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Introduction to Computational Social Choice
Felix Brandta, Vincent Conitzerb, Ulle Endrissc,

Jérôme Langd, and Ariel D. Procacciae

1.1 Computational Social Choice at a Glance

Social choice theory is the field of scientific inquiry that studies the aggregation

of individual preferences towards a collective choice. For example, social choice

theorists—who hail from a range of different disciplines, including mathematics,

economics, and political science—are interested in the design and theoretical evalu-

ation of voting rules. Questions of social choice have stimulated intellectual thought

for centuries. Over time the topic has fascinated many a great mind, from the Mar-

quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better

known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates

such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley.

Computational social choice (COMSOC), by comparison, is a very young field

that formed only in the early 2000s. There were, however, a few precursors. For

instance, David Gale and Lloyd Shapley’s algorithm for finding stable matchings

between two groups of people with preferences over each other, dating back to

1962, truly had a computational flavor. And in the late 1980s, a series of papers

by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand,

computational complexity, as studied in theoretical computer science, can serve

as a barrier against strategic manipulation in elections, but on the other hand, it

can also prevent the efficient use of some voting rules altogether. Around the same

time, a research group around Bernard Monjardet and Olivier Hudry also started

to study the computational complexity of preference aggregation procedures.

Assessing the computational difficulty of determining the output of a voting rule,

or of manipulating it, are wonderful examples of the importation of a concept from

one field, theoretical computer science, to what at that time was still considered

an entirely different one, social choice theory. It is this interdisciplinary view on
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collective decision making that defines computational social choice as a field. But,

importantly, the contributions of computer science to social choice theory are not

restricted to the design and analysis of algorithms for pre-existing social choice

problems. Rather, the arrival of computer science on the scene led researchers to

revisit the old problem of social choice from scratch. It offered new perspectives, and

it led to many new types of questions, thereby arguably contributing significantly

to a revival of social choice theory as a whole.

Today, research in computational social choice has two main thrusts. First, re-

searchers seek to apply computational paradigms and techniques to provide a better

analysis of social choice mechanisms, and to construct new ones. Leveraging the the-

ory of computer science, we see applications of computational complexity theory

and approximation algorithms to social choice. Subfields of artificial intelligence

such as machine learning, reasoning with uncertainty, knowledge representation,

search, and constraint reasoning have also been applied to the same end.

Second, researchers are studying the application of social choice theory to compu-

tational environments. For example, it has been suggested that social choice theory

can provide tools for making joint decisions in multiagent systems, which are pop-

ulated by heterogeneous, possibly selfish, software agents. Moreover, it is finding

applications in group recommendation systems, information retrieval, and crowd-

sourcing. While it is difficult to change a political voting system, such low-stake

environments allow the designer to freely switch between choice mechanisms, and

therefore provide an ideal testbed for ideas coming from social choice theory.

This book aims at providing an authoritative overview of the field of computa-

tional social choice. It has been written for students and scholars from both com-

puter science and economics, as well as others from the mathematical and social

sciences more broadly. To position the field in its wider context, in Section 1.2 we

provide a brief review of the history of social choice theory. The structure of the book

reflects the internal structure of the field. We provide an overview of this structure

by briefly introducing each of the remaining 18 chapters of the book in Section 1.3.

As computational social choice is still rapidly developing and expanding in scope

every year, naturally, the coverage of the book cannot be exhaustive. Section 1.4

therefore briefly introduces a number of important active areas of research that, at

the time of conceiving this book, were not yet sufficiently mature to warrant their

own a chapter. Section 1.5, finally, introduces some basic concepts from theoretical

computer science, notably the fundamentals of computational complexity theory,

with which some readers may not be familiar.

1.2 History of Social Choice Theory

Modern research in computational social choice builds on a long tradition of work

on collective decision making. We can distinguish three periods in the study of col-
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lective decision making: early ideas regarding specific rules going back to antiquity,

the classical period witnessing the development of a general mathematical theory of

social choice in the second half of the 20th century, and the “computational turn”

in the very recent past. We briefly review each of these three periods by providing

a small selection of illustrative examples.

1.2.1 Early Ideas: Rules and Paradoxes

Collective decision making problems come in many forms. They include the question

of how to fairly divide a set of resources, how to best match people on the basis

of their preferences, and how to aggregate the beliefs of several individuals. The

paradigmatic example, however, is voting: how should we aggregate the individual

preferences of several voters over a given set of alternatives so as to be able to choose

the “best” alternative for the group? This important question has been pondered

by a number of thinkers for a long time. Also the largest part of this book, Part 1,

is devoted to voting. We therefore start our historic review of social choice theory

with a discussion of early ideas pertaining to voting.1

Our first example for the discussion of a problem in voting goes back to Roman

times. Pliny the Younger, a Roman senator, in 105 A.D. described the following

problem in a letter to an acquaintance. The senate had to decide on the fate of a

number of prisoners: acquittal (A), banishment (B), or condemnation to death (C).

While option A, favored by Pliny, had the largest number of supporters, it did not

have an absolute majority. One of the proponents of harsh punishment then strate-

gically moved to withdraw proposal C, leaving its former supporters to rally behind

option B, which easily won the majority contest between A and B. Had the sena-

tors voted on all three options, using the plurality rule (under which the alternative

ranked at the top by the highest number of voters wins), option A would have won.

This example illustrates several interesting features of voting rules. First, it may be

interpreted as demonstrating a lack of fairness of the plurality rule: even though a

majority of voters believes A to be inferior to one of the other options (namely B),

A still wins. This and other fairness properties of voting rules are reviewed in Chap-

ter 2 (Zwicker, 2016). Second, Pliny’s anecdote is an instance of what nowadays is

called election control by deleting candidates. By deleting C, Pliny’s adversary in

the senate was able to ensure that B rather than A won the election. Such control

problems, particularly their algorithmic aspects, are discussed in Chapter 7 (Fal-

iszewski and Rothe, 2016). Third, the example also illustrates the issue of strategic

manipulation. Even if option C had not been removed, the supporters of C could

have manipulated the election by pretending that they support B rather than C,

1 There are also instances for very early writings on other aspects of social choice. A good example is
the discussion of fair division problems in the Talmud, as noted and analyzed in modern terms by
game theorists Aumann and Maschler (1985).
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thereby ensuring a preferred outcome, namely B rather than A. Manipulation is

discussed in depth in Chapters 2 (Zwicker, 2016) and 6 (Conitzer and Walsh, 2016).

In the Middle Ages, the Catalan philosopher, poet, and missionary Ramon Llull

(1232–1316) discussed voting rules in several of his writings. He supported the idea

that election outcomes should be based on direct majority contests between pairs

of candidates. Such voting rules are discussed in detail in Chapter 3 (Brandt et al.,

2016). What exact rule he had in mind cannot be unambiguously reconstructed

anymore, but it may have been the rule that today is known as the Copeland

rule, under which the candidate that wins the largest number of pairwise majority

contests is elected. While Pliny specifically discussed the subjective interests of the

participants, Llull saw voting as a means of revealing the divine truth about who is

the objectively best candidate, e.g., to fill the position of abbess in a monastery. The

mathematical underpinnings of this epistemic perspective on voting are discussed

in Chapter 8 (Elkind and Slinko, 2016).

