n

′
i
∈Z

)
Tr
[
(eĉ1

m1n1
⊗ Ic1)

√
CR
√
C(ec2

m′2n
′
2
⊗ Iĉ2)C

(ec3
m3n3

⊗ Iĉ3)C(ec3
m′3n

′
3
⊗ Iĉ3)

√
CR
√
C(eĉ1

m′1n′1
⊗ Ic1)C(ec2

m2n2
⊗ Iĉ2)C

]
× δ3

m1n′1
δ3

n1m′1
δm2n′2

δn2m′2
δm3n′3

δn3m′3
.

As usual in quantum field theory, we would like to represent this new expression by a graph G′, a map in
fact. It would allow us to understand how to proceed with Step 1 in the case of a general graph. Given that
eq. (6.5) contains only one trace, it is natural to guess that G′ has only one vertex, but still three edges.
What is the relationship between G and G′? To understand it, we must come back to the Feynman graphs
of our original tensor model. Each edge of a graph in the intermediate field representation corresponds
to a melonic quartic vertex, somehow stretched in the direction of its distinguished colour, see fig. 11
left. Applying twice identity (6.4) to a given edge `, we first contract it and then re-expand it in the
orthogonal direction. This operation bears the name of partial duality with respect to `, see [Chm08]
where S. Chmutov introduced that duality relation. It is a generalization of the natural duality of maps
which exchanges vertices and faces. Partial duality can be applied with respect to any spanning submap
of a map. Natural duality corresponds to partial duality with respect to the full map. The number
of vertices of the partial dual GE′ of G with respect to the spanning submap FE′ of edge-set E′ equals
the number of faces of FE′ . In our example, we performed partial duality of G with respect to edge 1.
Its spanning submap of edge-set {1} has only one face. G′ has consequently only one vertex, which is
confirmed by expression (6.5) containing only one trace. Note also that if a direct edge bears a single
colour index c, its dual edge has the three colours ĉ. This can be seen on the amplitudes themselves: in
eq. (6.5) edge 1 corresponds to the two three-dimensionnal deltas δ3

m1n′1
δ3

n1m′1
whereas edge 1 in eq. (6.3)

represents the two one-dimensionnal deltas δm1n′1
δn1m′1

.
Given a map G, how to draw its dual GE′ with respect to the spanning submap of edge-set E′ ⊆ E(G)?

Cut the edges of G not in E′, making them half-edges. Turning around the faces of FE′ , one (partial)
orders all the half-edges of G, i.e. including those in E(G) \ E′. The cycles of half-edges thus obtained
constitute the vertices of GE′ . Finally, connect in GE′ the half-edges which formed an edge in G. The
result of this construction in the case of the example of fig. 10 with E′ = {1} is given in fig. 12. Note
that we will always represent one-vertex maps as chord diagrams.
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c

=

c
ĉ = ĉ

Figure 11. Edges (on the left) and dual edges (on the right) both in the intermediate
field and the coloured tensor representations.

1

2

3

R

R

Figure 12. The partial dual G{1} of the map G of fig. 10, as a chord diagram. In general
i.e. in the case of the partial dual of G with respect to E′, edges in E′ will be depicted
as solid lines and those in E(G) \ E′ as dashed lines. Resolvent insertions are explicitely
represented. Bold solid line segments on the external circle correspond to propagators (or
square roots of propagators around resolvents).
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The advantage of writing the amplitude of G as a single trace is that it allows us to easily identify it
with a scalar product. Let us indeed rewrite the amplitude of G as

AG =
∑

m,l∈Z4

m2,n2,m
′
2,n
′
2∈Z

δm2n′2
δn2m′2

( ∑
n,k∈Z4

RmnRT
lk

∑
m3,n3,m′3,n

′
3∈Z

δm3n′3
δn3m′3

(√
C(ec2

m′2n
′
2
⊗ Iĉ2)C(ec3

m3n3
⊗ Iĉ3)C(ec3

m′3n
′
3
⊗ Iĉ3)

√
C
)

nk

)
×
( ∑

m1,n1,m′1,n
′
1∈Z3

δ3
m1n′1

δ3
n1m′1

(√
C(eĉ1

m′1n′1
⊗ Ic1)C(ec2

m2n2
⊗ Iĉ2)C(eĉ1

m1n1
⊗ Ic1)

√
C
)

lm

)
.

Then the amplitude takes the form of a scalar product in H⊗ ⊗ L(H2)⊗H⊗:

AG = 〈α, (R⊗RT )β〉,(6.6)

α =
∑

m1,n1,m′1,n
′
1∈Z3

δ3
m1n′1

δ3
n1m′1

(√
C(eĉ1

m′1n′1
⊗ Ic1)C(ec2

m2n2
⊗ Iĉ2)C(eĉ1

m1n1
⊗ Ic1)

√
C
)†
,

β =
∑

m3,n3,m′3,n
′
3∈Z

δm3n′3
δn3m′3

(√
C(ec2

m′2n
′
2
⊗ Iĉ2)C(ec3

m3n3
⊗ Iĉ3)C(ec3

m′3n
′
3
⊗ Iĉ3)

√
C
)
.

The vectors α and β can be pictorially identified: from the graph of fig. 12, one first detaches the two
resolvents and then cut along a line joining their former positions, see fig. 13.

1

2

3

R

R

R

R

"

Figure 13. Amplitudes as scalar products.

As can be seen in eq. (6.6), the amplitude of G does not exhibit any permutation operator. This is due
to the fact that the (red) cut of this example crosses only one edge, see fig. 13. A permutation operator
appears if and only if there are some crossings among the cut edges. Let us now give a second example,
H, the amplitude of which contains such a permutation, see fig. 14 (left). On the right of H we have its
partial dual with respect to edges 1 and 2. Cutting this diagram through both resolvents, one identifies
the two vectors α and β in H⊗ ⊗ L(Hc3) ⊗ L(Hc2) ⊗ L(Hc1) ⊗ H⊗ (reading counterclockwise) and the
permutation operator S (see fig. 14 right) from L(Hc2)⊗L(Hc1)⊗L(Hc3) to L(Hc3)⊗L(Hc2)⊗L(Hc1)
such that AH = 〈α, (R⊗ S ⊗RT )β〉.

After having written the amplitude of a graph as a scalar product, we can apply Cauchy-Schwarz
inequality which corresponds to Step 3 in the ICS algorithm. Finally there only remains to identify the
squares of the norms of α and β as amplitudes of some definite maps. It simply consists in duplicating
each half of the cut diagram and glue each piece to its mirror symmetric one i.e. its Hermitian conjugate.
In the case of graph G of fig. 13, we get the two chord diagrams of fig. 15. But in general it could happen
that 〈α, α〉 (or 〈β, β〉) is infinite that is to say its corresponding chord diagram is dual to a divergent graph.
To conclude this section of examples, let us exhibit a graph such that any cut of its chord diagram leads
to divergent graphs. Let G be the graph of fig. 16 (above left), in the intermediate field representation.
The gray parts represent renormalized subgraphs. Let us perform partial duality with respect to all its
edges and get the chord diagram of fig. 16 (above right). All of its four possible cuts (we never cut inside
a renormalized block) lead to divergent upper bounds by Cauchy-Schwarz inequality.
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H H{1,2} S

Figure 14. Example of a graph H (left) the amplitude of which, written as a scalar
product, exhibits a permutation operator S (right). The picture in the middle is the
partial dual H{1,2} of H with respect to edges 1 and 2. The vectors whose scalar product
equals AH are identified by cutting the chord diagram of H{1,2} through both resolvents.

Figure 15. 〈α, α〉 (left) and 〈β, β〉 (right) in the case of fig. 13.

R

R

"

1

2

3

4

G GE(G)

1 2 3 4

Figure 16. A graph G with divergent cuts. Gray parts represent renormalized subgraphs.
The four possible cuts of GE(G) are indicated by numbered red segments. On the second
line, we display the divergent factors of 〈α, α〉〈β, β〉 for the different cuts.
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6.2.3. ICS algorithm 1.0. — Thus there exist chord diagrams with only divergent cuts. How do we get
rid of their resolvents using Cauchy-Schwarz inequality? We can in fact expand some of the resolvents,
R = I+UR, and get new graphs. In the sequel we will show that for all resolvent graph G, there is
a systematic way of expanding its resolvents such that, for any newly created graph, there exists an
iterative cutting scheme which converges itself to a collection of graphs without resolvents.

A more precise (but still not enough) ICS algorithm can be written as follows:

Algorithm 1 ICS 1.0
Require: G a resolvent graph.

