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In this paper, we investigated the connection between information and estimation measures for mismatched Gaussian models. In addition to the input prior mismatch we take into account the noise mismatch and establish a new relation between relative entropy and excess mean square error. The derived formula shows that the input prior mismatch may be cancelled by the noise mismatch. Finally, an example illustrates the impact of model mismatches on estimation accuracy.

I. INTRODUCTION

In information theory, entropy and mutual information are two fundamental information measures. Several works showed that these measures have some connections with estimation measures. Indeed, a well known relationship between entropy and Fisher information is given by de Bruijn identity [1, p.672]. Another link between mutual information and Minimal Mean Square Error (MMSE) has been established by Palomar et al. [START_REF] Palomar | Gradient of mutual information in linear vector gaussian channels[END_REF] and Guo et al. [START_REF] Guo | Mutual information and minimum mean-square error in gaussian channels[END_REF] in linear Gaussian communication channels. From an estimation point of view, the latter relation is interesting since MMSE characterizes the optimal achievable performance in Mean Square Error (MSE) sense, which is usually well defined in Bayesian estimation by the MSE of MMSE estimator. However, few works have investigated the mismatched scenario, despite its growing interest in practical applications. In fact in an actual estimation scenario, one cannot ensure the estimation model is correctly specified due to measurement or estimation imperfections [START_REF] Akcakaya | MIMO radar detection and adaptive design under a phase synchronization mismatch[END_REF], [START_REF] Greco | Maximum likelihood covariance matrix estimation for complex elliptically symmetric distributions under mismatched conditions[END_REF], [START_REF] Ren | Performance bounds under misspecification model for mimo radar application[END_REF]. This is particularly important when using several measurements coming from different sensors or devices, a situation referred to as multimodality [START_REF] Lahat | Multimodal Data Fusion: An Overview of Methods, Challenges and Prospects[END_REF], [START_REF] Chlaily | Impact of Noise Correlation on Multimodality[END_REF]. Assumptions usually made about the links between modalities may be false, such as independence of noises. Therefore, the influence of model mismatches on estimation performance deserves to be explored.

Mismatched models could also occur in communication channels. A recent work of Verdú [START_REF] Verdú | Mismatched estimation and relative entropy[END_REF] investigated the case of mismatched input and established a relationship between the excess MSE and relative entropy. This result was generalized to vector Gaussian channels by Chen and Lafferty [START_REF] Chen | Mismatched estimation and relative entropy in vector gaussian channels[END_REF]. A similar relationship has been proposed by Guo for non-Gaussian additive noise [START_REF] Guo | Relative entropy and score function: New informationestimation relationships through arbitrary additive perturbation[END_REF]. However, all these works focus on the cases where the channel noise is correctly specified. Thus, the relations they proposed do not hold for mismatched channel noise. The purpose of this paper is to derive a new relationship between the relative entropy and excess MSE in the case of mismatched Gaussian channel noise and mismatched inputs. A mismatched channel noise occurs when the true pdf of the observation noise differs from the pdf assumed to model data. This phenomenon is generally due to channel calibration default or to a simplification of observed data model. A recalibration procedure could help to correct mismatches but it is often computationally expensive and could complexify the data model. This is the reason why it is sometimes helpful to study estimation and information measures under mismatched contexts rather than trying to correct mismatches.

The mismatched MSE was also analysed from a statistical physics perspective by Merhav and Huleihel for mismatched channel noise [START_REF] Merhav | Optimum estimation via gradients of partition functions and information measures: A statistical-mechanical perspective[END_REF] and mismatched channel matrix [START_REF] Huleihel | Analysis of mismatched estimation errors using gradients of partition functions[END_REF]. The authors specifically consider the problem of estimating a codeword transmitted over a white Gaussian channel. In this paper we consider a quite different scenario: the problem of estimating a Gaussian signal using two correlated complementary modalities. In contrast to [START_REF] Merhav | Optimum estimation via gradients of partition functions and information measures: A statistical-mechanical perspective[END_REF] and [START_REF] Huleihel | Analysis of mismatched estimation errors using gradients of partition functions[END_REF], we explore a double mismatch, i.e. input prior mismatch and channel noise mismatch, which could be used to decrease the mismatched MSE.