Our third example is taken from the period of the Enlightenment. The works of

the French engineer Jean-Charles de Borda (1733–1799) and the French philosopher

and mathematician Marie Jean Antoine Nicolas de Caritat (1743–1794), better

known as the Marquis de Condorcet—and particularly the lively dispute between

them—are widely regarded as the most significant contributions to social choice

theory in the early period of the field. In 1770, Borda proposed a method of voting,

today known as the Borda rule, under which each voter ranks all candidates, and

each candidate receives as may points from a given voter as that voter ranks other

candidates below her. He argued for the superiority of his rule over the plurality rule

by discussing an example similar to that of Pliny, where the plurality winner would

lose in a direct majority contest to another candidate, while the Borda winner does

not have that deficiency. But Condorcet argued against Borda’s rule on very similar

grounds. Consider the following scenario with three candidates and eleven voters,

which is a simplified version of an example described by Condorcet in 1788:

4 3 2 2

Peter Paul Paul James

Paul James Peter Peter

James Peter James Paul

In this example, four voters prefer candidate Peter over candidate Paul, which they

prefer over candidate James, and so forth. Paul wins this election both under the

plurality rule (with 3+2 = 5 points) and the Borda rule (with 4·1+3·2+2·2+2·0 =

14 points). However, a majority of voters (namely six out of eleven) prefer Peter to

Paul. In fact, Peter also wins against James in a direct majority contest, so there

arguably is a very strong case for rejecting voting rules that would not elect Peter

in this situation. In today’s terminology, we call Peter the Condorcet winner.

Now suppose two additional voters join the election, who both prefer James, to
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Peter, to Paul. Then a majority prefers Peter to Paul and a majority prefers Paul

to James, but now also a majority prefers James to Peter. This, the fact that the

majority preference relation may turn out to be cyclic, is known as the Condorcet

paradox. It shows that Condorcet’s proposal, to be guided by the outcomes of

pairwise majority contests, does not always lead to a clear election outcome.

In the 19th century, the British mathematician and story teller Charles Dodgson

(1832–1898), although believed to have been unaware of Condorcet’s work, sug-

gested a voting rule designed to circumvent this difficulty. In cases where there is

a single candidate that beats every other candidate in pairwise majority contests,

he proposed to elect that candidate (the Condorcet winner). In all other cases, he

proposed to count how many elementary changes to the preferences of the voters

would be required before a given candidate would become the Condorcet winner,

and to elect the candidate for which the required number of changes is minimal.

In this context, he considered the swap of two candidates occurring adjacently in

the preference list of a voter as such an elementary change. The Dodgson rule is

analyzed in detail in Chapter 5 (Caragiannis et al., 2016).

This short review hopefully gives the reader some insight into the kind of ques-

tions discussed by the early authors. The first period in the history of social choice

theory is reviewed in depth in the fascinating collection edited by McLean and

Urken (1995).

1.2.2 Classical Social Choice Theory

While early work on collective decision making was limited to the design of specific

rules and on finding fault with them in the context of specific examples, around

the middle of the 20th century the focus suddenly changed. This change was due to

the seminal work of Kenneth Arrow, who in 1951 demonstrated that the problem

with the majority rule highlighted by the Condorcet paradox is in fact much more

general. Arrow proved that there exists no reasonable preference aggregation rule

that does not violate at least one of a short list of intuitively appealing requirements

(Arrow, 1951). That is, rather than proposing a new rule or pointing out a specific

problem with an existing rule, Arrow developed a mathematical framework for

speaking about and analyzing all possible such rules.

Around the same time, in related areas of economic theory, Nash (1950) pub-

lished his seminal paper on the bargaining problem, which is relevant to the theory

of fair allocation treated in Part 2 of this book, and Shapley (1953) published his

groundbreaking paper on the solution concept for cooperative games now carrying

his name, which plays an important role in coalition formation, to which Part 3 of

this book is devoted. What all of these classical papers have in common is that they

specified philosophically or economically motivated requirements in mathematically

precise terms, as so-called axioms, and then rigorously explored the logical conse-
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quences of these axioms. As an example of this kind of axiomatic work of this

classical period, let us review Arrow’s result in some detail.

Let N = {1, . . . , n} be a finite set of individuals (or voters, or agents), and let A

be a finite set of alternatives (or candidates). The set of all weak orders % on A, i.e.,

the set of all binary relations on A that are complete and transitive, is denoted as

R(A), and the set of all linear orders % on A, which in addition are antisymmetric,

is denoted as L(A). In both cases, we use � to denote the strict part of %. We

use weak orders to model preferences over alternatives that permit ties, and linear

orders to model strict preferences. A social welfare function (SWF) is a function

of the form f : L(A)n → R(A). That is, f is accepting as input a so-called profile

P = (%1, . . . ,%n) of preferences, one for each individual, and maps it to a single

preference order, which we can think of as representing a suitable compromise. We

allow ties in the output, but not in the individual preferences. When f is clear from

the context, we write % for f(%1, . . . ,%n), the outcome of the aggregation, and

refer to it as the social preference order.

Arrow argued that any reasonable SWF should be weakly Paretian and indepen-

dent of irrelevant alternatives (IIA). An SWF f is weakly Paretian if, for any two

alternatives a, b ∈ A, it is the case that, if a �i b for all individuals i ∈ N , then

also a � b. That is, if everyone strictly prefers a to b, then also the social preference

order should rank a strictly above b. An SWF f is IIA if, for any two alternatives

a, b ∈ A, the relative ranking of a and b by the social preference order % only

depends on the relative rankings of a and b provided by the individuals—but not,

for instance, on how the individuals rank some third alternative c. To understand

that it is not straightforward to satisfy these two axioms, observe that, for instance,

the SWF that ranks alternatives in the order of frequency with which they appear

in the top position of an individual preference is not IIA, and that the SWF that

simply declares all alternatives as equally preferable is not Paretian. The majority

rule, while easily seen to be both Paretian and IIA, is not an SWF, because it does

not always return a weak order, as the Condorcet paradox has shown.

An example of an SWF that most people would consider rather unreasonable is

a dictatorship. We say that the SWF f is a dictatorship if there exists an individual

i? ∈ N (the dictator) such that, for all alternatives a, b ∈ A, it is the case that

a �i? b implies a � b. Thus, f simply copies the (strict) preferences of the dictator,

whatever the preferences of the other individuals. Now, it is not difficult to see

that every dictatorship is both Paretian and IIA. The surprising—if not outright

disturbing—result due to Arrow is that the converse is true as well:

Theorem 1.1 (Arrow, 1951) When there are three or more alternatives, then

every SWF that is weakly Paretian and IIA must be a dictatorship.

Proof Suppose |A| > 3 and let f be any SWF that is weakly Paretian and IIA. For

any profile P and alternatives a, b ∈ A, let NP
a�b ⊆ N denote the set of individuals

who rank a strictly above b in P . We call a coalition C ⊆ N of individuals a
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decisive coalition for alternative a vs. alternative b if NP
a�b ⊇ C implies a � b, i.e.,

if everyone in C ranking a strictly above b is a sufficient condition for the social

preference order to do the same. Thus, to say that f is weakly Paretian is the same

as to say that the grand coalition N is decisive, and to say that f is dictatorial is

the same as to say that there exists a singleton that is decisive. We call C weakly

decisive for a vs. b if we have at least that NP
a�b = C implies a � b.

We first show that C being weakly decisive for a vs. b implies C being (not just

weakly) decisive for all pairs of alternatives. This is sometimes called the Contagion

Lemma or the Field Expansion Lemma. So let C be weakly decisive for a vs. b. We

will show that C is also decisive for a′ vs. b′. We will do so under the assumption

that a, b, a′, b′ are mutually distinct (the other cases are similar). Consider any

profile P such that a′ �i a �i b �i b
′ for all i ∈ C, and a′ �j a, b �j b

′, and b �j a

for all j 6∈ C. Then, from weak decisiveness of C for a vs. b we get a � b; from f

being weakly Paretian we get a′ � a and b � b′; and thus from transitivity we get

a′ � b′. Hence, in the specific profile P considered, the members of C ranking a′

above b′ was sufficient for a′ getting ranked above b′ also in the social preference

order. But note that, first, we did not have to specify how individuals outside of C

rank a′ vs. b′, and that, second, due to f being IIA, the relative ranking of a′ vs. b′

can only depend on the individual rankings of a′ vs. b′. Hence, the only part of our

construction that actually mattered was that everyone in C ranked a′ above b′. So

C really is decisive for a′ vs. b′ as claimed.