1: Partial duality: Write AG as c(G) traces (times Kronecker deltas)
2: Preparation step: Expand (some of) the resolvents of AG conveniently and get a collection
S of new resolvent graphs

3: for S in S do
4: Cutting scheme: choose a cut and thus write AS as a scalar product
5: Cauchy-Schwarz inequality: apply it to AS
6: Go back to step 4 and iterate sufficiently.
7: end for

The first step of Algorithm 1 consists in writing the amplitude AG of a resolvent graph G as a product of
c(G) traces. To this aim, we choose arbitrarily a spanning tree in each connected component and perform
partial duality with respect to this set F of edges. The amplitude of each connected component of G is
then represented by a one-vertex map that we will draw as a chord diagram. The disjoint union of all
these chord diagrams form the partial dual GF of G. An edge of colour c in G still bears colour c in GF if
it does not belong to F and bears colours ĉ = {1, 2, 3, 4} \ {c} if it is in F . Tree edges will be represented
as plain lines and loop edges as dashed lines in the following pictures.

6.2.4. The preparation step. — In order to write the amplitude of (each connected component of) G
as a scalar product we need to choose a cut in the corresponding chord diagram. But as we have
seen previously, there exist resolvent graphs such that any Cauchy-Schwartz cut results in divergent
amplitudes 〈α, α〉 and/or 〈β, β〉. Nevertheless we can see on fig. 17 that divergent vacuum graphs (which
have essentially only one spanning tree and thus a canonical associated chord diagram) have either less
than four tree lines and no loops, or one loop line and less than one tree line, or two loops but no tree
lines. Thus if a diagram has enough edges, so to speak, between the two resolvents of a cut, the Cauchy-
Schwarz bound will be superficially convergent. We will ensure it by suitably expanding some resolvents
as R = I+RU or I+UR.

But to ensure finiteness, we also need to find a cut such that no divergent subgraphs pop up in 〈α, α〉
and/or 〈β, β〉. Divergent (2-point) subgraphs appear in chord diagrams as represented in fig. 18. Note
that they are absent from resolvent graphs (and from their partial duals) because Multiscale Loop Vertex
Expansion produced only renormalized amplitudes. It is easy to convince oneself that if there is no tree
line next to corners of cut, there will be no divergent subgraphs in 〈α, α〉 and 〈β, β〉.

We now explain precisely which resolvents will be expanded and how many times. Later on, we will
prove that after such expansions there exists a sequence of iterated Cauchy-Schwarz cuts which bounds
the amplitude of any resolvent graph by the geometric mean of finite amplitudes, most of them freed of
resolvents.
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V1 V2 V3

V4 V5 V6

V7

N1 N2 N3

Figure 17. The divergent vacuum graphs in the intermediate field (left) and dual (right)
representations.

M1 M2

Figure 18. Divergent subgraphs in the dual representation.
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First of all, we need to define when resolvent expansions should stop i.e. when we consider a diagram
as secured or said differently when a diagram is ready for the cut process to be defined in the next section.

In the following we will always read a chord diagram counterclockwise. Thus if O1 and O2 are
operators in L(H⊗) and appear in the amplitude of C, we will consider that O2 is on the right of O1 if
O2 is met just after O1 counterclockwise around C or equivalently if AC contains the product O1O2. We
will say symmetrically that O2 is on the left of O1 if the product O2O1 appears in AC . We will denote
r(C) the number of resolvents in AC .

Definition 6.1 (Safeness). — Let us consider a chord diagram representing the partial dual of a
resolvent graph. A safe element is either a half loop edge or a renormalized D-block. ♠

Definition 6.2 (Tree-resolvents). — We say that a resolvent R is a right (resp. left) tree-resolvent
if

• the product ∆sSR (resp. RS∆s), where S is itself a possibly empty product of safe elements and
s labels a half tree line, appears in AC

• and the number of safe elements in S is less than or equal to six.

A tree-resolvent is a resolvent which is either a right or a left tree-resolvent (or both). Tree-resolvents
are the resolvents “closest” to the tree of C. We also let t(C) be the number of tree-resolvents in AC . ♠

We will need to order the tree-resolvents of a diagram amplitude. In the following if C is a connected chord
diagram, we will write C• for a pair made of C and a distinguished tree-resolvent (called root resolvent
hereafter). We consider all of its tree-resolvents as ordered counterclockwise starting with the root one
and denote them R1,R2, . . . ,Rt(C). If C = tc(C)i=1 Ci is a disjoint union of chord diagrams (and c(C) is
the number of connected components of C), C• stands for a choice of one root resolvent per connected
component. In each Ci,•, resolvents are ordered from 1 to t(Ci).

Definition 6.3 (Distance to tree). — Let C be a connected Feynman chord diagram. Let s be a half
tree edge and j an element of {1, 2, . . . , t(C)}. The pair (s, j) is admissible if Rj is a tree-resolvent and s
is separated from Rj only by safe elements. Said differently, from Rj to s we meet neither half tree edges
nor resolvents. For any admissible pair p = (s, j), let dp be the number of safe elements in AC between
∆s and Rj . dp is the distance between s and Rj and is, by Definition 6.2, less than or equal to six. ♠

Definition 6.4 (Secured diagrams). — A connected chord diagram C is secured if either r(C) = 0
or for any admissible pair p, dp equals six. A possibly disconnected diagram is secured if all its connected
components are secured. ♠

We now explain which resolvents of a diagram we expand, and how, in order to reach only secured
graphs. Algorithm 2 simply expands on its right a given resolvent of a graph. More precisely it returns
the list of graphs representing the various terms of the expansion. A symmetrical algorithm, named
ExpandL, does the same on the left.
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Algorithm 2 Right expansion
Require: C• a rooted chord diagram, 1 6 i 6 c(C) and 1 6 j 6 r(Ci).

procedure ExpandR(C•, i, j) . Expands once Rj on its right in ACi .
L := [ ] . an empty list
Expand Rj as I+Rj(D + Σ)

C(0)
i := Ci with Rj replaced by

5: C(0) := C t C(0)
i \ Ci

L.append(C(0))

C(1)
i := Ci with Rj replaced by Rj

C(1) := C t C(1)
i \ Ci

L.append(C(1))

10: Integrate by parts the Σ-term (eq. (6.1)) . r(C) new graphs.
for k from 2 to r(C) + 1 do

ek := the new additional edge
if ek is a loop then
C(k)
i := Ci ∪ {ek}

15: C(k) := C t C(k)
i \ Ci

else . ek connects Ci to Ci′ , i 6= i′.
C(k)
i := (Ci ∪ Ci′ ∪ {ek}){ek}

C(k) := C t C(k)
i \ {Ci, Ci′}

end if
20: L.append(C(k))

end for
return L

end procedure

Given a non secured connected component Ci of a Feynman chord diagram, Algorithm 3 decides which
resolvent to expand and how many times. Before giving its pseudocode, we need to introduce a few more
definitions. Let j be an element of {1, 2, . . . , t(Ci)}. We define RightCi,•(Rj) as the number of consecutive
safe elements at the right of Rj . We define LeftCi,•(Rj) symmetrically. We let RightTreeCi,•(Rj)
(resp. LeftTreeCi,•(Rj)) be True ifRj is a right (resp. left) tree-resolvent and False otherwise. Root(Ci)
chooses a root resolvent among the tree-resolvents, randomly say.

Finally Algorithm 4 secures all the resolvents of a given diagram C. More precisely it returns the
list of secured diagrams obtained from C by successive expansions of its resolvents. Algorithm 4 can
be thought of as building a rooted tree TC inductively. At each of the nodes of that tree, there is an
associated chord diagram. The root of TC consists in the input diagram C. The children of a given node
C′ correspond to the r(C′) + 2 new graphs obtained by expanding one resolvent of C′, the one chosen by
ChooseExpand. Algorithm 4 returns the list of totally secured graphs. They correspond to the leaves
of TC .

We now prove that Algorithm 4 stops after a finite number of steps and give an upper bound on the
number of elements of the list it returns.

Lemma 6.5. — Let B be Bosonic block with n+1 vertices. Let C be one of the resolvent graphs
obtained from B by the contraction process. After a finite number of steps, Algorithm 4 applied
to C stops and returns a list of at most (98n− 28)42n−30 secured diagrams.

Proof. — In the computation tree TC representing Algorithm 4, each new generation corresponds to the
expansion of a resolvent and each child of a given node to a term of this expansion (plus integration by
parts). Along the branches of TC , from a given node to one of its children, the number of connected

https://en.wikipedia.org/wiki/Pseudocode


CONSTRUCTIVE TFT: THE T 4
4 MODEL 47

Algorithm 3 Choose & expand
Require: C a Feynman chord diagram and 1 6 i 6 c(C) such that Ci not secured.

procedure ChooseExpand(C,i)
Ci,• := (Ci,Root(Ci))
j := 1
while j 6 t(Ci) do

5: if RightTreeCi,•(Rj) and LeftCi,•(Rj) 6 5 then
return ExpandL(C•, i, j)

else if LeftTreeCi,•(Rj) and RightCi,•(Rj) 6 5 then
return ExpandR(C•, i, j)

else
10: j := j + 1

end if
end while

end procedure

Algorithm 4 Securing resolvents
Require: C a Feynman chord diagram.