This paper is organized as follows. We review in section II some of the existing connections between estimation theory and information theory under exact model and mismatched input priors. Our original contributions are presented in Section III and IV. In Section III we state the new main theorems that relate relative entropy and excess MSE, and mutual information and MSE under mismatched Gaussian channels. In Section IV we study the impact of wrong links between two modalities on excess MSE on a simple example. Section V concludes the paper.

II. BACKGROUND

For notational convenience, scalar random variables are denoted by lowercase letters, e.g., z. Vector random variables are denoted by bold lowercase letters, e.g., z. Matrices are denoted by bold uppercase letters, e.g., A. The exact pdf of a random variable z is denoted by p(z) and the assumed one by q(z). Even though these notations are not rigorous, they are largely utilized in information theory literature in order to simplify mathematical expressions (see [START_REF] Cover | Elements of Information Theory[END_REF]).

Let us consider the general linear Gaussian channel defined in [START_REF] Palomar | Gradient of mutual information in linear vector gaussian channels[END_REF]:

x = Hs + n (1)
where s ∈ R m is the input random vector, x ∈ R l is the observed random vector, n ∈ R l is an additive noise vector and H ∈ R l×m is the channel matrix. s and n are assumed to be independent. If the noise vector is correctly specified to be normally distributed, namely n ∼ N (0, Σ), and the assumed prior pdf of s corresponds to the true prior pdf, p(s), then Palomar and Verdú [START_REF] Palomar | Gradient of mutual information in linear vector gaussian channels[END_REF] provide the following relationship between the mutual information and the MMSE

∇ H I(s; x) = Σ -1 HM p,p (2) 
where ∇ H denotes the gradient1 operator with respect to (w.r.t.) H and I(s; x) denotes the mutual information between s and x defined by

I(s; x) = log p(x, s) p(x)p(s) p(x, s)dxds D KL (p(x, s)||p(x)p(s)). ( 3 
)
The latter is a measure of mutual dependence between s and x, and can be viewed as the Kullback Leibler divergence between the joint pdf p(x, s) and the product p(x)p(s) of the marginal pdf's. The MMSE is defined by the m × m matrix:

M p,p = E p (s -E p [s|x]) (s -E p [s|x]) T (4) 
which is the exact covariance of the exact MMSE estimator error, namely of ss p (x) where

s p (x) = E p [s|x] . The index p in E p [s] (resp. E p [s|x]
) means the expectation is taken w.r.t. the true pdf p(s) (resp. the true conditional pdf p(s|x)).

Observation model ( 1) is investigated further by Verdù, Guo, Chen and Lafferty [START_REF] Verdú | Mismatched estimation and relative entropy[END_REF], [START_REF] Chen | Mismatched estimation and relative entropy in vector gaussian channels[END_REF], [START_REF] Guo | Relative entropy and score function: New informationestimation relationships through arbitrary additive perturbation[END_REF] in mismatched contexts. They consider an input prior mismatch, i.e. the exact input pdf p(s) and assumed input pdf q(s) are different. In this case, they establish the following relationship

∇ H D KL (p(x)||q(x)) = Σ -1 H(M p,q -M p,p ) (5) 
where

M p,q = E p (s -E q [s|x]) (s -E q [s|x]) T (6) 
is the exact covariance of the mismatched MMSE estimator error. The estimator s q (x) = E q [s|x] is the so-called mismatched (or the quasi-) MMSE estimator. Relation (5) characterizes the excess estimation error due to mismatched model assumption. This excess quantity is directly related to the gradient of the Kullback-Leibler divergence between the exact and the assumed pdf's of observed data. Our purpose is to extend relation [START_REF] Greco | Maximum likelihood covariance matrix estimation for complex elliptically symmetric distributions under mismatched conditions[END_REF] in the case where, in addition to the input prior mismatch, the channel noise is also mismatched, i.e., the exact noise pdf p(n) and the assumed noise pdf q(n) are different. This scenario seems more realistic since both mismatches, input prior and channel noise, could occur in practice for instance in multimodal estimation. Unfortunately, relation [START_REF] Greco | Maximum likelihood covariance matrix estimation for complex elliptically symmetric distributions under mismatched conditions[END_REF] does not hold in this case. Therefore, we propose in this paper a general expression which depicts and quantifies the excess estimation error for mismatched Gaussian models.