Consider any coalition C ⊆ N with |C| > 2 that is decisive (for some pair of

alternatives, and thus for all pairs). Next, we will show that we can always split C

into two nonempty subsets C1, C2 with C1∪C2 = C and C1∩C2 = ∅ such that one

of C1 and C2 is decisive for all pairs as well. This is sometimes called the Splitting

Lemma or the Group Contraction Lemma. Recall that |A| > 3. Consider a profile P

in which everyone ranks alternatives a, b, c in the top-3 positions and, furthermore,

a �i b �i c for all i ∈ C1, b �j c �j a for all j ∈ C2, and c �k a �k b for all

k 6∈ C1 ∪ C2. As C = C1 ∪ C2 is decisive, we certainly get b � c. By completeness,

we must have either a � c or c % a. In the first case, we have a situation where

exactly the individuals in C1 rank a above c and in the social preference order a

also is ranked above c. Thus, due to f being IIA, in every profile where exactly the

individuals in C1 rank a above c, a will come out above c. That is, C1 is weakly

decisive for a vs. c. Hence, by the Contagion Lemma, C1 is in fact decisive for all

pairs. In the second case (c % a), transitivity and b � c imply that b � a. Hence,

by an analogous argument as above, C2 must be decisive for all pairs.

Recall that, due to f being weakly Paretian, N is a decisive coalition. We can

now apply the Splitting Lemma again and again, to obtain smaller and smaller

decisive coalitions, until we obtain a decisive coalition with just a single member.

This inductive argument is admissible, because N is finite. But the existence of a

decisive coalition with just one element means that f is dictatorial.
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Arrow’s Theorem is often interpreted as an impossibility result: it is impossible to

devise an SWF for three or more alternatives that is weakly Paretian, IIA, and

nondictatorial. The technique we have used to prove it is also used in Chapter 2

(Zwicker, 2016) on voting theory and in Chapter 17 (Endriss, 2016) on judgment

aggregation. These chapters also discuss possible approaches for dealing with such

impossibilities by weakening our requirements somewhat.

The authoritative reference on classical social choice theory is the two-volume

Handbook of Social Choice and Welfare edited by Arrow, Sen, and Suzumura (2002,

2010). There also are several excellent textbooks available, each covering a good

portion of the field. These include the books by Moulin (1988), Austen-Smith and

Banks (2000, 2005), Taylor (2005), Gaertner (2006), and Nitzan (2010).

1.2.3 The Computational Turn

As indicated above, Arrow’s Theorem (from 1951) is generally considered the birth

of modern social choice theory. The work that followed mainly consisted in ax-

iomatic, or normative, results. Some of these are negative (Arrow’s Theorem being

an example). Others have a more positive flavor, such as the characterization of

certain voting rules, or certain families of voting rules, by a set of properties. How-

ever, a common point is that these contributions (mostly published in economics or

mathematics journals) neglected the computational effort required to determine the

outcome of the rules they sought to characterize, and failed to notice that this com-

putational effort could sometimes be prohibitive. Now, the practical acceptability

of a voting rule or a fair allocation mechanism depends not only on its normative

properties (who would accept a voting rule that is considered unfair by society?),

but also on its implementability in a reasonable time frame (who would accept a

voting rule that needs years for the outcome to be computed?). This is where com-

puter science comes into play, starting in the late 1980s. For the first time, social

choice became a field investigated by computer scientists from various fields (espe-

cially artificial intelligence, operations research, and theoretical computer science)

who aimed at using computational concepts and algorithmic techniques for solving

complex collective decision making problems.

A paradigmatic example is Kemeny’s rule, studied in detail in Chapter 4 (Fischer

et al., 2016). Kemeny’s rule was not explicitly defined during the early phase of so-

cial choice, but it appears implicitly in Condorcet’s works, as discussed, for instance,

in Chapter 8 (Elkind and Slinko, 2016). It played a key role in the second phase

of social choice: it was defined formally by John G. Kemeny in 1959, characterized

axiomatically by H. Peyton Young and Arthur B. Levenglick in 1978, and rational-

ized as a maximum likelihood estimator for recovering the ground truth by means

of voting in a committee by Young in 1988. Finally, it was recognized as a computa-

tionally difficult rule, independently and around the same time (the “early phase of

computational social choice”) by John Bartholdi, Craig Tovey, and Michael Trick,
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as well as by Olivier Hudry and others. None of these papers, however, succeeded

in determining the exact complexity of Kemeny’s rule, which was done only in

2005, at the time when computational social choice was starting to expand rapidly.

Next came practical algorithms for computing Kemeny’s rule, polynomial-time al-

gorithms for approximating it, parameterized complexity studies, and applications

to various fields, such as databases or “web science”. We took Kemeny’s rule as an

example, but there are similar stories to be told about other preference aggregation

rules, as well as for various fair allocation and matching mechanisms.

Deciding when computational social choice first appeared is not easy. Arguably,

the Gale-Shapley algorithm (1962), discussed in Chapter 14 (Klaus et al., 2016),

deals both with social choice and with computation (and even with communica-

tion, since it can also be seen as an interaction protocol for determining a stable

matching). Around the same time, the Dubins-Spanier algorithm (1961), discussed

in Chapter 13 (Procaccia, 2016), was one of the first important contributions in the

formal study of cake cutting, i.e., of fairly partitioning a divisible resource (again,

this “algorithm” can also be seen as an interaction protocol). Just as for preference

aggregation, the first computational studies appeared in the late 1980s. Finally,

although formal computational studies of the fair allocation of indivisible goods

appeared only in the early 2000s, they are heavily linked to computational issues

in combinatorial auctions, the study of which dates back to the 1980s.

By the early 2000s this trend towards studying collective decision making in the

tradition of classical social choice theory, yet with a specific focus on computational

concerns, had reached substantial momentum. Researchers coming from different

fields and working on different specific problems started to see the parallels to the

work of others. The time was ripe for a new research community to form around

these ideas. In 2006 the first edition of the COMSOC Workshop, the biannual

International Workshop on Computational Social Choice, took place in Amsterdam.

The announcement of this event was also the first time that the term “computational

social choice” was used explicitly to define a specific research area.

Today, computational social choice is a booming field, carried by a large and

growing community of active researchers, making use of a varied array of method-

ologies to tackle a broad range of questions. There is increasing interaction with

representatives of classical social choice theory in economics, mathematics, and

political science. There is also increasing awareness of the great potential of com-

putational social choice for important applications of decision-making technologies,

in areas as diverse as policy making (e.g., matching junior doctors to hospitals), dis-

tributed computing (e.g., allocating bandwidth to processes), and education (e.g.,

aggregating student evaluations gathered by means of peer assessment methods).

Work on computational social choice is regularly published in major journals in

artificial intelligence, theoretical computer science, operations research, and eco-

nomic theory—and occasionally also in other disciplines, such as logic, philosophy,

and mathematics. As is common practice in computer science, a lot of work in the
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field is also published in the archival proceedings of peer-reviewed conferences, par-

ticularly the major international conferences on artificial intelligence, multiagent

systems, and economics and computation.

1.3 Book Outline

This book is divided into four parts, reflecting the structure of the field of com-

putational social choice. Part 1, taking up roughly half of the book, focuses on

the design and analysis of voting rules (which aggregate individual preferences into

a collective decision). The room given to this topic here mirrors the breadth and

depth with which the problem of voting has been studied to date.