L := [C]
S := [ ]
while L not empty do

D := [ ]
5: for k from 0 to len(L)− 1 do . k indexes the graphs in L.

if L[k] secured then
S. append(L[k])
D. append(L[k])

else
10: Pick a non secured connected component L[k]i of L[k]

L := L+ ChooseExpand(L[k], i)
D. append(L[k])

end if
end for

15: for G in D do
L. remove(G)

end for
end while
return S
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components is constant except in case of a new tree edge where it decreases by one. In order to control
the maximal number of steps taken by Algorithm 4 we now introduce one more parameter m(C) namely
the number of missing safe elements to get C secured:

m(C) :=
∑

p admissible
6− dp.

Algorithm 4 stops when m = 0.
Let us now inspect the evolution of m along the branches of TC . As Algorithm 4 only expands tree-

resolvents, let us consider such an operator R. Locally, around R in AC , we have the following situation:
A1S1RS2A2 where both A1 and A2 are either half tree edges or resolvents but at least one of them is a
half tree edge and S1, S2 are possibly empty products of safe elements. If the expansion term of R is:

• I and

– both A1 and A2 are half tree edges then m decreases by 12− |S1| − |S2| > 1 if both |S1| and
|S2| are less than or equal to six, and by 6 − |S2| > 1 (resp. 6 − |S1|) if |S1| (resp. |S2|) is
strictly greater than six,

– A1 (resp. A2) is a resolvent then m decreases by |S1| (resp. |S2|) if |S1| + |S2| 6 6 and by
6− |S2| (resp. 6− |S1|) otherwise,

• D, m decreases by one,

• a new loop edge, m decreases by one,

• a new tree edge, m increases by 12 + |S1| (resp. 12 + |S2|) if R is left- (resp. right-)expanded.

Thus at each generation, in all cases, the non-negative integer valued linear combination

ψ := 18(c− 1) +m

strictly decreases. As it is bounded above (at fixed n), Algorithm 4 stops after a finite number of steps.
In order to determinate an upper bound on the number of leaves of TC , we need a bound on its number

of generations. As ψ > 0, the length of a branch of TC is certainly bounded by ψ(C). The number of
children of a node C′ is r(C′) + 2. As the number of resolvents increases by 1 with each new added edge,
the maximal total number of resolvents over all the nodes of TC is r(C)+ψ(C). In conclusion, the number
of leaves of TC is bounded by

(r(C) + ψ(C) + 2)ψ(C).

As already discussed at the beginning of Section 6, a resolvent graph coming from a Bosonic block with
n + 1 vertices has at most n connected components, 2n − 1 tree edges thus at most 4n − 2 admissible
pairs and less than 56n resolvents. We get m(C) 6 24n − 12 and ψ(C) 6 42n − 30. Consequently, as a
function of n, the number of new graphs created by Algorithm 4 is bounded above by (98n−28)42n−30.�

6.2.5. Iterative cutting process. — The preparation step has expressed the amplitude of any resolvent
graph G as the sum over the leaves of TG of the amplitudes of the corresponding secured graphs. Thus,
from now on we consider a secured Feynman chord diagram C, together with a scale attribution µ.
We apply Cauchy-Schwarz inequalities to ACµ iteratively until we bound |ACµ | by a geometric mean of
convergent resolvent-free amplitudes.

First of all, note that an iterative cutting process can be represented as a rooted binary tree. Its root
corresponds to C and the two children of each node are the result of a Cauchy-Schwarz inequality. It
will be convenient to use the Ulam-Harris encoding of rooted plane trees [Mie14]. It identifies the set of
vertices of a rooted tree with a subset of the set

U =
⋃
n>0

Nn

of integer words, where N0 = {∅} consists only in the empty word. The root vertex is the word ∅. The
children of a node represented by a word w are labelled, in our binary case, w0 and w1.
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Definition 6.6 (Odd cut). — Let C be a secured Feynman chord diagram. Note that all the secured
diagrams obtained after the preparation step contain at least one tree line and thus at least one tree-
resolvent R0. Thanks to the preparation step, there are at least six safe elements between R0 and a half
tree edge. An odd Cauchy-Schwarz cut starts at R0 and ends between the third and fourth safe element
situated between R0 and the tree in C. See fig. 19 for a graphical representation. ♠

R
R

A

B

S3

Sn

"

w

S3S3

w0

B

AA

B

Sn Sn

w1

Figure 19. One odd Cauchy-Schwarz iteration (n > 3). For all p > 0, Sp represents a
product of p safe elements. A and B are (almost) any operators.

Definition 6.7 (Even cut). — Let C be a secured Feynman chord diagram with an even number, 2k,
of resolvents. An even Cauchy-Schwarz cut consists in

1. choosing any of the resolvents in AC , calling it R1 and labelling the other ones R2, . . . ,R2k
(counter)clockwise around the unique vertex of C,

2. cutting through R1 and Rk+1. ♠

Definition 6.8 (Cutting scheme). — Let Cs be a secured Feynman chord diagram. We apply Cauchy-
Schwarz inequalities iteratively as follows:

0. if r(Cs) = 2 or 2k+ 1, apply an odd cut. |ACs | is then bounded by the product of (the square roots
of the amplitudes of) a convergent diagram and a secured diagram with an even number (2 or 4k)
of resolvents.

1. For any diagram with an even number of resolvents, perform an even cut and iterate until getting
only resolvent-free graphs.

In the following, graphs obtained from secured ones by such a cutting scheme will simply be called
resolvent-free graphs. ♠

Now, let Bk be the set of binary words (i.e. formed from the alphabet {0, 1}) of length k. According to
Definition 6.8 the amplitude of a secured chord diagram is bounded above by the following expressions

(6.7) |AC | =: |A∅| 6 ‖R‖2e(C)


∏
w∈Bk |Aw|

2−k if r(C) = 2k, k > 2,
|A0|1/2|A10|1/4|A11|1/4 if r(C) = 2,
|A0|1/2

∏
w∈B2k

|A1w|2
−2k−1 if r(C) = 2k + 1.
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The only (slightly) non trivial factor to explain is ‖R‖2e(C). Each cutting step delivers a factor ‖R‖2 and
the number of steps is bounded above by half the maximal possible number of resolvents in AC , namely
2e(C).

Our aim is now to get an upper bound on the amplitude of any secured graph. Next Lemma is a first
step in this direction as it proves that such amplitudes are finite.

Lemma 6.9 (Convergence of secured graphs). — Secured graphs are convergent: let Gs
be a secured graph then |AGs | <∞.

To prove it we will need the following

Lemma 6.10 (Between resolvents). — Between two consecutive resolvents of a secured graph
amplitude, there are either at least three D-blocks or at least one half loop edge.

Proof. — Remark that between two consecutive resolvents of a skeleton graph amplitude, there are either
three safe elements or at least one half tree edge. This is obvious from eqs. (3.4) to (3.6). During the
contraction process, unmarked half edges can contract to resolvents and thus create graphs such that two
consecutive resolvents are only separated by one half loop edge. Thus between two consecutive resolvents
of a resolvent graph amplitude, there are either at least three D-blocks or at least one half (tree or
loop) edge. Let us now have a look at the preparation step. When a (tree-)resolvent is expanded, it
can either merge two intervals between resolvents (if the expansion term is I) or increase the number of
safe elements in an interval if the expansion term is a D operator or half loop edge or create a new tree
edge. In consequence, between two consecutive resolvents of a secured graph amplitude, there are either
at least three D-blocks or at least one half loop edge or at least one half tree edge. In this last case, as
the graph considered is secured, there are at least six safe elements between the two resolvents. �

Proof of Lemma 6.9. — We prove that for any word w in Bk if r(Gs) = 2k or in B2k if r(Gs) = 2k + 1,
|Aw| <∞. Indeed, note first that the products of a cut of a secured graph, even or odd, are still secured.
Thus the cutting scheme of Definition 6.8 cannot create divergent subgraphs as we never cut through a
corner adjacent to a tree edge. Then it is enough to check that each resolvent-free map w either contains
at least five tree edges or at least two tree edges and one loop edge or at least two loop lines, see fig. 17.

If r(Gs) = 1, we proceed to an odd cut. The resulting resolvent-free graphs, denoted 0 and 1, contain
at least six safe elements (see Definition 6.1) and are thus convergent.

If r(Gs) = 2, we split our analysis into two subcases. If the two resolvents in AGs are separated by
a tree line, and as Gs is secured, an even cut will produce two resolvent-free graphs the amplitudes of
which contain at least twelve safe elements each. They are thus convergent. If one of the two intervals
between the two resolvents does not contain half tree edges, it must contain at least one half loop edge
or at least three D operators (by Lemma 6.10). In this case, we first perform an odd cut. It results in
two secured graphs. One of them is resolvent-free and convergent (see fig. 19). The other one has two
resolvents separated either by tree edges (thus at least twelve safe elements) or by at least two half loop
edges. An even cut now produces only resolvent-free convergent graphs.