III. MISMATCHED GAUSSIAN CHANNELS

A. Statement and main result

Let us consider the linear vector channel defined in [START_REF] Cover | Elements of Information Theory[END_REF]. We suppose now this model is misspecified in the sense that the prior pdf of signal s and the pdf of noise n are both mismatched. Let us denote respectively the exact pdf's of s and n by p(s) and p(n) which are different of their assumed pdf's q(s) and q(n).

The exact and assumed signals are both zero mean Gaussian distributed but with different covariance matrices, i.e. p(s) = N (0, Γ) and q(s) = N (0, Γ) with Γ = Γ. Similar mismatch is considered for the channel noise, i.e. p(n) = N (0, Σ) and q(n) = N (0, Σ) with Σ = Σ. The last hypothesis implies that the conditional pdf's of observations are given by p(x|s) = N (Hs, Σ) and q(x|s) = N (Hs, Σ).

The main difference between this scenario and the one proposed in [START_REF] Chen | Mismatched estimation and relative entropy in vector gaussian channels[END_REF], which was recalled in Section II, is the mismatch on the channel noise. In our case, we obtain the following theorem:

Theorem III.1. Consider the aforementioned mismatched communication model. Then

∇ H D KL (p(x)||q(x)) = Σ -1 H(M p,q -M p,p ) + R, ( 7 
)
where R is a residual term given by

R = ( Σ -1 Σ -I) Σ -1 HM p,p -Σ -1 HM q,q (8) 
and

M q,q = E q [(s -E q [s|x])(s -E q [s|x]) T ]
is the covariance of the mismatched MMSE estimator error, computed with the mismatched pdf's q(s) and q(s|x).

Proof. see Appendix A

The residual term is a weighted difference between the MMSE under distribution p and the MMSE under distribution q. This term vanishes if the channel noise is correctly specified, i.e. Σ = Σ, and (7) reduces to [START_REF] Greco | Maximum likelihood covariance matrix estimation for complex elliptically symmetric distributions under mismatched conditions[END_REF]. The above theorem can be interpreted as an extension of Chen and Lafferty result [START_REF] Chen | Mismatched estimation and relative entropy in vector gaussian channels[END_REF] for mismatched Gaussian channel noise. Even though Γ and Γ do not appear explicitly in [START_REF] Lahat | Multimodal Data Fusion: An Overview of Methods, Challenges and Prospects[END_REF] they occur in the relative entropy and the MMSE's (cf Appendix A).

Example: we consider a scalar channel with H = √ λ, p(s) = N (0, γ 2 ), q(s) = N (0, γ2 ), p(n) = N (0, σ 2 ) and q(n) = N (0, σ2 ).

By applying theorem III.1 and using 2

√ λ dD KL dλ = dD KL d √ λ , we have 2 d dλ D KL (p(x)||q(x)) = 1 σ2 (M p,q -M p,p ) + 1 √ λ R, (9) 
Then, by integrating both sides of (9) w.r.t λ, it follows

2 (D KL (p(s)||q(s)) -D KL (p(n)||q(n))) = +∞ 0 1 σ2 (M p,q -M p,p ) + 1 √ λ R dλ. (10) 
Equation [START_REF] Chen | Mismatched estimation and relative entropy in vector gaussian channels[END_REF] states that the area defined by (M p,q -M p,p )/σ 2 + R/ √ λ is equal to the difference between input prior mismatch and noise pdf mismatch. The noise mismatch introduces an opposite effect to the signal mismatch. This suggests that both mismatches, input prior and channel noise, may compensate each other. Hence, this compensation may enhance the channel quality and the estimation accuracy. If p(n) = q(n) equation ( 10) reduces to the relation proposed by Verdú in [START_REF] Verdú | Mismatched estimation and relative entropy[END_REF].

