
HAL Id: hal-01493481
https://hal.science/hal-01493481

Submitted on 21 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information-Estimation relationship in mismatched
Gaussian channels

Saloua Chlaily, Chengfang Ren, Pierre-Olivier Amblard, Olivier J.J. Michel,
Pierre Comon, Christian Jutten

To cite this version:
Saloua Chlaily, Chengfang Ren, Pierre-Olivier Amblard, Olivier J.J. Michel, Pierre Comon, et al..
Information-Estimation relationship in mismatched Gaussian channels. IEEE Signal Processing Let-
ters, 2017, 24 (5), pp.688-692. �10.1109/LSP.2017.2687764�. �hal-01493481�

https://hal.science/hal-01493481
https://hal.archives-ouvertes.fr


1

INFORMATION-ESTIMATION RELATIONSHIP
in MISMATCHED GAUSSIAN CHANNELS

Saloua Chlaily, Chengfang Ren, Pierre-Olivier Amblard, Olivier Michel, Pierre Comon, and Christian Jutten

Abstract—In this paper, we investigated the connection between
information and estimation measures for mismatched Gaussian
models. In addition to the input prior mismatch we take into
account the noise mismatch and establish a new relation between
relative entropy and excess mean square error. The derived
formula shows that the input prior mismatch may be cancelled
by the noise mismatch. Finally, an example illustrates the impact
of model mismatches on estimation accuracy.

Index Terms—Relative entropy, excess MSE, mutual infor-
mation, estimation, mismatched Gaussian channel, mismatched
input.

I. INTRODUCTION

In information theory, entropy and mutual information are
two fundamental information measures. Several works showed
that these measures have some connections with estimation
measures. Indeed, a well known relationship between entropy
and Fisher information is given by de Bruijn identity [1,
p.672]. Another link between mutual information and Min-
imal Mean Square Error (MMSE) has been established by
Palomar et al. [2] and Guo et al. [3] in linear Gaussian
communication channels. From an estimation point of view,
the latter relation is interesting since MMSE characterizes the
optimal achievable performance in Mean Square Error (MSE)
sense, which is usually well defined in Bayesian estimation
by the MSE of MMSE estimator. However, few works have
investigated the mismatched scenario, despite its growing
interest in practical applications. In fact in an actual estimation
scenario, one cannot ensure the estimation model is correctly
specified due to measurement or estimation imperfections [4],
[5], [6]. This is particularly important when using several
measurements coming from different sensors or devices, a
situation referred to as multimodality [7], [8]. Assumptions
usually made about the links between modalities may be false,
such as independence of noises. Therefore, the influence of
model mismatches on estimation performance deserves to be
explored.

Mismatched models could also occur in communication
channels. A recent work of Verdú [9] investigated the case of
mismatched input and established a relationship between the
excess MSE and relative entropy. This result was generalized
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to vector Gaussian channels by Chen and Lafferty [10]. A sim-
ilar relationship has been proposed by Guo for non-Gaussian
additive noise [11]. However, all these works focus on the
cases where the channel noise is correctly specified. Thus, the
relations they proposed do not hold for mismatched channel
noise. The purpose of this paper is to derive a new relationship
between the relative entropy and excess MSE in the case of
mismatched Gaussian channel noise and mismatched inputs.
A mismatched channel noise occurs when the true pdf of
the observation noise differs from the pdf assumed to model
data. This phenomenon is generally due to channel calibration
default or to a simplification of observed data model. A
recalibration procedure could help to correct mismatches but it
is often computationally expensive and could complexify the
data model. This is the reason why it is sometimes helpful to
study estimation and information measures under mismatched
contexts rather than trying to correct mismatches.

The mismatched MSE was also analysed from a statistical
physics perspective by Merhav and Huleihel for mismatched
channel noise [12] and mismatched channel matrix [13]. The
authors specifically consider the problem of estimating a
codeword transmitted over a white Gaussian channel. In this
paper we consider a quite different scenario: the problem of
estimating a Gaussian signal using two correlated complemen-
tary modalities. In contrast to [12] and [13], we explore a
double mismatch, i.e. input prior mismatch and channel noise
mismatch, which could be used to decrease the mismatched
MSE.