If r(Gs) > 3, a resolvent-free graph w necessarily originates from the application of an even cut on a
secured graph G(1)

s with two resolvents. And G(1)
s itself is the product of an even cut on another secured

graph G(0)
s with four resolvents. By Lemma 6.10, resolvents in AG(0)

s

are separated by at least one half loop
edge or at least three D operators. Then resolvents in AG(1)

s

are separated by at least two half loop edges
or at least six D operators. An even cut on G(1)

s thus produces only convergent resolvent-free graphs. �
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6.3. Bounds on secured graphs. — Our next task is to get a better upper bound on the amplitude
of a secured graph, in terms of the loop vertex scales. Remember indeed that each node a of a tree in
the LVE representation of logZ, see eq. (2.3), is equipped with a scale ja i.e. an integer between 0 and
jmax. Analytically it means that each Vja in Wja = e−Vja − 1 contains exactly one 1ja cutoff adjacent to
a
√
C operator (and all other propagators bear 16ja cutoffs), see eq. (1.16). Moreover the scales of the

nodes of a Bosonic block are all distinct. After applying the derivatives (situated at both ends of each
tree edge of a Bosonic block) to the Wja ’s one gets skeleton graphs which are forests with generically
more vertices than their corresponding abstract tree. Each duplicated vertex is a derivative of some Wja

and bears consequently a 1ja cutoff. Thus the (loop) vertices of the skeleton graphs do not have distinct
scales but contain at least as many (

√
C)ja ’s as the underlying tree.

During the contraction process (i.e. integration by parts of the σ fields not contained in the resolvents)
no (
√
C)j operator are created nor destroyed. When two sigmas contract to each other, corners (i.e.

places where square roots of propagators are situated) do not change. When a sigma field contracts to a
resolvent, two new corners are created but both with a 16j cutoff. The potentially adjacent 1j cutoff is
left unchanged. Secured graphs bear thus at least as many (

√
C)ja ’s as their original skeleton graphs.

Lemma 6.11. — Let B be a Bosonic block and Gs be a secured graph originating from B. Then,
there exist K, ρ ∈ R∗+ such that for any coupling constant g in the cardioid domain Cardρ,

(6.8) |AGs | 6 K |B|ρe(Gs)
∏
a∈B

M−
1

12 ja .

Proof. — To facilitate the argument we first need to introduce some more notation. We let k̃ be the
number of Cauchy-Schwarz iterations in the cutting process of Definition 6.8. Explicitly,

k̃(Gs) :=


k if r(Gs) = 2k and k > 2,
2 if r(Gs) = 2,
2k + 1 if r(Gs) = 2k + 1.

We often drop the dependence on Gs. In order to track corners which bear loop vertex scales, we also
introduce the following: let w be either a secured graph or a resolvent-free graph. For all a ∈ B, we let
ca(w) be the number of corners of w which bear integer a:

ca(w) := | {c ∈ s(w) : ic = a} |.

For all k′ ∈ {0} ∪ [k̃(Gs)], let us note Fk′(Gs) for the set of maps obtained from Gs after k′ steps of the
cutting process of Definition 6.8. For example, if r(Gs) is even and greater than four, Fk(Gs) is the set of
binary words of length r/2. For all m ∈ Fk′(Gs), let αk′(m) be the exponent of |Am| in the corresponding
Cauchy-Schwarz bound. Then, according to eq. (6.7), for all a ∈ B, we define ma,k′ as follows:

ma,k′ :=
∑

m∈Fk′ (Gs)

αk′(m)ca(m).

We shall now bound the amplitude of Gs by a multiscale analysis. It means that for all m in F (Gs), we
expand each (

√
C)6j operator as

∑j
i=0(
√
C)i. Each map m is then equipped with a scale attribution,

namely a given integer per corner of m. These attributions correspond to the usual scale attributions on
edges in the tensor graph representation. Nevertheless, they are here constrained: there exist (marked)
corners with a fixed scale ja (these are the loop vertex scales) and for each corner c of m, ic is bounded by
some ja. Let s(m) be the set of marked corners of m. Using Lemmas 6.9 and A.2, there exists a positive
real number K such that

(6.9) |Am| = |
∑
µ

Amµ | 6 (K|g|)e(m)
∏

c∈s(m)

M−
1

24 ic .

Remember that Lemma A.2 is formulated in the tensor graph representation. Here the edges of a chord
diagram correspond to the vertices of a tensor Feynman graph and edges of the latter are the corners
in the resolvent-free graphs. Moreover, looking at eqs. (3.4) to (3.6), one notices that each loop vertex
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bears one factor λ = g1/2 per corner (in a resolvent-free graph). This explains the term ge(m) in eq. (6.9).
From eq. (6.7), we deduce

(6.10) |AGs | 6 ‖R‖2e(Gs)(K|g|)
∑

m∈F
k̃

(Gs)
αk̃(m)e(m) ∏

a∈B
M−

1
24ma,k̃ja .

Remark that

(6.11)
∑

m∈Fk̃(Gs)

αk̃(m)e(m) = e(Gs).

Let us indeed consider w ∈ Fk′(Gs) with 0 6 k′ 6 k̃ and any edge ` of w. If the (k′+1)th Cauchy-Schwarz
iteration cuts `, then it appears exactly once both in w0 and w1. If ` is not cut, it appears twice in w0 or
w1 but not in both graphs. In the two cases, e(w) = 1

2 (e(w0) + e(w1)). Induction on k′ proves eq. (6.11)
as
∑

m∈F0(Gs) α0(m)e(m) = e(Gs).
Let us now prove that for all a ∈ B, ma,k̃ > 2. Let us consider a fixed a in B and k′ between 0 and

k̃. Let w be a map in Fk′(Gs). We define ca,r(w) as the number of marked corners of w of scale a which
are adjacent to a resolvent. We also let ca,f (w) be ca(w) − ca,r(w). We further decompose ca,r(w) as
ca,c(w) + ca,s(w) where ca,c(w) is the number of corners, adjacent to a resolvent, and adjacent to the cut
at step k′. Let now c be a marked corner in s(w) such that ic = a. If c is adjacent to a resolvent cut
at the (k′)th step, it appears in exactly one graph among w0 and w1. If c is not adjacent to a resolvent
but nevertheless cut (thus by an odd cut), it belongs to both w0 and w1. If c is not cut, it appears twice
either in w0 or in w1 but not in both. Then

ca,f (w0) + ca,f (w1) = 2ca,f (w) + ca,c(w)
ca,r(w0) + ca,r(w1) = 2ca,s(w)

}
⇒ ca(w0) + ca(w1) = 2ca(w)− ca,c(w).

As αk′+1(w0) = αk′+1(w1) = 1
2αk′(w), we have

αk′+1(w0)ca(w0) + αk′+1(w1)ca(w1) = αk′(w)ca(w)− 1
2ca,c(w).

Then, viewing the cutting process of Definition 6.8 as a computation tree T , and resumming ma,k̃ from
the leaves to the root of T , one gets

ma,k̃ = ma,0 −
1
2

k̃−1∑
k′=0

∑
w∈Fk′ (Gs)

ca,c(w) = ca(Gs)− 1
2ca,r(Gs).

As ca,r(Gs) 6 ca(Gs), ma,k̃ >
1
2ca(Gs). Remembering that, as discussed at the begining of Section 6, any

resolvent graph has at least four marked corners of each loop vertex scale (said differently ca(Gs) > 4 for
all a ∈ B), ma,k̃ > 2. To conclude the proof, we use

• this bound on ma,k̃ as well as eq. (6.11) in eq. (6.10),

• the fact that e(Gs) grows at most linearly with |B|,

• the fact that e(G′′) > 4,

• the resolvent bound of Lemma 1.4 and the definition of the cardioid domain Cardρ. �

The main goal of Section 6 was to give an upper bound on the perturbative term I4 of eq. (3.9). Here
it is:

Theorem 6.12 (Perturbative factor I4). — Let B be a Bosonic block and define n by |B| =:
n+ 1, n > 0. Then there exists K ∈ R∗+ such that the perturbative factor I4 of eq. (3.9) obeys

I4(B; G) 6 Kn(n!)37/2ρx(G) ∏
a∈B

M−
1

48 ja , x(G) =
{
e(G) if e(G) > 1
2 otherwise.
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Proof. — We concentrate here on the case of Bosonic blocks with more than one node. Summing up
what we have done in this Section, we have

I4
4 =

∫
dνB

∑
G(G′′)

∑
Gs(G)

AGs .