The remaining three parts consist of three chapters each. Part 2 covers the prob-

lem of allocating goods to individuals with heterogeneous preferences in a way that

satisfies rigorous notions of fairness. We make the distinction between divisible

and indivisible goods. Part 3 addresses questions that arise when agents can form

coalitions and each have preferences over these coalitions. This includes two-sided

matching problems (e.g., between junior doctors seeking an internship and hospi-

tals), hedonic games (where agents’ preferences depend purely on the members of

the coalition they are part of), and weighted voting games (where coalitions emerge

to achieve some goal, such as passing a bill in parliament).

Much of classical (non-computational) social choice theory deals with voting

(Part 1). In contrast, fair allocation (Part 2) and coalition formation (Part 3) are

not always seen as subfields of (classical) social choice theory, but, interestingly,

their intersection with computer science has become part of the core of computa-

tional social choice, due to sociological reasons having to do with how the research

community addressing these topics has evolved over the years.

Part 4, finally, covers topics that did not neatly fit into the first three thematic

parts. It includes chapters on logic-based judgment aggregation, on applications of

the axiomatic method to reputation and recommendation systems found on the In-

ternet, and on knockout tournaments (as used, for instance, in sports competitions).

Next, we provide a brief overview of each of the book’s chapters.

1.3.1 Part 1: Voting

Chapter 2: Introduction to the Theory of Voting (Zwicker). This chapter

provides an introduction to the main classical themes in voting theory. This includes

the definition of the most important voting rules, such as Borda’s, Copeland’s,

and Kemeny’s rule. It also includes an extensive introduction to the axiomatic

method and proves several characterization and impossibility theorems, thereby

complementing our brief exposition in Section 1.2.2. Special attention is paid to

the topic of strategic manipulation in elections.
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Chapter 2 also introduces Fishburn’s classification of voting rules. Fishburn used

this classification to structure the set of Condorcet extensions, the family of rules

that respect the principle attributed to the Marquis de Condorcet, by which any

alternative that beats all other alternatives in direct pairwise contests should be

considered the winner of the election. Fishburn’s classification groups these Con-

dorcet extensions into three classes—imaginatively called C1, C2 and C3—and the

following three chapters each present methods and results pertaining to one of these

classes.

Chapter 3: Tournament Solutions (Brandt, Brill, and Harrenstein). This

chapter deals with voting rules that only depend on pairwise majority comparisons,

so-called C1 functions. Pairwise comparisons can be conveniently represented using

directed graphs. When there is an odd number of voters with linear preferences,

these graphs are tournaments, i.e., oriented complete graphs. Topics covered in

this chapter include McGarvey’s Theorem, various tournament solutions (such as

Copeland’s rule, the top cycle, or the bipartisan set), strategyproofness, implemen-

tation via binary agendas, and extensions of tournament solutions to weak tour-

naments. Particular attention is paid to the issue of whether and how tournament

solutions can be computed efficiently.

Chapter 4: Weighted Tournament Solutions (Fischer, Hudry, and Nie-

dermeier). This chapter deals with voting rules that only depend on weighted

pairwise majority comparisons, so-called C2 functions. Pairwise comparisons can

be conveniently represented using weighted directed graphs, where the weight of

an edge from alternative x to alternative y is the number of voters who prefer x

to y. Prominent voting rules of type C2 are Kemeny’s rule, the maximin rule, the

ranked pairs method, Schulze’s method, and—anecdotally—Borda’s rule. The chap-

ter focusses on the computation, approximation, and fixed-parameter tractability

of these rules, while paying particular attention to Kemeny’s rule.

Chapter 5: Dodgson’s Rule and Young’s Rule (Caragiannis, Hemaspaan-

dra, and Hemaspaandra). This chapter focuses on two historically significant

voting rules belonging to C3, the class of voting rules requiring strictly more infor-

mation than a weighted directed graph, with computationally hard winner deter-

mination problems. The complexity of this problem is analyzed in depth. Methods

for circumventing this intractability—approximation algorithms, fixed-parameter

tractable algorithms, and heuristic algorithms—are also discussed.

The remaining five chapters in Part 1 all focus on specific methodologies for the

analysis of voting rules.

Chapter 6: Barriers to Manipulation in Voting (Conitzer and Walsh).

This chapter concerns the manipulation problem, where a voter misreports her

preferences in order to obtain a better result for herself, and how to address it.

It covers the Gibbard-Satterthwaite impossibility result, which roughly states that
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manipulation cannot be completely avoided in sufficiently general settings, and

its implications. It then covers some ways of addressing this problem, focusing

primarily on erecting computational barriers to manipulation—one of the earliest

lines of research in computational social choice, as alluded to before.

Chapter 7: Control and Bribery in Voting (Faliszewski and Rothe). Con-

trol and bribery are variants of manipulation, typically seen as carried out by the

election organizer. Paradigmatic examples of control include adding or removing

voters or alternatives. Bribery changes the structure of voters’ preferences, without

changing the structure of the entire election. This chapter presents results regard-

ing the computational complexity of bribery and control problems under a variety

of voting rules. Much like Chapter 6, the hope here is to obtain computational

hardness in order to prevent strategic behavior.

Chapter 8: Rationalizations of Voting Rules (Elkind and Slinko). While

the best-known approach in social choice to justify a particular voting rule is the ax-

iomatic one, several other approaches have also been popular in the computational

social choice community. This chapter covers the maximum likelihood approach,

which takes it that there is an unobserved “correct” outcome and that a voting

rule should be chosen to best estimate this outcome (based on the votes, which

are interpreted as “noisy observations” of this correct outcome). It also covers the

distance rationalizability approach, where, given a profile of cast votes, we find the

closest “consensus” profile which has a clear winner.

Chapter 9: Voting in Combinatorial Domains (Lang and Xia). This chapter

addresses voting in domains that are the Cartesian product of several finite domains,

each corresponding to an issue, or a variable, or an attribute. Examples of contexts

where such voting processes occur include multiple referenda, committee (and more

generally multi-winner) elections, group configuration, and group planning. The

chapter presents basic notions of preference relations on multi-attribute domains,

and it outlines several classes of solutions for addressing the problem of organizing

an election in such a domain: issue-by-issue and sequential voting, multi-winner

voting rules, and the use of compact representation languages.

Chapter 10: Incomplete Information and Communication in Voting

(Boutilier and Rosenschein). This chapter unifies several advanced topics,

which generally revolve around quantifying the amount of information about pref-

erences that is needed to accurately decide an election. Topics covered include the

complexity of determining whether a given alternative is still a possible winner after

part of the voter preferences have been processed, strategies for effectively eliciting

voter preferences for different voting rules, voting in the presence of uncertainty

regarding the availability of alternatives, the sample complexity of learning voting

rules, and the problem of “compiling” the votes of part of the electorate using as

little space a possible for further processing at a later point in time.
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1.3.2 Part 2: Fair Allocation

Chapter 11: Introduction to the Theory of Fair Allocation (Thomson).

This chapter offers an introduction to fair resource allocation problems as studied

in economics. While in most models of voting the alternatives are not structured in

any particular way, in resource allocation problems the space of feasible alternatives

naturally comes with a lot of internal structure. The chapter motivates and defines

a wide range of fairness criteria that are relevant to such problems, for different

concretely specified economic environments.

While Chapter 11 is restricted to concepts classically studied in economic theory,

the next two chapters zoom in on specific classes of resource allocation problems

and focus on work of a computational nature.

Chapter 12: Fair Allocation of Indivisible Goods (Bouveret, Chevaleyre,

and Maudet). This chapter addresses the fair allocation of indivisible goods. The

main topics covered are the compact representation of preferences for fair allocation

problems (typically, though not always, using utility functions rather than ordinal

preference relations as in voting), the definition of appropriate fairness criteria,

the algorithmic challenges of computing socially optimal allocations, complexity

results for computing socially optimal allocations, and protocols for identifying

such optimal allocations in an interactive manner.