B. Mismatched entropy and mutual information

As we have seen beforehand, when considering a mismatched model, it is no longer appropriate to use standard measures borrowed from estimation theory. For instance, M p,p must be replaced by M p,q to quantify the MSE for mismatched models. The same applies for information theory measures, mainly entropy and mutual information. Indeed, the classical entropy h(x) -E p [log p(x)], defined by the average 2 of Shannon information, namely -log p(x), quantifies the uncertainty of x when data pdf p(x) is correctly specified. However, if the observation model is mismatched, i.e. the assumed pdf of x is q(x) instead of p(x), then the Shannon information should be modified accordingly. In case of mismatched model given by section III-A, the Shannon information is now equal to -log q(x) and the mismatched entropy is defined as follows:

h p,q (x) = -E p [log q(x)] (11) 
In coding theory, h p,q is usually used to quantify the additional required bits to code an event considering a wrong pdf [1, p.115].

Similarly, the expression of the mutual information (3) does not hold under mismatched models. A natural extension could be derived by using the notion of mismatched entropy, since mutual information is also defined as the difference between two entropies I(s; x) h(x) -h(x|s). Thus, the mismatched mutual information is given by [START_REF] Merhav | Optimum estimation via gradients of partition functions and information measures: A statistical-mechanical perspective[END_REF] where D KL (p(x|s)||q(x|s)) log p(x|s) q(x|s) p(x, s)dxds. The nonnegativity of I p,q (s; x) is not guaranteed in general, contrary to the classical mutual information. Using Theorem III.1, a relation between mutual information and MSE is provided by: Theorem III.2. Consider the model presented in [START_REF] Cover | Elements of Information Theory[END_REF], following the Gaussian assumptions, I p,q (s; x) is related to M p,q , by the following formula

I p,q (s; x) h p,q (x) -h p,q (x|s) = E p log q(x|s) q(x) = I(s; x) -D KL (p(x|s)||q(x|s)) + D KL (p(x)||q(x)),
∇ H I p,q (s; x) = Σ -1 H M p,q + I -Σ -1 Σ Σ -1 H M q,q (13 
) 2 The average is always taken under the true data distribution Tr(Mp,q -Mp,p) vanishes when no mismatch occurs i.e. ρn = ρn (solid line) and ρs = ρs. However, when the noise correlation is mismatched ρn = ρn, Tr(Mp,q -Mp,p) is cancelled by a signal correlation mismatch rather than by the exact signal correlation ρs. For instance, the dashed line (ρn = 0) is almost zero at ρs = -0.1 while ρs = 0.3.

Note that Γ and Γ take action in I p,q , M p,q and M q,q . The second term on the right-hand side of (13) vanishes if only the input prior is mismatched, i.e Γ = Γ and Σ = Σ. Straightforwardly, (13) reduces to (2) if Σ = Σ and Γ = Γ. The above theorem is an extension to mismatched models of the relation [START_REF] Palomar | Gradient of mutual information in linear vector gaussian channels[END_REF] proposed by Palomar and Verdú [START_REF] Palomar | Gradient of mutual information in linear vector gaussian channels[END_REF].

Proof. see Appendix B IV. EXAMPLE: MODEL MISMATCH AND EXCESS MSE

As a simple example, easy to interpret, let m = 2, l = 2 and define H = α 1 0 0 α 2 , where α 2 ≤ α 1 . Model (1) becomes:

x 1 x 2 = α 1 0 0 α 2 s 1 s 2 + n 1 n 2 , (14) 
where s 1 , s 2 , n 1 and n 2 are all zero mean, unit-variance Gaussian random variables. We suppose that signals and noises are independent but s 1 and s 2 (resp. n 1 and n 2 ) are correlated and denote the correlation coefficient ρ s (resp. ρ n ). It can be shown that the estimation accuracy improves if x 1 and x 2 are used jointly, i.e. the correlations between signals and between noises are exploited, since x j also bears information about s i (i, j ∈ {1, 2}, i = j). But, what happens if we mismatch ρ s and ρ n ? Let ρs and ρn be the assumed signal and noise correlations, different from the exact signal and noise correlations ρ s and ρ n . Namely,