The functional integration with respect to the measure νB equals 1 as the integrand does not depend on
σ anymore. Lemma 6.11 gives a bound on AGs and Lemma 6.5 a bound on the number of terms in the
sum over Gs. There remains to bound the number of resolvent graphs G obtained from the contraction
process applied to a given skeleton graph G′′. Then, as already discussed at the begining of this Section,
n(G′′) 6 8n and e(G′′) 6 4n. Thus r(G′′) 6 8n and as loop vertices bear at most three sigmas, the total
number of sigma fields to be integrated by parts in the contraction process is bounded above by 24n. We
deduce that the number of terms in the sum over G(G′′) is bounded by Kn(n!)32. All in all, we get

I4
4 6 K

n(n!)74ρe(G′′)
∏
a∈B

M−
1

12 ja ⇒ I4 6 K
n(n!)37/2ρe(G)

∏
a∈B

M−
1

48 ja

where we used that e(Gs) > e(G′′) = 4e(G). The final bound is obtained by noticing that the possible
vertices of a single node Bosonic block bear at least two powers of ρ. �

7. The final sums

We are now ready to gather the perturbative and non perturbative bounds of Sections 6 and 5 into a
unique result on logZ6jmax . Our starting point is the expression of logZ6jmax obtained after application
of the Multiscale Loop Vertex Expansion :

(2.3) W6jmax(g) = logZ6jmax(g) =
∞∑
n=1

1
n!

∑
J tree

jmax∑
j1=1
· · ·

jmax∑
jn=1∫

dwJ

∫
dνJ ∂J

[∏
B

∏
a∈B

(
−χBjaWja(σa, τa)χBja

)]
.

Then we need to remember that the functional derivative ∂J , see eq. (2.2), is the product of Fermionic
and Bosonic derivatives, eq. (2.2a), and that the latter factor out over the Bosonic components of the tree
J . Then, as in [GR14], we start by estimating the functional integration over the Grassmann variables
to get:

| logZ6jmax | 6
∞∑
n=1

2n

n!
∑
J tree

∑
{ja}

(∏
B

∏
a,b∈B
a6=b

(1− δjajb)
)( ∏

`F∈FF
`F=(a,b)

δjajb

) ∏
B
|IB|,

IB =
∫
dwB

∫
dνB ∂TB

∏
a∈B

(e−Vja − 1)(σa, τa).

Using the language of skeleton graphs, applying Hölder inequality (3.9) and using notation of eq. (5.1)
and Theorem 6.12, we get

| logZ6jmax | 6
∞∑
n=1

O(1)n

n!
∑
J tree

∑
{ja}

(∏
B

∏
a,b∈B
a6=b

(1− δjajb)
) ∏
B

∑
G(B)

INP
B I4(B; G).

Let us introduce nB := |B| > 1, which is therefore 1 plus the integer called n in Theorem 6.12. The sum
over skeleton graphs G(B) can be decomposed into two parts. Due to Faà di Bruno formula, there is a
first sum over partitions of the sets of edges incident to each vertex of TB. The total number of such
partitions is bounded above by O(1)nB(nB!)2. Given such partitions, there remains to choose appropriate
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loop vertices for each vertex of G. As the number of terms in the kth σ-derivative of V >3
j is bounded by

25 k! the number of possible choices of loop vertices is bounded by O(1)nB(nB!)2. Then,

| logZ6jmax | 6
∞∑
n=1

O(1)n

n!
∑
J tree

∑
{ja}

(∏
B

(nB!)4
∏
a,b∈B
a6=b

(1− δjajb)
) ∏
B
INP
B sup

G
I4(B; G)

and using Theorems 5.1 and 6.12 we have

(7.1) | logZ6jmax | 6
∞∑
n=1

O(1)n

n! ρX
∑
J tree

∑
{ja}

(∏
B

(nB!)4+37/2
∏
a,b∈B
a6=b

(1− δjajb)
) n∏

a=1
M−

1
48 ja

where X :=
∑
B supG x(G). As x(G) = |B| − 1 if |B| > 2 and x(G) = 2 if |B| = 1, we have X > dn2 e.

The factor
∏
B
∏
a,b∈B
a6=b

(1−δjajb) in eq. (7.1) ensures that slice indices ja are all different in each block

B. Therefore ∑
a∈B

ja > 1 + 2 + · · ·+ nB = nB(nB + 1)
2 ,

so that
n∏
a=1

M−ja/96 6
∏
B
e−O(1)n2

B .

The number of labeled trees on n vertices is nn−2 (the complexity of the complete graph Kn on n
vertices), hence the number of two-level trees J in eq. (7.1) is exactly 2n−1nn−2. Since

∑
B nB = n, for

ρ small enough we have

| logZ6jmax | 6
∞∑
n=1

O(1)nρn/2 sup
J tree

(∏
B

(nB!)4+37/2e−O(1)n2
B

) ∑
{ja}

n∏
a=1

M−
1

96 ja

6
∞∑
n=1

O(1)nρn/2 < +∞.

Hence for ρ small enough the series (2.3) is absolutely and uniformly convergent in the cardioid domain
Cardρ. Analyticity, Taylor remainder bounds and Borel summability follows for each Wjmax (uniformly
in jmax) from standard arguments based on Morera’s theorem. Similarly, since the sequence Wjmax is
easily shown uniformly Cauchy in the cardioid (from the geometric convergence of our bounds in jmax,
the limit W∞ exists and its analyticity, uniform Taylor remainder bounds and Borel summability follow
again from similar standard application of Morera’s theorem. This completes the proof of our main result,
Theorem 2.1.

Conclusion

Uniform Taylor remainder estimates at order p are required to complete the proof of Borel summability
[Sok80] in Theorem 2.1. They correspond to further Taylor expanding beyond trees up to graphs with
excess (i.e. number of cycles) at most p. The corresponding mixed expansion is described in detail in
[Gur13a]. The main change is to force for an additional p! factor to bound the cycle edges combinatorics,
as expected in the Taylor uniform remainders estimates of a Borel summable function.

The main theorem of this paper clearly also extends to cumulants of the theory, introducing ciliated
trees and graphs as in [Gur13a]. This is left to the reader.

The next tasks in constructive tensor field theories would be to treat the T 4
5 [BG14] and the U(1)−T 4

6
group field theory [OSVT13]. They are both just renormalizable and asymptotically free [BGOS12;
Riv15]. Their full construction clearly requires more precise estimates, but at this stage we do not foresee
any reason it cannot be done via the strategy of the MLVE.
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A.1. Bare and renormalized amplitudes. — LetMc
1 denote the graphM1 with a vertex of colour

c. Its regularized bare amplitude AMc
1

is a function of the incoming index nc (and appears at first order
of the Taylor expansion in g)10:

AMc
1

= −
∑

p∈[−N,N ]4

δ(pc − nc)
p2 + 1 .

The counterterm is minus the value at nc = 0, hence

δMc
1

=
∑

p∈[−N,N ]4

δ(pc)
p2 + 1 =

∑
p∈[−N,N ]3

1
p2 + 1 .

Let us define AM1 to be
∑
cAMc

1
. Remark that AMc

1
is independent of c, so that in fact

δM1 :=
∑
c

δMc
1

= 4
∑

p∈[−N,N ]3

1
p2 + 1 .

We can calculate the renormalized amplitude of M1 as

Ar(M1) = −
∑
c

∑
p∈Z4

δ(pc − nc)− δ(pc)
p2 + 1 =

∑
c

∑
p∈Z3

n2
c

(n2
c + p2 + 1)(p2 + 1) .

It is now a convergent sum, hence no longer requires the cutoff N .

We now compute the counterterm to the graph M2. Remark that this log divergent mass graph
has the tadpole M1 as a subgraph, hence its counterterm has to include the subrenormalization of that
tadpole. The bare amplitude of M2 is

AM2 =
∑
c

∑
p∈[−N,N ]4

δ(pc − nc)
(p2 + 1)2

∑
c′

∑
q∈[−N,N ]4

δ(qc′ − pc′)
q2 + 1 .