Chapter 13: Cake Cutting Algorithms (Procaccia). This chapter deals with

fair allocation of heterogeneous divisible goods, also known as cake cutting. This

is quite different from the indivisible goods case, especially when taking the com-

putational perspective, because utility functions may not have a finite discrete

representation. The chapter discusses models for reasoning about the complexity

of cake cutting. Furthermore, the chapter covers classical cake cutting methods, as

well as recent work on optimization and the tension between efficiency and fairness

in cake cutting.

1.3.3 Part 3: Coalition Formation

Chapter 14: Matching under Preferences (Klaus, Manlove, and Rossi).

This chapter covers matching theory, starting with the setting where each side has

preferences over the other side, which includes the traditional example of matching

men to women but also the real-world application of matching residents (junior

doctors) to hospitals. It then covers the setting where only one side has preferences

over the other, which includes examples such as assigning students to campus hous-

ing and assigning papers to reviewers. The chapter covers structural, algorithmic,

and strategic aspects.

Chapter 15: Hedonic Games (Aziz and Savani). Matching under preferences

can be seen as a special case of coalition formation which only allows for certain
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types of coalitions (e.g., coalitions of size two). Hedonic games are more general

in the sense that any coalition structure (i.e., any partitioning of the set of agents

into subsets) is feasible. The defining property of hedonic games is that an agent’s

appreciation of a coalition structure only depends on the coalition he is a member of

and not on how the remaining players are grouped. This chapter surveys the com-

putational aspects of various notions of coalitional stability (such as core stability,

Nash stability, and individual stability) in common classes of hedonic games.

Chapter 16: Weighted Voting Games (Chalkiadakis and Wooldridge).

Weighted voting games model situations where voters with variable voting weight

accept or reject a proposal, and a coalition of agents is winning if and only if the

sum of weights of the coalition exceeds or equals a specified quota. This chapter

covers the computation of solution concepts for weighted voting games, the relation

between weight and influence, and the expressive power of weighted voting games.

1.3.4 Part 4: Additional Topics

Chapter 17: Judgment Aggregation (Endriss). This chapter provides an in-

troduction to judgment aggregation, which deals with the aggregation of judgments

regarding the truth (or falsehood) of a number of possibly related statements. These

statements are expressed in the language of propositional logic, which is why judg-

ment aggregation is also referred to as logical aggregation. The origin of the field

can be traced back to discussions of the so-called doctrinal paradox in legal theory.

The chapter covers the axiomatic foundations of judgment aggregation, the discus-

sion of specific aggregation procedures, connections to preference aggregation, the

complexity of judgment aggregation, and applications in computer science.

Chapter 18: The Axiomatic Approach and the Internet (Tennenholtz and

Zohar). The axiomatic approach, which is prevalent in social choice theory, gauges

the desirability of decision mechanisms based on normative properties. This chap-

ter presents applications of the axiomatic approach to a variety of systems that are

prevalent on the Internet. In particular, the chapter discusses the axiomatic founda-

tions of ranking systems, including an axiomatic characterization of the PageRank

algorithm. Furthermore, the axiomatic foundations of crowdsourcing mechanisms

and recommender systems are discussed in detail.

Chapter 19: Knockout Tournaments (Vassilevska-Williams). A knockout

tournament specifies an agenda of pairwise competitions between alternatives, in

which alternatives are iteratively eliminated until only a single alternative remains.

Knockout tournaments commonly arise in sports, but more generally provide a com-

pelling model of decision making. This chapter covers a body of work on controlling

the agenda of a knockout tournament with the objective of making a favored alter-

native win, both in terms of computational complexity and structural conditions.
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1.4 Further Topics

In this section, we briefly review a number of related topics that did not fit into the

book, and provide pointers for learning more about these. We have no pretense to

be complete in our coverage of the terrain.

1.4.1 Mechanism Design

In mechanism design, the goal is to design mechanisms (e.g., auctions, voting rules,

or matching mechanisms) that result in good outcomes when agents behave strate-

gically (see, e.g., Nisan, 2007). Here, “strategic behavior” is typically taken to mean

behavior according to some game-theoretic solution concept. Several of the chapters

discuss some concepts from mechanism design (notably Chapters 6 and 14), but a

thorough introduction to mechanism design with money (e.g., auction theory), and

topics such as approximate mechanism design without money (Procaccia and Ten-

nenholtz, 2013) or incentive compatible machine learning (Dekel et al., 2010), are

all outside the scope of the book.

1.4.2 (Computational) Cooperative Game Theory

Part 3 of the book covers coalition formation, and thereby overlaps with (computa-

tional) cooperative game theory. Of course, it does not exhaustively cover that field,

which is worthy of a book in itself—and in fact such a book is available (Chalki-

adakis et al., 2011).

1.4.3 Randomized Social Choice

While a voting rule returns a winning alternative (or possibly a set of tied winners),

a social decision scheme returns a probability distribution over alternatives. The

role of randomization as a barrier to strategic behavior is discussed in Chapter 6

(Conitzer and Walsh, 2016). Depending on how preferences over probability distri-

butions are defined, one can define various degrees of strategyproofness, economic

efficiency, and participation. The tradeoff between these properties has been ana-

lyzed by Aziz et al. (2013b, 2014) and Brandl et al. (2015b). Another line of inquiry

is to quantify how well strategyproof social decision schemes approximate common

deterministic voting rules such as Borda’s rule (Procaccia, 2010; Birrell and Pass,

2011; Service and Adams, 2012).

Aziz et al. (2013a) and Aziz and Mestre (2014) have addressed the computational

complexity of computing the probability of alternatives under the random serial

dictatorship rule, in the context of voting as well as fair allocation. Randomization

seems particularly natural in the domain of fair allocation and researchers have
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transferred concepts from voting to fair allocation (Kavitha et al., 2011; Aziz et al.,

2013c) and vice versa (Aziz and Stursberg, 2014).

1.4.4 Iterative Voting

In iterative voting settings, voters cast their vote repeatedly, starting from some

initial profile. In each round, the voters observe the outcome and one or more of

them may change their vote. Depending on the voting rule used and some assump-

tions regarding the voters’ behavior, we may be able (or not) to predict that the

process will converge, as well as to guarantee that the outcome to which the process

converges has some desirable properties. In a paper that initiated a great deal of

activity in this area, Meir et al. (2010) proved for the plurality rule that, if vot-

ers update their ballots one at a time and adopt a myopic best-response strategy,

then the process converges to a Nash equilibrium, whatever the initial state. Other

voting rules and other assumptions on voter behavior were considered by several

authors (e.g., Chopra et al., 2004; Lev and Rosenschein, 2012; Reyhani and Wilson,

2012; Grandi et al., 2013; Obraztsova et al., 2015a). Reijngoud and Endriss (2012)

added the assumption of incomplete knowledge regarding the voting intentions of

others and Meir et al. (2014) added the assumption of uncertainty regarding this

information. Alternative notions of equilibria (with truth bias or lazy voters) were

considered by Obraztsova et al. (2015b). Brânzei et al. (2013) studied the price

of anarchy of such iterated voting processes for several rules. A different iterative

model was studied by Airiau and Endriss (2009), where in each step a voter is ran-

domly selected, proposes a new alternative as a challenger to the current winning

alternative, and the voters have to choose between the two.