Γ = 1 ρ s ρ s 1 , Σ = 1 ρ n ρ n 1 , Γ = 1 ρs ρs 1 and Σ = 1 ρn ρn 1
. Accordingly, the mismatched estimator of s i using both modalities may be written as:

s q (i) = α i (1 + α j ) -α j (ρ n + α 1 α 2 ρs ) (1 + α 2 1 )(1 + α 2 2 ) -(ρ n + α 1 α 2 ρs ) 2 x i (15) 
+ (α i ρn -α j ρs ) ((1 + α 2 1 )(1 + α 2 2 ) -(ρ n + α 1 α 2 ρs ) 2 ) 2
x j The coefficient of x j vanishes for ρn = αj αi ρs , so that the estimator of s i is only based on x i . This means that if ρn = αj αi ρs , x j is redundant to x i for estimating s i and any additional information held by x j about s i is ignored. If in addition α 1 = α 2 , ρn = αj αi ρs becomes ρn = ρs , then x i is also presumed to be redundant w.r.t x j about s j and the observations are used separately i.e. without any interaction. The diagonal elements of matrices M p,p and M p,q are given by:

M p,p (i, i) = (1 -ρ 2 n ) + (1 -ρ 2 s )α 2 j (1 + α 2 1 )(1 + α 2 2 ) -(ρ n + α 1 α 2 ρ s ) 2 (16) 
M p,q (i, i) = (1 -ρ2 n ) + (1 -ρ2 s )α 2 j (1 + α 2 1 )(1 + α 2 2 ) -(ρ n + α 1 α 2 ρs ) 2 (17) +(α i ρn -α j ρs ) (1 + α 2 j ) (α j (ρ s -ρs ) -α i (ρ n -ρn )) ((1 + α 2 1 )(1 + α 2 2 ) -(ρ n + α 1 α 2 ρs ) 2 ) 2 +(α i ρn -α j ρs ) α j (ρ s ρ n -ρ s ρn )(ρ n + α 1 α 2 ρs ) ((1 + α 2 1 )(1 + α 2 2 ) -(ρ n + α 1 α 2 ρs ) 2 ) 2
We show in Fig. 1 the variation of Tr (M p,q -M p,p ) as a function of ρs for different values of ρn . The absence of noise mismatch i.e. ρn = ρ n (solid line) does not guarantee the minimal excess MSE for all ρs . On the contrary, a noise mismatch may partially or almost completely compensate for the signal mismatch. Indeed, we remark that for a given signal mismatch, there exists a relevant noise mismatch that induces the minimum excess MSE. These results are consistent with equation [START_REF] Chen | Mismatched estimation and relative entropy in vector gaussian channels[END_REF]. Fig. 1 shows that excess MSE increases for strong ρs , as we rely wrongly on the information given by the other modality.

V. CONCLUSION

We extended the relationship proposed by Chen and Lafferty between relative entropy and excess MSE under mismatched input and mismatched Gaussian channels. The generalization of mutual information and MMSE relationship follows easily. Although our results were restricted to Gaussian inputs, they are still prominent. In fact, our results pointed out the possible benefit of a double mismatch, i.e input prior mismatch and channel noise mismatch, in enhancing the estimation accuracy. Both mismatches may partially or completely cancel each other leading to good results as does the true model. Future works are focused on the extension of these results to arbitrary distributed inputs and noises.