The partly renormalized amplitude of M2 (with only the inner tadpole subtraction) is

Ap.ren
M2

=
∑
c

∑
p∈[−N,N ]4

δ(pc − nc)
(p2 + 1)2

∑
c′

∑
q∈Z4

δ(qc′ − pc′)− δ(qc′)
q2 + 1

= −
∑
c

∑
p∈[−N,N ]4

δ(pc − nc)
(p2 + 1)2

∑
c′

∑
q∈Z3

p2
c′

(p2
c′ + q2 + 1)(q2 + 1) ,

where we relaxed the cutoff constraint on the inner tadpole to better show that it is now a convergent

10By convention, we do not include the powers of the coupling constant g in the amplitudes of the Feynman
graphs.
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sum. Hence the counterterm for M2 is δM2 :=
∑
c δMc

2
and

δMc
2

= −
∑

p∈[−N,N ]4

δ(pc)
(p2 + 1)2

∑
c′

∑
q∈Z4

δ(qc′ − pc′)− δ(qc′)
q2 + 1

=
∑

p∈[−N,N ]4

δ(pc)
(p2 + 1)2

∑
c′

∑
q∈Z3

p2
c′

(p2
c′ + q2 + 1)(q2 + 1)

= 3
∑

p∈[−N,N ]3

p2
1

(p2 + 1)2

∑
q∈Z3

1
(p2

1 + q2 + 1)(q2 + 1)

where in the last line we used that the value vanishes if c = c′, plus again the colour symmetry. The
renormalized amplitude for M2 is the now fully convergent double sum

Ar
M2

=
∑
c

∑
p∈Z4

δ(pc − nc)− δ(pc)
(p2 + 1)2

∑
c′

∑
q∈Z4

δ(qc′ − pc′)− δ(qc′)
q2 + 1

= −
∑
c

∑
p∈Z4

δ(pc − nc)
(p2 + 1)2

∑
q∈Z3

p2
c

(p2
c + q2 + 1)(q2 + 1)

−
∑
c

∑
p∈Z4

δ(pc − nc)− δ(pc)
(p2 + 1)2

∑
c′ 6=c

∑
q∈Z3

p2
c′

(p2
c′ + q2 + 1)(q2 + 1)

=
∑
c

n2
c

∑
p∈Z3

∑
q∈Z3

(
3p2

1[n2
c + 2(p2 + 1)]

(n2
c + p2 + 1)2(p2 + 1)2(p2

1 + q2 + 1)(q2 + 1)

− 1
(n2
c + p2 + 1)2(n2

c + q2 + 1)(q2 + 1)

)
.

A.2. The Q operator. — We gather here some easy but useful results over the operators Q0 and
Q1, which are well-defined bounded operators on L2({1, 2, 3, 4} × Z2). From their definitions in the
momentum basis (which has been used throughout this paper), see eqs. (1.8) and (1.9), it is easy to
bound the coefficients of these operators:

(Q0)c,c′;mn,m′n′ 6 δcc′δmm′δnn′
O(1)

(m2 + n2 + 1)1/2 ,

(Q(1)
1 )c,c′;mn,m′n′ 6 (1− δcc′)δmnδm′n′

O(1)
m2 +m′2 + 1 ,

|(Q(2)
1 )c,c′;mn,m′n′ | 6 δcc′δmm′δnn′

O(1)
(m2 + n2 + 1)3/2

+ (1− δcc′)δmnδm′n′
O(1)

(m2 +m′2 + 1)2 .

Hence Q0 is a bounded operator and e.g. ‖gQ0‖ 6 1
4 for g in the cardioid and ρ small enough. Q1 is

trace class therefore Q = Q0 +Q1 is bounded with ‖gQ‖ 6 1
2 for ρ small enough. Remark that Q itself,

without ultraviolet cutoff, is not a trace class operator, since Q0 is not trace class: indeed
∑
m,n

O(1)√
m2+n2+1

diverges linearly.

Lemma A.1. — In the cardioid,

‖Qj‖ 6 O(1)M−j , TrQj 6 O(1)M j ,

‖Q0,j‖ 6 O(1)M−j , TrQ0,j 6 O(1)M j , Tr[Q2
0,j ] 6 O(1),

‖Q(1)
1,j‖ 6 O(1), TrQ(1)

1,j 6 O(1), Tr[(Q(1)
1,j)2] 6 O(1)M−j ,

‖Q(2)
1,j‖ 6 O(1)ρM−j , TrQ(2)

1,j 6 O(1)ρM−j .

Proof. — Simple exercise by noting that Q0 is diagonal and that for any bounded operator P , ‖P‖ 6
TrP . �
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A.3. Proof of Lemma 1.2. — Recollecting the definitions of N ,N1,N2,N3,N4 and N5, we get

logN5 =
∑
G∈V′

(−g)|G|
SG

δG + δt + 1
2B

2
1 − iλ3

∑
c

δMc
2

Trc(B1)c + 1
2 TrD2

1

+ 1
2B

2
2 + 1

2 Tr[D2
2] + 1

3 Tr[D3
1] + Tr[D2

1D2] + 1
4 Tr[D4

1]

where V ′ = V \ {N1,N2,N3} and δt = g
2 (2N + 1)

∑
c(δcm)2. We need to prove that logN5 = 0.

Let F(G) := {divergent forests F of G : G /∈ F} and AG :=
∑
F∈F(G)

(∏
g∈F −τg

)
AG. Recall that

for G a vacuum graph, δG = −AG. We will prove that logN5−
∑
G∈V′

(−g)|G|
SG

δG equals
∑
G∈V′

(−g)|G|
SG

AG.
In the following, in order to lighten notations, we will denoteM1 (resp.M2) by (resp. ) or any rotated
version of it. Thus we have

F(V1) =
{
∅,
{ }

,
{ }}

, AV1
= (1− τ − τ )AG,

F(V2) =
{
∅,
{ }

,
{ }

,
{ }

,
{ }

,
{
,
}
,
{
,
}
,
{
,
}}

,

AV2
= (1− τ )(1− τ )AV1 − τ (1− τ )AV2 − τ (1− τ )AV2 ,

F(V3) =
{
∅,
{ }

,
{ }

,
{ }

,
{ }

,
{
,
}
,
{
,
}
,
{
,
}
,
{
,
}
,
{
,
}
,
{
, ,
}
,
{
, ,
}}

,

AV3
= (1− τ )(1− τ )(1− τ )(1− τ )AV3 − τ τ (1− τ )(1− τ )AV3 .

The remaining vacuum graphs are easier to handle since they do not have any overlapping divergences:

AV4
= (1− τ )(1− τ )(1− τ )(1− τ )AV4 ,

AV5
= (1− τ )(1− τ )(1− τ )AV5 ,

AV6
= (1− τ )(1− τ )(1− τ )(1− τ )AV6 ,

AV7
= (1− τ )(1− τ )(1− τ )(1− τ )AV7 .

Using δcm = −δMc
1

+ λ2δMc
2
, it is then easy to check that:

−λ
2

2 AV1
= 1

2B
2
1 + λ2

2 (2N + 1)
∑
c

(δMc
1
)2,

λ4

2 AV2
= 1

2 TrD2
1 − iλ3

∑
c

δMc
2

Trc(B1)c − λ4(2N + 1)
∑
c

δMc
1
δMc

2
,

−λ
6

2 AV3
= −λ

6

2 A
r
M2
·Ar
M2

+ λ6

2 (2N + 1)
∑
c

(δMc
2
)2,

λ8

2 AV4
= 1

2 Tr[D2
2], −λ

6

3 AV5
= 1

3 TrD3
1,

λ8AV6
= Tr(D2

1D2), λ8

4 AV7
= 1

4 TrD4
1.

In other words,

logN5 =
∑
G∈V′

(−g)|G|
SG

δG +
∑
G∈V′

(−g)|G|
SG

AG = 0

which is the desired result.
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A.4. Proof of Lemma 4.5. — We start from expression (4.1) of vj and first expand I−R as −UR
or −RU :

v
(1)
j = −Tr

[
(U1jD1jΣ + Σ1jD1jU)R+D21jΣR+ Σ1jD2R+D31jΣR+D41jΣR

]
,

v
(2)
j = −Tr

[
2Σ1jΣUR+ Σ1jD1jΣUR+D21jΣ21j − 2D1(Σ1jΣ + 1jΣ21j)

]
.

Using D = D1 +D2, we gather in v(1)
j + v

(2)
j the six terms quadratic in Σ and linear in D which combine

(using trace cyclicity) as (again, ordering is carefully chosen!)

− Tr
[
2Σ1jD1jΣR+ 2Σ1jΣDR+D21jΣ21j − 2D1(Σ1jΣ + 1jΣ21j)

]
= Tr

[
2Σ1jD1jΣ(I−R) + 2Σ1jΣD(I−R)−D21jΣ21j − 2D2(Σ1jΣ + 1jΣ21j)

]
= − Tr

[
2Σ1jD1jΣUR+ 2UΣ1jΣDR+D21jΣ21j + 2D2(Σ1jΣ + 1jΣ21j)

]
.

Then v
(1)
j + v

(2)
j rewrites as

v
(1)
j + v

(2)
j = −Tr

[
2(D21jΣ + Σ1jD2)R+D31jΣR+ 2Σ1jΣ2R

+ (D41jΣ + 3Σ1jD1jΣU + 2UΣ1jΣD)R
+ 3D21jΣ21j + 2D2Σ1jΣ

]
.