1.4.5 Computer-assisted Theorem Proving in Social Choice

A promising direction in computational social choice is to address open research

questions using computer-aided theorem proving techniques. The role of computer

science here is very different from that in mainstream computational social choice:

computational techniques are not used to address the computation of existing so-

cial choice mechanisms or to identify new problems, but rather to prove and/or

discover theorems in social choice theory.2 For example, Nipkow (2009) verified an

existing proof of Arrow’s Theorem using a higher-order logic proof checker. Tang

and Lin (2009) reduced the same theorem to a set of propositional logic formulas,

which can be checked automatically by a satisfiability solver, and Geist and Endriss

(2011) extended this method to a fully automated search algorithm for impossibil-

ity theorems in the context of preference relations over sets of alternatives. Brandt

and Geist (2014) and Brandl et al. (2015a) applied these techniques to improve the

2 Automated reasoning has been very successful in some branches of discrete mathematics (e.g., in
graph theory, with the famous computer-assisted proof of the Four Color Theorem).
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understanding of strategyproofness and participation in the context of set-valued

(or so-called irresolute) rules, and Brandt et al. (2014) to compute the minimal

number of voters required to realize a given majority graph.

1.4.6 Approximate Single-peakedness and Related Issues

It is well-known that certain domain restrictions enable the circumvention of impos-

sibility theorems and can make computationally difficult problems easy. Arguably

the most well-known of these domain restrictions is Black’s single-peakedness (see

Chapter 2); another important (but somewhat less well-known) restriction is single-

crossedness. It is usually computationally easy to recognize whether a profile sat-

isfies such restrictions (Trick, 1989; Doignon and Falmagne, 1994; Escoffier et al.,

2008; Bredereck et al., 2013a; Elkind and Faliszewski, 2014). However, for larger

electorates, it is often unreasonable to expect profiles to satisfy these restrictions.

Therefore, researchers have sought to quantify the extent to which a profile satis-

fies one of these domain restrictions, and also to say something informative about

its structure (for instance, for single-peakedness, by identifying the most plausible

axes). Several recent papers study such notions of near-single-peakedness, or more

generally approximate versions of domain restrictions—especially (Conitzer, 2009;

Cornaz et al., 2012; Bredereck et al., 2013b; Sui et al., 2013; Elkind and Lackner,

2014; Elkind et al., 2015)—and their implications to computing and manipulating

voting rules (Faliszewski et al., 2011; Cornaz et al., 2012, 2013; Faliszewski et al.,

2014; Brandt et al., 2015). A related issue is the detection of components or clone

structures in profiles (Brandt et al., 2011; Elkind et al., 2012).

1.4.7 Computational Aspects of Apportionment and Districting

Apportionment is the process of allocating a number of representatives to differ-

ent regions (or districts), such as states or provinces, usually according to their

relative population. Apportionment comes with electoral districting—subdividing

the territory into districts in which the election is performed, which in turn can

give rise to gerrymandering, the redrawing of district borders for strategic reasons.

Another case of apportionment occurs in party-list proportional representation sys-

tems, in which seats are allocated to parties in proportion to the number of votes

they receive. This area of research, which is sometimes seen as being located at the

borderline between social choice theory and political science, gives rise to a variety

of computational problems. Algorithms for districting are reviewed by Ricca et al.

(2013) (see also the works of Pukelsheim et al. (2012), Ricca et al. (2007), and Ho-

jati (1996) for technical contributions to this field). Algorithms for apportionment

are discussed by Balinski and Demange (1989), Serafini and Simeone (2012), and

Lari et al. (2014). The computational aspects of strategic candidacy in district-

based elections are studied by Ricca et al. (2011) and Ding and Lin (2014). Finally,
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related to that, the computational aspects of vote trading (inter-district exchange

of votes) are studied by Hartvigsen (2006) and Bervoets et al. (2015).

1.4.8 New Problem Domains for Social Choice

As stressed already in the opening paragraphs of this chapter, the interaction be-

tween social choice theory and other disciplines, such as artificial intelligence, theo-

retical computer science, and operations research, led some researchers to work on

new problem domains. Perhaps the most prominent of these new domains is the

topic of Chapter 18 (Tennenholtz and Zohar, 2016), which discusses social choice

problems that came about with the rise of the Internet. But there are others, some

of which we mention below.

Collective combinatorial optimization deals with the design of methods for

the collective version of some combinatorial optimization problems. An example

is the group travel problem (Klamler and Pferschy, 2007), where one has to find

a Hamiltonian path in a graph (that is, a path that goes through each vertex

exactly once), given the preferences of a set of agents. Other examples are the

group knapsack problem (Nicosia et al., 2009) and the group minimum spanning

tree problem (Darmann et al., 2009; Darmann, 2013). Other such problems are

considered, in a more systematic way, by Escoffier et al. (2013). In a similar vein,

group planning (Ephrati et al., 1993) is concerned with finding a joint plan, given

the agents’ preferences over possible goals.

Group classification. Automated classification is a well-known supervised ma-

chine learning task where the input consists of a training set of examples (e.g., a

set of email messages, some of them labeled as spam by the user and some not), and

the output is a classifier mapping any possible input (any future incoming message)

to a class (spam or not spam). Now, in many real-life situations, the training set

may consist of data labelled by several experts, who may have conflicting prefer-

ences about the learned classifier. This problem has been studied by Meir et al.

(2012), who characterize strategyproof classification algorithms.3

Group recommendation. Recommender systems suggest interesting items for

users based on their past interaction with the system. A well-known example are

book recommendations issued by online book sellers based on a user’s purchasing

or browsing history. Group recommendation is based on the idea that we sometimes

want to make such recommendations to groups of people, based on their (possibly

diverse) preferences (e.g., a restaurant for a group of friends, or a holiday package

for a family). Examples of work on this problem include the contributions of Amer-

Yahia et al. (2009) and Chen et al. (2008).

3 This line of research should not be confused with the use of voting techniques in classification (see,
e.g., Bauer and Kohavi, 1999).
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Crowdsourcing. Online platforms such as Amazon’s Mechanical Turk have be-

come a popular method for collecting large amounts of labelled data (e.g., anno-

tations of images with words describing them). Social choice mechanisms can be

used to aggregate the information obtained through crowdsourcing. Besides a grow-

ing number of purely theoretical contributions, examples for work in this area also

include experimental studies aimed at understanding how best to model the di-

vergence between objectively correct answers and answers actually submitted by

participants (Mao et al., 2013), and the design and evaluation of practical aggrega-

tion methods for concrete tasks, such as the semantic annotation of corpora used

in research in linguistics (Qing et al., 2014).

Dynamic social choice. Parkes and Procaccia (2013) deal with sequences of col-

lective decisions to be made in a population with evolving preferences, where future

preferences depend on past preferences and past actions. The output of the collec-

tive decision making process then is a policy in a Markov decision process. This

setting is motivated by online public policy advocacy groups. The causes advocated

by the group’s leadership have an impact on the preferences of members, leading

to a dynamic process that should be steered in a socially desirable direction.

1.5 Basic Concepts in Theoretical Computer Science

We conclude this chapter with a brief review of some standard concepts from (theo-

retical) computer science that will be used in many places in the book, particularly

concepts from the theory of computational complexity. Of course, it is challeng-

ing to communicate in so little space material that students usually learn over

a sequence of courses. Nevertheless, we hope that this provides the reader with-

out computational background some intuitive high-level understanding of these

concepts—enough to appreciate a result’s significance at a high level, as well as to

know for which terms to search in order to obtain more detailed background as

needed. We imagine this may also serve as a useful reference for some readers who

do have computational background.

1.5.1 Computational Complexity

Computational complexity deals with evaluating the computational resources

(mostly, time and space) needed to solve a given problem. We first need to make

explicit what we mean by a “problem”. Most computational problems considered

in this book are phrased as decision problems. Formally, a decision problem P is

defined as a pair 〈LP , YP 〉 where LP is a formal language, whose elements are called

instances, and YP ⊆ LP is the set of positive instances. For instance, the problem of

deciding whether a directed graph is acyclic is defined by the set LP of all directed



20 F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A.D. Procaccia

graphs, while YP is the set of all directed acyclic graphs. If I ∈ YP , then I is said

to be a positive instance of P . Sometimes we will also need to deal with search

problems, also called function problems, whose answer is a solution (when there

exists one): a function problem is a set 〈LP , SP , RP 〉, where SP is another formal

language (the set of possible solutions) and RP ⊆ LP × SP is a relation between

instances and solutions, where (I, S) ∈ RP means that S is a solution for I. For

instance, find a nondominated vertex in a directed graph, if any and find all vertices

with maximum outdegree are both search problems. Solving the function problem

on instance I ∈ LP consists in outputting some S ∈ SP such that (I, S) ∈ RP , if

any, and “no solution” otherwise.