This paper is organized as follows. We review in section II
some of the existing connections between estimation theory
and information theory under exact model and mismatched
input priors. Our original contributions are presented in
Section III and IV. In Section III we state the new main
theorems that relate relative entropy and excess MSE, and
mutual information and MSE under mismatched Gaussian
channels. In Section IV we study the impact of wrong links
between two modalities on excess MSE on a simple example.
Section V concludes the paper.

II. BACKGROUND

For notational convenience, scalar random variables are
denoted by lowercase letters, e.g., z. Vector random variables
are denoted by bold lowercase letters, e.g., z. Matrices are
denoted by bold uppercase letters, e.g., A. The exact pdf of
a random variable z is denoted by p(z) and the assumed one
by q(z). Even though these notations are not rigorous, they
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are largely utilized in information theory literature in order to
simplify mathematical expressions (see [1]).

Let us consider the general linear Gaussian channel defined
in [2]:

x = Hs + n (1)

where s ∈ Rm is the input random vector, x ∈ Rl is the
observed random vector, n ∈ Rl is an additive noise vector
and H ∈ Rl×m is the channel matrix. s and n are assumed
to be independent. If the noise vector is correctly specified
to be normally distributed, namely n ∼ N (0,Σ), and the
assumed prior pdf of s corresponds to the true prior pdf, p(s),
then Palomar and Verdú [2] provide the following relationship
between the mutual information and the MMSE

∇HI(s;x) = Σ−1HMp,p (2)

where ∇H denotes the gradient1 operator with respect to
(w.r.t.) H and I(s;x) denotes the mutual information between
s and x defined by

I(s;x) =

∫
log

(
p(x, s)

p(x)p(s)

)
p(x, s)dxds

, DKL(p(x, s)||p(x)p(s)). (3)

The latter is a measure of mutual dependence between s and x,
and can be viewed as the Kullback Leibler divergence between
the joint pdf p(x, s) and the product p(x)p(s) of the marginal
pdf’s. The MMSE is defined by the m×m matrix:

Mp,p = Ep
[
(s− Ep[s|x]) (s− Ep[s|x])T

]
(4)

which is the exact covariance of the exact MMSE estimator
error, namely of s− ŝp(x) where ŝp(x) = Ep[s|x] . The index
p in Ep[s] (resp. Ep[s|x]) means the expectation is taken w.r.t.
the true pdf p(s) (resp. the true conditional pdf p(s|x)).

Observation model (1) is investigated further by Verdù, Guo,
Chen and Lafferty [9], [10], [11] in mismatched contexts. They
consider an input prior mismatch, i.e. the exact input pdf p(s)
and assumed input pdf q(s) are different. In this case, they
establish the following relationship

∇HDKL(p(x)||q(x)) = Σ−1H(Mp,q −Mp,p) (5)

where

Mp,q = Ep
[
(s− Eq[s|x]) (s− Eq[s|x])T

]
(6)

is the exact covariance of the mismatched MMSE estimator er-
ror. The estimator ŝq(x) = Eq[s|x] is the so-called mismatched
(or the quasi-) MMSE estimator. Relation (5) characterizes the
excess estimation error due to mismatched model assumption.
This excess quantity is directly related to the gradient of
the Kullback-Leibler divergence between the exact and the
assumed pdf’s of observed data.

Our purpose is to extend relation (5) in the case where,
in addition to the input prior mismatch, the channel noise
is also mismatched, i.e., the exact noise pdf p(n) and the
assumed noise pdf q(n) are different. This scenario seems

1The gradient of a function a(.) w.r.t. H is defined entry-wise by
{∇Ha(.)}i,j =

∂a(.)
∂hi,j

where hi,j denotes element (i, j) of H.

more realistic since both mismatches, input prior and channel
noise, could occur in practice for instance in multimodal
estimation. Unfortunately, relation (5) does not hold in this
case. Therefore, we propose in this paper a general expression
which depicts and quantifies the excess estimation error for
mismatched Gaussian models.