The third line contains only convergent loop vertices and is free of any resolvent. The terms on the second
line are ready for a HS bound (and a L1/L∞ bound) i.e. they will lead to convergent loop vertices. But
the first line needs some further expansion of the resolvent factors (R = I+UR = I+RU):

Tr
[
D21jΣR

]
= Tr

[
D21jΣ

]
+ Tr

[
(Σ +D)D21jΣR

]
= Tr

[
D21jΣ

]
+ Tr

[
(Σ1jD)(D1jΣR)

]
+ Tr

[
D31jΣR

]
= Tr

[
D21jΣ

]
+ Tr

[
(Σ1jD)(D1jΣR)

]
+ Tr

[
D31jΣ

]
+ Tr

[
(Σ +D)D31jΣR

]
,

Tr
[
Σ1jD2] = Tr

[
D21jΣ

]
+ Tr

[
(Σ1jD)(D1jΣR)

]
+ Tr

[
D31jΣ

]
+ Tr

[
Σ1jD3(Σ +D)R

]
,

Tr
[
D31jΣR

]
= Tr

[
D31jΣ

]
+ Tr

[
(Σ +D)D31jΣR

]
,

Tr
[
Σ1jΣ2R

]
= Tr

[
Σ31j

]
+ Tr

[
(Σ +D)Σ1jΣ2R

]
.

We finally get an expression for vj which is completely ready for our bounds:

(A.1)

vj = −Tr
[
2Σ21jΣ2R+ 2DΣ1jΣ2R+ 2Σ21jΣDR+ 3ΣD1jΣ2R
+ 4(Σ1jD)(D1jΣR) + 3(Σ1jD)(1jΣDR) + 2(DΣ1j)(1jΣDR) + 5ΣD31jΣR
+ 4D41jΣR+ 2Σ1jD4R
+ 2Σ31j + 3D21jΣ21j + 2D2Σ1jΣ + 4D21jΣ
+D51jR

]
+Dconv,j .

We need to bound |Vj | = |
∫ 1

0 dtj vj(tj)| 6
∫ 1

0 dtj |vj |. The bound on |vj | will be uniform in tj so that the
integral is simply bounded by 1. Let us now show that (the module of) each term of eq. (A.1) is bounded
by a sum of (modules of) allowed loop vertices, see Definition 4.4.

|Tr
[
Σ21jΣ2R

]
| 6 Tr

[
|Σ|41j

]
+ Tr

[
(Σ2)∗1jΣ2RR∗

]
by eq. (4.2) and 1j = 12

j

6 2 Tr
[
|Σ|41j

]
= 2ρ2U4

j by eq. (4.3) and |g|‖R‖ 6 ρ.

|Tr
[
DΣ1jΣ2R

]
| 6 Tr

[
D2Σ∗1jΣ

]
+ Tr

[
(Σ2)∗1jΣ2RR∗

]
by eq. (4.2) and 1j = 12

j

6 |g|3U2,b
j + ρ2U4

j by eq. (4.3) and |g|‖R‖ 6 ρ
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and similarly for the two other terms of the first line of eq. (A.1).

|Tr
[
(Σ1jD)(D1jΣR)

]
| 6 ρ3U2,a

j + Tr
[
Σ∗1jD21jΣRR∗

]
6 2ρ3U2,a

j .

Similarly one gets

|Tr
[
(Σ1jD)(1jΣDR)

]
| 6 ρ3(U2,a

j + U2,b
j ),

|Tr
[
(DΣ1j)(1jΣDR)

]
| 6 2ρ3U2,b

j

|Tr
[
ΣD31jΣR

]
| 6 ρ3U2,a

j + ρ5U2,c
j ,

|Tr
[
D41jΣR

]
| 6 ρ3U2,a

j + ρ6U0,a
j > |Tr

[
Σ1jD4R

]
|.

The remaining terms of vj , see eq. (A.1), already belong to the list of convergent loop vertices.

A.5. Faces and loop vertices. — We gather here the missing details of the proof of Lemma 5.8.

A.5.1. Quartic loop vertex. — We start by studying the incidence relations between faces and a vertex
of type U4

j1
= 1/|g|2 Tr[|Σ|41j1 ], see fig. 20a for a graphical representation of it. Making explicit the

dependency of U4
j1

on the σ-field, we decompose our analysis into four main cases corresponding to the
number of different colours around the vertex.

The c4-case. Here all four σ-fields bear the same colour, fig. 20b. A Wick-contraction can create zero,
one or two tadpoles. We gather data about possible faces (colour, local or not, length, worst cost) in
Table 1. For example, in case of two “planar” tadpoles, there is one local face of length 2 and colour c,
depicted in red in fig. 21b. In case of one “non-planar” tadpole, there are two non-local faces of length
at least 3, in red in fig. 21c. Also, in any case, there are three local faces of respective colours c′ 6= c and
length 4, in red in fig. 21a. All in all, the worst cost with tapole(s) is M j1+j2+4j4 and M (j1+j2+j3+7j4)/2

without tadpole.

Tadpoles Colour Locality Length Worst cost
c′ 6= c local ×3 4 M3j4

2
planar

c

local ×2 1 M j1+j2

local 2 M j4

non-planar local 4 M j4

1
planar

local 1 M j1

non-local > 1 M j2/2

non-local > 2 M j4/2

non-planar non-local ×2 > 2 M (j2+j4)/2

0 non-local ×4 > 1 M (j1+j2+j3+j4)/2

Table 1. The c4-case
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a. The U4-vertex
c

c

c

c

b. The c4-case

c1

c1

c1

c2

c. The c31c2-case

c1

c1

c2

c2

d. The contiguous c21c22-case

c1

c2

c1

c2

e. The alternating c21c22-case

Figure 20. The U4-loop vertex and some of its coloured versions.
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c

c

c

c

a. The 3 local faces of colours c′ 6= c

c

c

b. Two planar tadpoles

c

c

c

c. One non-planar tadpole

Figure 21. The c4-case and some of its possible faces.
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The c31c2-case. Here there can be zero or one tapole which could be planar or not, see fig. 20c. The
worst cost with tadpole is M j1+3j4 and M (j1+j2+6j4)/2 without, see Table 2.

Tadpoles Colour Locality Length Worst cost
c 6= c1, c2 local ×2 4 M2j4

c2 non-local > 4 M j4/2

1
planar

c1

local 1 M j1

non-local > 3 M j4/2

non-planar non-local ×2 > 2 M (j2+j4)/2

0 non-local ×2 > 1 M (j1+j2)/2

non-local > 2 M j4/2

Table 2. The c31c2-case

The c21c22-cases. We have two main cases here: either the σ-fields of colour c1 are contiguous or not, see
figs. 20d and 20e. Anyway, there can be again zero, one or two tadpoles after Wick-contraction. All in
all, the worst cost with tadpoles is M j1+j2+4j4 and M (j1+j2+6j4)/2 without, see Table 3.
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Tadpoles Colour Locality Length Worst cost
c 6= c1, c2 local ×2 4 M2j4

2
c1

local 1 M j1

local 3 M j4

c2
local 1 M j2

local 3 M j4

1
c1

local 1 M j1

local 3 M j4

c2
non-local > 1 M j2/2

non-local > 3 M j4/2

0
c1

non-local > 1 M j1/2

non-local > 3 M j4/2

c2
non-local > 1 M j2/2

non-local > 3 M j4/2

a. Contiguous

Tadpoles Colour Locality Length Worst cost
c 6= c1, c2 local ×2 4 M2j4

2 c1 local ×2 2 M j2+j4

c2 local ×2 2 M j3+j4

1 c1 local ×2 2 M j2+j4

c2 non-local ×2 > 2 M (j3+j4)/2

0 c1 non-local ×2 > 2 M (j2+j4)/2

c2 non-local ×2 > 2 M (j3+j4)/2

b. Alternating

Table 3. The c21c22-cases
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The c21c2c3-cases. Here again the σ-fields of colour c1 are either contiguous or not. There can be zero
or one tadpole. The worst cost with tadpole is M j1+3j4 and M (j1+5j4)/2 without, see Table 4.

Tadpoles Colour Locality Length Worst cost
c 6= c1, c2, c3 local 4 M j4

c2 non-local > 4 M j4/2

c3 non-local > 4 M j4/2

1
c1

local 1 M j1

local 3 M j4

0 non-local > 1 M j1/2

non-local > 3 M j4/2

a. Contiguous

Tadpoles Colour Locality Length Worst cost
c 6= c1, c2, c3 local 4 M j4

c2 non-local > 4 M j4/2

c3 non-local > 4 M j4/2

1
c1

local ×2 2 M j2+j4

0 non-local ×2 > 2 M (j2+j4)/2

b. Alternating

Table 4. The c21c2c3-cases

The c1c2c3c4-case. All σ-fields bear different colours. No tadpole is possible. The cost is M2j4 .