Complexity theory deals with complexity classes of problems that are computa-

tionally equivalent in a certain well-defined way. Typically, (decision or function)

problems that can be solved by an algorithm whose running time is polynomial in

the size of the problem instance are considered tractable, whereas problems that

do not admit such an algorithm are deemed intractable. Formally, an algorithm is

polynomial if there exists a k ∈ N such that its running time is in O(nk), where n

is the size of the input. Here, O(nk) denotes the class of all functions that, for

large values of n, grow no faster than c ·nk for some constant number c (this is the

so-called “Big-O notation”). For instance, when k = 1, the running time is linear,

and when k = 2, the running time is quadratic in n.

The class of decision problems that can be solved in polynomial time is denoted

by P, whereas NP (for “nondeterministic polynomial time”) refers to the class of

decision problems whose solutions can be verified in polynomial time. For instance,

the problem of deciding whether a directed graph is acyclic is polynomial while

deciding whether a directed graph has a cycle that goes through all vertices exactly

once (called a Hamiltonian cycle) is in NP (but is not known to be in P).

The famous P 6= NP conjecture states that the hardest problems in NP do not

admit polynomial-time algorithms and are thus not contained in P. Although this

statement remains unproven, it is widely believed to be true. Hardness of a problem

for a particular class intuitively means that the problem is no easier than any other

problem in that class. Both membership and hardness are established in terms

of reductions that transform instances of one problem into instances of another

problem using computational means appropriate for the complexity class under

consideration. Most reductions in this book rely on reductions that can be computed

in time polynomial in the size of the problem instances, and are called polynomial-

time reductions. Finally, a problem is said to be complete for a complexity class

if it is both contained in and hard for that class. For instance, deciding whether a

directed graph possesses a Hamiltonian cycle is NP-complete.

Given the current state of complexity theory, we cannot prove the actual in-

tractability of most algorithmic problems, but merely give evidence for their in-

tractability. Showing NP-hardness of a problem is commonly regarded as very strong

evidence for computational intractability because it relates the problem to a large
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class of problems for which no efficient, i.e., polynomial-time, algorithm is known,

despite enormous efforts to find such algorithms.

Besides P and NP, several other classes will be used in this book. Given a decision

problem P = 〈LP , YP 〉, the complementary problem of P is defined as P = 〈LP , LP \
YP 〉. Given a complexity class C, a decision problem belongs to the class coC if P

belongs to C. Notably, coNP is the class of all decision problems whose complement

is in NP. For instance, deciding that a directed graph does not possess a Hamiltonian

cycle is in coNP (and coNP-complete).

We now introduce several complexity classes which are supersets of NP and coNP

(and are strongly believed to be strict supersets). Given two complexity classes C

and C′, we denote by CC′
the set of all problems that can be solved by an algorithm

for C equipped with C′-oracles, where a C′-oracle solves a problem in C′ (or in coC′)

in unit time. The class ∆P
2 , defined as PNP, is thus the class of all decision problems

that can be solved in polynomial time with the help of NP-oracles, which answer

in unit time whether a given instance of a problem in NP is positive or not. The

class ΘP
2 is the subset of ∆P

2 consisting of all decision problems that can be solved

in polynomial time using “logarithmically many” NP-oracles. Equivalently, ΘP
2 may

be defined as the subset of ∆P
2 for which a polynomial number of NP-oracles may be

used, but these need to be queried in parallel, i.e., we cannot use the answer to one

oracle to determine what question to put to the next oracle. Finally, ΣP
2 = NPNP and

ΠP
2 = coΣNP

2 . Thus, for instance, ΣP
2 is the class of decision problems for which the

correctness of a positive solution can be verified in polynomial time by an algorithm

that has access to an NP-oracle. The following inclusions hold:

P ⊆ NP, coNP ⊆ ΘP
2 ⊆ ∆P

2 ⊆ ΣP
2 ,Π

P
2

It is strongly believed that all these inclusions are strict, although none of them

was actually proven to be strict. Interestingly, ΘP
2 and (to a lesser extent) ∆P

2 , ΣP
2

and ΠP
2 play an important role in computational social choice (and indeed we will

find them referred to in Chapters 3, 4, 5, 8, 12 and 17). We will occasionally refer to

other complexity classes (such as PLS or #P) in the book; they will be introduced

in the chapter concerned.

For a full introduction and an extensive overview of computational complexity

theory, we refer the reader to Papadimitriou (1994) and Ausiello et al. (1999).

1.5.2 Linear and Integer Programming

One notable computational problem is that of solving linear programs. A linear

program consists of a set of variables xj (1 6 j 6 n), a set of constraints indexed

by i (1 6 i 6 m), and an objective. Constraint i is defined by parameters aij
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(1 6 j 6 n) and bi, resulting in the following inequality constraint:

n∑
j=1

aijxj 6 bi

The objective is defined by parameters cj , resulting in the following objective:

n∑
j=1

cjxj

The goal is to find a vector of nonnegative values for the xj that maximizes the value

of the objective while still meeting all the constraints (i.e., all the inequalities should

hold). Natural variants, such as not requiring variables to take nonnegative values,

allowing equality constraints, having a minimization rather than a maximization

objective, etc., are not substantively different from this basic setup. There is a rich

theory of linear programming; for the purpose of this book, what is most important

to know is that linear programs can be solved to optimality in polynomial time.

Thus, if a computational problem can be formulated as (equivalently, reduced to)

a polynomial-sized linear program, then it can be solved in polynomial time.

Linear programs allow all their variables to take fractional values. If instead,

we require the variables to take integer values, we obtain an integer linear pro-

gram. If we allow some but not all variables to take fractional values, we obtain

a mixed integer linear program. This apparently minor modification has significant

computational ramifications: solving (mixed) integer linear programs is NP-hard.

Indeed, many NP-hard problems are easily formulated as (mixed) integer linear

programs. One may wonder what the point of doing so is, as after all the latter

are hard to solve. However, (mixed) integer linear program solvers are available

that scale quite well on many (though, unsurprisingly, not all) families of instances.

Moreover, (mixed) integer linear program formulations of a problem often help us

develop deeper insight into the problem at hand. One particularly natural and help-

ful notion is that of the linear program relaxation of a mixed integer linear program,

which simply drops the integrality requirement, taking us back to an easy-to-solve

linear program. While this relaxation necessarily does not always have the same

optimal solutions as the original, it nevertheless often serves as a useful starting

point for analysis and computation.

A good reference for the theory and practice of both integer and linear program-

ming is the book by Nemhauser and Wolsey (1999).
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B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency and its complex-
ity. In Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI), pages 366–370. IOS Press, 2008.

B. Escoffier, L. Gourvès, and J. Monnot. Fair solutions for some multiagent op-
timization problems. Autonomous Agents and Multi-Agent Systems, 26(2):
184–201, 2013.

P. Faliszewski and J. Rothe. Control and bribery in voting. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of
Computational Social Choice, chapter 7. Cambridge University Press, 2016.

P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. The shield that
never was: Societies with single-peaked preferences are more open to manipu-
lation and control. Information and Computation, 209(2):89–107, 2011.

P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. The complexity of
manipulative attacks in nearly single-peaked electorates. Artificial Intelligence,
207:69–99, 2014.