III. MISMATCHED GAUSSIAN CHANNELS

A. Statement and main result

Let us consider the linear vector channel defined in (1).
We suppose now this model is misspecified in the sense that
the prior pdf of signal s and the pdf of noise n are both
mismatched. Let us denote respectively the exact pdf’s of s
and n by p(s) and p(n) which are different of their assumed
pdf’s q(s) and q(n).

The exact and assumed signals are both zero mean Gaussian
distributed but with different covariance matrices, i.e. p(s) =
N (0,Γ) and q(s) = N (0, Γ̂) with Γ 6= Γ̂. Similar mismatch
is considered for the channel noise, i.e. p(n) = N (0,Σ) and
q(n) = N (0, Σ̂) with Σ 6= Σ̂. The last hypothesis implies that
the conditional pdf’s of observations are given by p(x|s) =
N (Hs,Σ) and q(x|s) = N (Hs, Σ̂).

The main difference between this scenario and the one
proposed in [10], which was recalled in Section II, is the
mismatch on the channel noise. In our case, we obtain the
following theorem:

Theorem III.1. Consider the aforementioned mismatched
communication model. Then

∇HDKL(p(x)||q(x)) = Σ̂−1H(Mp,q −Mp,p) + R, (7)

where R is a residual term given by

R = (Σ̂−1Σ− I)
(
Σ−1HMp,p − Σ̂−1HMq,q

)
(8)

and Mq,q = Eq[(s−Eq[s|x])(s−Eq[s|x])T ] is the covariance
of the mismatched MMSE estimator error, computed with the
mismatched pdf’s q(s) and q(s|x).

Proof. see Appendix A

The residual term is a weighted difference between the
MMSE under distribution p and the MMSE under distribution
q. This term vanishes if the channel noise is correctly
specified, i.e. Σ̂ = Σ, and (7) reduces to (5). The above
theorem can be interpreted as an extension of Chen and
Lafferty result [10] for mismatched Gaussian channel noise.
Even though Γ and Γ̂ do not appear explicitly in (7) they
occur in the relative entropy and the MMSE’s (cf Appendix A).

Example: we consider a scalar channel with H =
√
λ,

p(s) = N (0, γ2), q(s) = N (0, γ̂2), p(n) = N (0, σ2) and
q(n) = N (0, σ̂2).

By applying theorem III.1 and using 2
√
λ dDKL

dλ = dDKL

d
√
λ

,
we have

2
d

dλ
DKL(p(x)||q(x)) =

1

σ̂2
(Mp,q −Mp,p) +

1√
λ

R, (9)
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Then, by integrating both sides of (9) w.r.t λ, it follows

2 (DKL(p(s)||q(s))−DKL(p(n)||q(n)))

=

∫ +∞

0

(
1

σ̂2
(Mp,q −Mp,p) +

1√
λ

R

)
dλ. (10)

Equation (10) states that the area defined by (Mp,q −
Mp,p)/σ̂

2 + R/
√
λ is equal to the difference between input

prior mismatch and noise pdf mismatch. The noise mismatch
introduces an opposite effect to the signal mismatch. This
suggests that both mismatches, input prior and channel noise,
may compensate each other. Hence, this compensation may
enhance the channel quality and the estimation accuracy. If
p(n) = q(n) equation (10) reduces to the relation proposed
by Verdú in [9].