Tadpoles Colour Locality Length Worst cost
0 c1, c2, c3, c4 non-local ×4 > 4 M2j4

Table 5. The c1c2c3c4-case

A.5.2. Quadratic loop vertices. — There are five different types of quadratic vertices U2,α
j1

, see Defini-
tion 4.4. They involve D and D2 operators. Recall that D = D1 + D2 where D1 = C1/2Ar

M1
C1/2 and

D2 = C1/2Ar
M2

C1/2. Both are diagonal operators in the momentum basis. From Lemma 1.1, we get

sup {|(D1)m,n|, |(D)m,n|} 6 δmn
O(1)
‖m‖+ 1 , |(D2)m,n| 6 δmn

O(1)
‖m‖2−ε + 1 .

Each quadratic vertex contains two C-propagators plus a D-type operator. At worst (depending on the
position of the 1j1 cutoff in the trace), the D2 operator brings M−2j2 , D4 brings M−4j2 and D2 brings
M−(2−ε)j2 . Thus the worst vertex is U2,e

j1
. Note that because of the conservation of the 4-tuple of indices

through the D-type insertion, the scales on both of its sides are equal (to j2). The face data and worst
costs for a generic quadratic loop vertex are available in Tables 6 and 7. The worst cost with tadpole is
then M j1+4j2 and M (j1+7j2)/2 without.
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Tadpoles Colour Locality Length Worst cost
c′ 6= c local ×3 3 M3j2

1
c

local 1 M j1

local 2 M j2

0 non-local > 1 M j1/2

non-local > 2 M j2/2

Table 6. The c2-case

Tadpoles Colour Locality Length Worst cost

0 c′ 6= c1, c2 local ×2 3 M2j2

c1, c2 non-local ×2 > 3 M j2

Table 7. The c1c2-case

A.5.3. Loop vertices of degree one. — The most dangerous case is U1,a
j , the D2-insertion of which brings

M−2j . The cost is M7j/2, see Table 8.

Tadpoles Colour Locality Length Worst cost

0 c′ 6= c local ×3 2 M3j

c non-local > 2 M j/2

Table 8. The degree one case

A.6. Perturbative bounds. — Multiscale analysis is a powerful tool to bound the Feynman ampli-
tudes of convergent graphs both in the standard [Fel+85] and in the tensor case [BGR12a]. It is especially
easy in the superrenormalizable case, as it not only proves uniform bounds on any (renormalized) Feyn-
man amplitude, but it does this and in addition allows to spare a uniform small fraction η > 0 of the
scale factor of every line of the graph, which can then be used for other purposes.

Let us state precisely a Lemma of this type for our model, for which we can take η = 1
24 . More

precisely

Lemma A.2. — Let µ = {i`} be a scale attribution for the lines of a vacuum Feynman graph
of the T 4

4 theory. There exists K > 0 such that

(A.2)
∑
µ

Ar
G,µ

[∏
`∈G

M
i`
24
]
6 Kn(G)

where n(G) is the order of G, and Ar
G,µ is the renormalised Feynman amplitude for scale attri-

bution µ.

Proof. — Let us denote f ./ ` if face f runs through line `. When G is convergent, we return to the
direct representation and consider eq. (5.7). We have to add the factor

∏
`M

i`
24 to the previous factor∏

`M
−2i` . Hence we have to prove∑

µ

∏
`

M−
47
24 i(`)

∏
f

M im(f) 6 Kn(G)

where we recall that im(f) = inff ./ ` i` is the smallest scale of the edges along face f . We obtain an
upper bound by replacing the factor M im(f) for each face by M

∑
` ./ f

i`
L(f) where L(f) is the length of
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the face f . Reordering the product we simply have now to check that∑
f ./ `

1
L(f) 6

23
12 ∀`

since − 47
24 + 23

12 = − 1
24 and obviously ∑

µ

∏
`

M−
i(`)
24 6 Kn(G).

• If no face of length 1 or 2 runs through ` obviously
∑
f ./ `

1
L(f) 6

4
3 <

23
12 .

• If a face of length 2 runs through `, but none of length 1, it is easy to check that there can be at
most three such faces (not four, otherwise the graph would be N2 in fig. 5). Hence

∑
f ./ `

1
L(f) 6

3
2 + 1

3 <
23
12 .

• Finally if a face of length 1 runs through ` it must be a tadpole. It cannot be a melonic tadpole of
aM1 type (otherwise it would not be a convergent graph). It can be of the non melonic type, but
it cannot be the non-melonic tadpole of N1 or N3 in fig. 5 because these graphs diverge. Hence the
other faces through f cannot be of length 2 or all of length 3. Hence

∑
f ./ `

1
L(f) 6 1 + 2

3 + 1
4 = 23

12 .

When G contains a divergent subgraph of type M1 or M2 in fig. 3, renormalization bringing an
additional factor M−i` for the critical melonic tadpoles lines, eq. (A.2) still holds.

Finally when G is one of the ten divergent vacuum graphs, in figs. 4 and 5, its renormalized amplitude
is 0 and there is nothing to prove. �
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Index of notation

Feynman Graphs

G skeleton graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
J jungle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
G resolvent graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
G tensor graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B connected component of a Bosonic forest . . . . 17
C chord diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Gs secured graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
m map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Spaces

H⊗ :=
⊗4

i=1Hi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Hi := `2(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
M set of divergent 2-point graphs . . . . . . . . . . . . . . 9
V set of divergent vacuum graphs . . . . . . . . . . . . . . . 9
L(H)× :=×4

i=1 L(Hi) . . . . . . . . . . . . . . . . . . . . . . . . . 10

L(Hi) linear operators on Hi . . . . . . . . . . . . . . . . . . 10
L(L(H)×) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Cardρ := {g ∈ C : |g| < ρ cos( 1

2 arg g)} . . . . . . . . . 14

VB := R|B| ⊗ L(H)× . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Tensors

T, T original fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

σ := (σc)c, main intermediate field . . . . . . . . . . . . . 10

Ar
M1

:= (Ar
Mc

1
)c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B1 := iλAr
M1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Ar
M2

:= (Ar
Mc

2
)c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

τ intermediate field for N2 counterterm. . . . . . . . 12
B2 := −iλ3Ar

M2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Operators on H⊗

C propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Ar renormalised amplitude. . . . . . . . . . . . . . . . . . . . . . 9
δm mass counterterms . . . . . . . . . . . . . . . . . . . . . . . . . 10
δt mass counterterms squared. . . . . . . . . . . . . . . . . . 10
σ :=

∑
c σc ⊗ Iĉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I identity operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Σ := iλ

√
Cσ
√
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

H := −iλ−1Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
R := (I−Σ)−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B1 := iλAr

M1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

D1 := iλC1/2B1C
1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . 11

U1 := Σ +D1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
R1 := (I−U1)−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
B2 := −iλ3Ar

M2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

D2 := iλC1/2B2C
1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . 13

U := Σ +D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
D := D1 +D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
R := (I−U)−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
E := AV5

+AV6
+AV7

. . . . . . . . . . . . . . . . . . . . . . . . . 13
16j := 11+‖n‖26M2jδmn . . . . . . . . . . . . . . . . . . . . . . . 15
1j := 16j − 16j−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
U ′j := dU

dtj
(tj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D′1,j := dD1
dtj

(tj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Σ′j := dΣ

dtj
(tj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D′2,j := dD2
dtj

(tj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
∆s := ∂U

∂σs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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Operators on L(H)×

Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Q0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Scalars

N normalization constant . . . . . . . . . . . . . . . . . . . . . . 7
g coupling constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
δG counterterm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
λ square root of g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
b1 matrix element of B1 . . . . . . . . . . . . . . . . . . . . . . . 11
N1 normalization constant. . . . . . . . . . . . . . . . . . . . . 11

N2 normalization constant. . . . . . . . . . . . . . . . . . . . . 12
N3 normalization constant. . . . . . . . . . . . . . . . . . . . . 13
N4 normalization constant. . . . . . . . . . . . . . . . . . . . . 13
N5 normalization constant. . . . . . . . . . . . . . . . . . . . . 13
A prepared amplitude . . . . . . . . . . . . . . . . . . . . . . . . . 57

Miscellanea

[n] := {1, 2, . . . , n} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Z partition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Vc interaction polynomial . . . . . . . . . . . . . . . . . . . . . . . 7
V r
c renormalised interaction. . . . . . . . . . . . . . . . . . . . 10
I identity element of L(L(H)×) . . . . . . . . . . . . . . . . 10
W := logZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
W amplitude of a node of a jungle . . . . . . . . . . . . . 16

S := J1, jmaxK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
IS |S| × |S| identity matrix . . . . . . . . . . . . . . . . . . . . 16
1 matrix full of 1’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
X(w) interpolated Bosonic covariance . . . . . . . . . 18
Qj quadratic form on L(H)× . . . . . . . . . . . . . . . . . . 25
XB diagonal block of X . . . . . . . . . . . . . . . . . . . . . . . 29
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