F. Fischer, O. Hudry, and R. Niedermeier. Weighted tournament solutions. In
F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors,
Handbook of Computational Social Choice, chapter 4. Cambridge University
Press, 2016.



Introduction to Computational Social Choice 27

W. Gaertner. A Primer in Social Choice Theory. LSE Perspectives in Economic
Analysis. Oxford University Press, 2006.

D. Gale and L. S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69(1):9–15, 1962.

C. Geist and U. Endriss. Automated search for impossibility theorems in social
choice theory: Ranking sets of objects. Journal of Artificial Intelligence Re-
search, 40:143–174, 2011.

U. Grandi, A. Loreggia, F. Rossi, K. B. Venable, and T. Walsh. Restricted manipu-
lation in iterative voting: Condorcet efficiency and Borda score. In Proceedings
of the 3rd International Conference on Algorithmic Decision Theory (ADT),
volume 8176 of Lecture Notes in Computer Science (LNCS), pages 181–192.
Springer-Verlag, 2013.

D. Hartvigsen. Vote trading in public elections. Mathematical Social Sciences, 52
(1):31–48, 2006.

M. Hojati. Optimal political districting. Computers & OR, 23(12):1147–1161, 1996.
T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Com-

puter Science, 412(24):2679–2690, 2011.
C. Klamler and U. Pferschy. The traveling group problem. Social Choice and

Welfare, 29(3):429–452, 2007.
B. Klaus, D. Manlove, and F. Rossi. Matching under preferences. In F. Brandt,

V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of
Computational Social Choice, chapter 14. Cambridge University Press, 2016.

J. Lang and L. Xia. Voting in combinatorial domains. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational
Social Choice, chapter 9. Cambridge University Press, 2016.

I. Lari, F. Ricca, and A. Scozzari. Bidimensional allocation of seats via zero-one
matrices with given line sums. Annals of Operations Research, 215(1):165–181,
2014.

O. Lev and J. S. Rosenschein. Convergence of iterative voting. In Proceedings
of the 11th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 611–618. IFAAMAS, 2012.

A. Mao, A. D. Procaccia, and Y. Chen. Better human computation through prin-
cipled voting. In Proceedings of the 27th AAAI Conference on Artificial Intel-
ligence (AAAI), pages 1142–1148. AAAI Press, 2013.

I. McLean and A. B. Urken, editors. Classics of Social Choice. University of
Michigan Press, Ann Arbor, 1995.

R. Meir, M. Polukarov, J. S. Rosenschein, and N. R. Jennings. Convergence to
equilibria in plurality voting. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI), pages 823–828. AAAI Press, 2010.

R. Meir, A. D. Procaccia, and J. S. Rosenschein. Algorithms for strategyproof
classification. Artificial Intelligence, 186:123–156, 2012.

R. Meir, O. Lev, and J. S. Rosenschein. A local-dominance theory of voting equi-
libria. In Proceedings of the 15th ACM Conference on Economics and Compu-
tation (ACM-EC), pages 313–330. ACM Press, 2014.

H. Moulin. Axioms of Cooperative Decision Making. Cambridge University Press,
1988.

J. F. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950.
G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, 1999.



28 F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A.D. Procaccia

G. Nicosia, A. Pacifici, and U. Pferschy. On multi-agent knapsack problems. In Pro-
ceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial
Optimization (CTW), pages 44–47, 2009.

T. Nipkow. Social choice theory in HOL: Arrow and Gibbard-Satterthwaite. Journal
of Automated Reasoning, 43(3):289–304, 2009.

N. Nisan. Introduction to mechanism design (for computer scientists). In Algorith-
mic Game Theory. Cambridge University Press, 2007.

S. Nitzan. Collective Preference and Choice. Cambridge University Press, 2010.

S. Obraztsova, E. Markakis, M. Polukarov, Z. Rabinovich, and N. Jennings. On the
convergence of iterative voting: How restrictive should restricted dynamics be.
In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI),
pages 993–999. AAAI Press, 2015a.

S. Obraztsova, Z. Rabinovich, O. Lev, E. Markakis, and J. S. Rosenschein. Analysis
of equilibria in iterative voting schemes. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI), pages 1007–1013. AAAI Press,
2015b.

C. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

D. C. Parkes and A. D. Procaccia. Dynamic social choice with evolving preferences.
In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI),
pages 767–773. AAAI Press, 2013.

A. D. Procaccia. Can approximation circumvent Gibbard-Satterthwaite? In Pro-
ceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI), pages
836–841. AAAI Press, 2010.

A. D. Procaccia. Cake cutting algorithms. In F. Brandt, V. Conitzer, U. En-
driss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational Social
Choice, chapter 13. Cambridge University Press, 2016.

A. D. Procaccia and M. Tennenholtz. Approximate mechanism design without
money. ACM Transactions on Economics and Computation, 1(4):18, 2013.

F. Pukelsheim, F. Ricca, B. Simeone, A. Scozzari, and P. Serafini. Network flow
methods for electoral systems. Networks, 59(1):73–88, 2012.

C. Qing, U. Endriss, R. Fernández, and J. Kruger. Empirical analysis of aggrega-
tion methods for collective annotation. In Proceedings of the 25th International
Conference on Computational Linguistics (COLING), pages 1533–1542. Asso-
ciation for Computational Linguistics, 2014.

A. Reijngoud and U. Endriss. Voter response to iterated poll information. In
Proceedings of the 11th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 635–644. IFAAMAS, 2012.

R. Reyhani and M. C. Wilson. Best reply dynamics for scoring rules. In Proceedings
of the 20th European Conference on Artificial Intelligence (ECAI), pages 672–
677. IOS Press, 2012.

F. Ricca, A. Scozzari, and B. Simeone. Weighted Voronoi region algorithms for
political districting. Mathematical and Computer Modelling, 48(9–10):1468–
1477, 2007.

F. Ricca, A. Scozzari, and B. Simeone. The give-up problem for blocked regional
lists with multi-winners. Mathematical Social Sciences, 62(1):14–24, 2011.

F. Ricca, A. Scozzari, and B. Simeone. Political districting: from classical models
to recent approaches. Annals of Operations Research, 204(1):271–299, 2013.



Introduction to Computational Social Choice 29

P. Serafini and B. Simeone. Parametric maximum flow methods for minimax ap-
proximation of target quotas in biproportional apportionment. Networks, 59
(2):191–208, 2012.

T. C. Service and J. A. Adams. Strategyproof approximations of distance ratio-
nalizable voting rules. In Proceedings of the 11th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 569–576.
IFAAMAS, 2012.

L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, edi-
tors, Contributions to the Theory of Games, volume 2, pages 307–317. Prince-
ton University Press, 1953.

X. Sui, A. Francois-Nienaber, and C. Boutilier. Multi-dimensional single-peaked
consistency and its approximations. In Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI), pages 375–382. AAAI
Press, 2013.

P. Tang and F. Lin. Computer-aided proofs of Arrow’s and other impossibility
theorems. Artificial Intelligence, 173(11):1041–1053, 2009.

A. D. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge
University Press, 2005.

M. Tennenholtz and A. Zohar. The axiomatic approach and the Internet. In
F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors,
Handbook of Computational Social Choice, chapter 18. Cambridge University
Press, 2016.

W. Thomson. Introduction to the theory of fair allocation. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of
Computational Social Choice, chapter 11. Cambridge University Press, 2016.

M. A. Trick. Recognizing single-peaked preferences on a tree. Mathematical Social
Sciences, 17(3):329–334, 1989.

V. Vassilevska-Williams. Knockout tournaments. In F. Brandt, V. Conitzer, U. En-
driss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational Social
Choice, chapter 19. Cambridge University Press, 2016.

W. S. Zwicker. Introduction to the theory of voting. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational
Social Choice, chapter 2. Cambridge University Press, 2016.