APPENDIX A PROOF OF MAIN THEOREM

The exact and mismatched pdf's of observed data are Gaussian and are given respectively by p(x) = N (0, HΓH T + Σ) and q(x) = N (0, H ΓH T + Σ). For notational convenience, let us denote Ω = HΓH T + Σ and Ω = H ΓH T + Σ. Straightforwardly, the Kullback-Leibler divergence between two centered Gaussian distributions is given by

D KL (p(x)||q(x)) = 1 2 Tr Ω -1 Ω -log Ω -1 Ω -l (19)
where Tr(A) and |A| denote respectively the trace and the determinant of matrix A and l is the size of vector x. Then, we need to calculate gradient of the aforementioned expression. Using results from [START_REF] Minka | Old and new matrix algebra useful for statistics[END_REF], it can be shown that

1 2 ∇ H log Ω -∇ H log Ω = Ω -1 H Γ -Ω -1 HΓ, and 
1 2 ∇ H Tr Ω -1 Ω = -Ω -1 Ω Ω -1 H Γ + Ω -1 HΓ.
On the other hand, a closed-form expression can be derived for both estimators, the MMSE estimator and the mismatched MMSE estimator, in linear Gaussian channel with Gaussian prior [15, theorem 10.3]:

s p (x) E p [s|x] = ΓH T Ω -1 x (20) s q (x) E q [s|x] = ΓH T Ω -1 x (21)
Therefore, the MSE of those estimators and the mismatched MSE are respectively :

M p,p = Γ -ΓH T Ω -1 HΓ, (22) 
M q,q = Γ -ΓH T Ω -1 H Γ, (23) 
M p,q = M q,q + M q,q Γ -1 (Γ -Γ) Γ -1 M q,q +M q,q H T Σ -1 (Σ -Σ) Σ -1 HM q,q (24)

By applying consecutively Woodbury matrix identity and positive definite identity [16, eq. 185] on M p,p , M q,q and M p,q we obtain Σ -1 HM p,p = Ω -1 HΓ = 1 2 ∇ H log Ω , (25)

Σ -1 HM q,q = Ω -1 H Γ = 1 2 ∇ H log Ω , (26) 
Σ -1 (HM p,q -Σ Σ -1 HM q,q ) = 1 2 ∇ H Tr( Ω -1 Ω). (27)

By combining previous results, ∇ H D KL (p(x)||q(x)) is well formulated by equation [START_REF] Lahat | Multimodal Data Fusion: An Overview of Methods, Challenges and Prospects[END_REF].

APPENDIX B PROOF OF THEOREM 3.2. As we have mentioned in subsection III-B, the mismatched mutual information is related to the classical mutual information by equation [START_REF] Merhav | Optimum estimation via gradients of partition functions and information measures: A statistical-mechanical perspective[END_REF]. By applying the gradient operator w.r.t. H, we find that: ) is given by theorem (III.1). Consequently, ∇ H I p,q (s; x) = Σ -1 HM p,q + I -Σ -1 Σ Σ -1 H M q,q .

Fig. 1 .

 1 Fig.1. Variation of Tr(Mp,q -Mp,p) as a function of ρs, for different values of ρn. Plotted for ρs = 0.3, ρn = 0.5, α 1 = 1 and α 2 = 1.5. Tr(Mp,q -Mp,p) vanishes when no mismatch occurs i.e. ρn = ρn (solid line) and ρs = ρs. However, when the noise correlation is mismatched ρn = ρn, Tr(Mp,q -Mp,p) is cancelled by a signal correlation mismatch rather than by the exact signal correlation ρs. For instance, the dashed line (ρn = 0) is almost zero at ρs = -0.1 while ρs = 0.3.

∇

  H I p,q (s; x) = ∇ H I(s; x) + ∇ H D KL (p(x)||q(x)) -∇ H D KL (p(x|s)||q(x|s)) Note that p(x|s) = N (Hs, Σ) and q(x|s) = N (Hs, Σ), thus ∇ H D KL (p(x|s)||q(x|s)) = 0. Since the gradient of the classical mutual information satisfies relation (2) and ∇ H D KL (p(x)||q(x)

The gradient of a function a(.) w.r.t. H is defined entry-wise by {∇ H a(.)} i,j = ∂a(.) ∂h i,j where h i,j denotes element (i, j) of H.
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