B. Mismatched entropy and mutual information
As we have seen beforehand, when considering a mis-

matched model, it is no longer appropriate to use standard
measures borrowed from estimation theory. For instance, Mp,p

must be replaced by Mp,q to quantify the MSE for mismatched
models. The same applies for information theory measures,
mainly entropy and mutual information. Indeed, the classical
entropy h(x) , −Ep[log p(x)], defined by the average2 of
Shannon information, namely − log p(x), quantifies the uncer-
tainty of x when data pdf p(x) is correctly specified. However,
if the observation model is mismatched, i.e. the assumed pdf of
x is q(x) instead of p(x), then the Shannon information should
be modified accordingly. In case of mismatched model given
by section III-A, the Shannon information is now equal to
− log q(x) and the mismatched entropy is defined as follows:

hp,q(x) = −Ep[log q(x)] (11)

In coding theory, hp,q is usually used to quantify the additional
required bits to code an event considering a wrong pdf [1,
p.115].

Similarly, the expression of the mutual information (3) does
not hold under mismatched models. A natural extension could
be derived by using the notion of mismatched entropy, since
mutual information is also defined as the difference between
two entropies I(s;x) , h(x)−h(x|s). Thus, the mismatched
mutual information is given by

Ip,q(s;x) , hp,q(x)− hp,q(x|s) = Ep
[
log

q(x|s)
q(x)

]
= I(s;x)−DKL(p(x|s)||q(x|s)) +DKL(p(x)||q(x)), (12)

where DKL(p(x|s)||q(x|s)) ,
∫ ∫

log
(
p(x|s)
q(x|s)

)
p(x, s)dxds.

The nonnegativity of Ip,q(s;x) is not guaranteed in general,
contrary to the classical mutual information. Using Theorem
III.1, a relation between mutual information and MSE is
provided by:

Theorem III.2. Consider the model presented in (1), follow-
ing the Gaussian assumptions, Ip,q(s;x) is related to Mp,q ,
by the following formula

∇HIp,q(s;x) = Σ̂−1H Mp,q +
(
I− Σ̂−1Σ

)
Σ̂−1H Mq,q

(13)

2The average is always taken under the true data distribution
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Fig. 1. Variation of Tr(Mp,q −Mp,p) as a function of ρ̂s, for different
values of ρ̂n. Plotted for ρs = 0.3, ρn = 0.5, α1 = 1 and α2 = 1.5.

Tr(Mp,q −Mp,p) vanishes when no mismatch occurs i.e. ρ̂n = ρn (solid
line) and ρ̂s = ρs. However, when the noise correlation is mismatched

ρ̂n 6= ρn, Tr(Mp,q −Mp,p) is cancelled by a signal correlation mismatch
rather than by the exact signal correlation ρs. For instance, the dashed line

(ρ̂n = 0) is almost zero at ρ̂s = −0.1 while ρs = 0.3.

Note that Γ and Γ̂ take action in Ip,q , Mp,q and Mq,q .
The second term on the right-hand side of (13) vanishes if
only the input prior is mismatched, i.e Γ 6= Γ̂ and Σ = Σ̂.
Straightforwardly, (13) reduces to (2) if Σ = Σ̂ and Γ = Γ̂.
The above theorem is an extension to mismatched models of
the relation (2) proposed by Palomar and Verdú [2].

Proof. see Appendix B

IV. EXAMPLE: MODEL MISMATCH AND EXCESS MSE

As a simple example, easy to interpret, let m = 2, l = 2 and

define H =

[
α1 0
0 α2

]
, where α2 ≤ α1. Model (1) becomes:[

x1
x2

]
=

[
α1 0
0 α2

] [
s1
s2

]
+

[
n1
n2

]
, (14)

where s1, s2, n1 and n2 are all zero mean, unit-variance
Gaussian random variables. We suppose that signals and noises
are independent but s1 and s2 (resp. n1 and n2) are correlated
and denote the correlation coefficient ρs (resp. ρn). It can
be shown that the estimation accuracy improves if x1 and
x2 are used jointly, i.e. the correlations between signals and
between noises are exploited, since xj also bears information
about si (i, j ∈ {1, 2}, i 6= j). But, what happens if we
mismatch ρs and ρn? Let ρ̂s and ρ̂n be the assumed signal
and noise correlations, different from the exact signal and

noise correlations ρs and ρn. Namely, Γ =

[
1 ρs
ρs 1

]
, Σ =[

1 ρn
ρn 1

]
, Γ̂ =

[
1 ρ̂s
ρ̂s 1

]
and Σ̂ =

[
1 ρ̂n
ρ̂n 1

]
. Accordingly,

the mismatched estimator of si using both modalities may be
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written as:

ŝq(i) =
αi(1 + αj)− αj(ρ̂n + α1α2ρ̂s)

(1 + α2
1)(1 + α2

2)− (ρ̂n + α1α2ρ̂s)2
xi (15)

+
(αiρ̂n − αj ρ̂s)

((1 + α2
1)(1 + α2

2)− (ρ̂n + α1α2ρ̂s)2)2
xj

The coefficient of xj vanishes for ρ̂n =
αj

αi
ρ̂s, so that the

estimator of si is only based on xi. This means that if ρ̂n =
αj

αi
ρ̂s, xj is redundant to xi for estimating si and any additional

information held by xj about si is ignored. If in addition α1 =
α2, ρ̂n =

αj

αi
ρ̂s becomes ρ̂n = ρ̂s, then xi is also presumed to

be redundant w.r.t xj about sj and the observations are used
separately i.e. without any interaction. The diagonal elements
of matrices Mp,p and Mp,q are given by:

Mp,p(i, i) =
(1− ρ2n) + (1− ρ2s)α2

j

(1 + α2
1)(1 + α2

2)− (ρn + α1α2ρs)2
(16)

Mp,q(i, i) =
(1− ρ̂2n) + (1− ρ̂2s)α2

j

(1 + α2
1)(1 + α2

2)− (ρ̂n + α1α2ρ̂s)2
(17)

+(αiρ̂n − αj ρ̂s)
(1 + α2

j ) (αj(ρs − ρ̂s)− αi(ρn − ρ̂n))
((1 + α2

1)(1 + α2
2)− (ρ̂n + α1α2ρ̂s)2)2

+(αiρ̂n − αj ρ̂s)
αj(ρ̂sρn − ρsρ̂n)(ρ̂n + α1α2ρ̂s)

((1 + α2
1)(1 + α2

2)− (ρ̂n + α1α2ρ̂s)2)2

We show in Fig. 1 the variation of Tr (Mp,q −Mp,p) as
a function of ρ̂s for different values of ρ̂n. The absence of
noise mismatch i.e. ρ̂n = ρn (solid line) does not guarantee
the minimal excess MSE for all ρ̂s. On the contrary, a noise
mismatch may partially or almost completely compensate for
the signal mismatch. Indeed, we remark that for a given signal
mismatch, there exists a relevant noise mismatch that induces
the minimum excess MSE. These results are consistent with
equation (10). Fig. 1 shows that excess MSE increases for
strong ρ̂s, as we rely wrongly on the information given by the
other modality.

V. CONCLUSION

We extended the relationship proposed by Chen and Lafferty
between relative entropy and excess MSE under mismatched
input and mismatched Gaussian channels. The generalization
of mutual information and MMSE relationship follows easily.
Although our results were restricted to Gaussian inputs, they
are still prominent. In fact, our results pointed out the possible
benefit of a double mismatch, i.e input prior mismatch and
channel noise mismatch, in enhancing the estimation accuracy.
Both mismatches may partially or completely cancel each
other leading to good results as does the true model. Future
works are focused on the extension of these results to arbitrary
distributed inputs and noises.

APPENDIX A
PROOF OF MAIN THEOREM

The exact and mismatched pdf’s of observed data are
Gaussian and are given respectively by
p(x) = N (0,HΓHT + Σ) and q(x) = N (0,HΓ̂HT + Σ̂).
For notational convenience, let us denote Ω = HΓHT + Σ

and Ω̂ = HΓ̂HT + Σ̂. Straightforwardly, the Kullback-
Leibler divergence between two centered Gaussian distribu-
tions is given by

DKL (p(x)||q(x)) = 1

2

(
Tr
(
Ω̂−1Ω

)
− log

∣∣Ω̂−1Ω∣∣− l) (19)

where Tr(A) and |A| denote respectively the trace and the
determinant of matrix A and l is the size of vector x. Then, we
need to calculate gradient of the aforementioned expression.
Using results from [14], it can be shown that

1

2

(
∇H log

∣∣Ω̂∣∣−∇H log
∣∣Ω∣∣) = Ω̂−1HΓ̂−Ω−1HΓ,

and
1

2
∇HTr

(
Ω̂−1Ω

)
= −Ω̂−1ΩΩ̂−1HΓ̂ + Ω̂−1HΓ.

On the other hand, a closed-form expression can be derived
for both estimators, the MMSE estimator and the mismatched
MMSE estimator, in linear Gaussian channel with Gaussian
prior [15, theorem 10.3]:

ŝp(x) , Ep [s|x] = ΓHTΩ−1x (20)

ŝq(x) , Eq [s|x] = Γ̂HT Ω̂−1x (21)

Therefore, the MSE of those estimators and the mismatched
MSE are respectively :

Mp,p = Γ− ΓHTΩ−1HΓ, (22)

Mq,q = Γ̂− Γ̂HT Ω̂−1HΓ̂, (23)

Mp,q = Mq,q + Mq,qΓ̂
−1(Γ− Γ̂)Γ̂−1Mq,q

+Mq,qH
T Σ̂−1(Σ− Σ̂)Σ̂−1HMq,q (24)

By applying consecutively Woodbury matrix identity and
positive definite identity [16, eq. 185] on Mp,p, Mq,q and
Mp,q we obtain

Σ−1HMp,p = Ω−1HΓ =
1

2
∇H log

∣∣Ω∣∣, (25)

Σ̂−1HMq,q = Ω̂−1HΓ̂ =
1

2
∇H log

∣∣Ω̂∣∣, (26)

Σ̂−1(HMp,q −ΣΣ̂−1HMq,q) =
1

2
∇HTr(Ω̂−1Ω). (27)

By combining previous results, ∇HDKL (p(x)||q(x)) is well
formulated by equation (7).

APPENDIX B
PROOF OF THEOREM 3.2.

As we have mentioned in subsection III-B, the mismatched
mutual information is related to the classical mutual informa-
tion by equation (12). By applying the gradient operator w.r.t.
H, we find that:

∇HIp,q(s;x) = ∇HI(s;x) +∇HDKL(p(x)||q(x))
−∇HDKL(p(x|s)||q(x|s))

Note that p(x|s) = N (Hs,Σ) and q(x|s) = N (Hs, Σ̂),
thus ∇HDKL(p(x|s)||q(x|s)) = 0. Since the gradient of
the classical mutual information satisfies relation (2) and
∇HDKL(p(x)||q(x)) is given by theorem (III.1). Conse-
quently,

∇HIp,q(s;x) = Σ̂−1HMp,q +
(
I− Σ̂−1Σ

)
Σ̂−1H Mq,q.
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[3] D. Guo, S. Shamai, and S. Verdú, “Mutual information and minimum
mean-square error in gaussian channels,” IEEE Transactions on Infor-
mation Theory, vol. 51, no. 4, pp. 1261–1282, April 2005.

[4] M. Akcakaya and A. Nehorai, “MIMO radar detection and adaptive
design under a phase synchronization mismatch,” IEEE Transactions
on Signal Processing, vol. 58, no. 10, pp. 4994–5005, Oct 2010.

[5] M. Greco, S. Fortunati, and F. Gini, “Maximum likelihood covariance
matrix estimation for complex elliptically symmetric distributions under
mismatched conditions,” Signal Processing, vol. 104, pp. 381 – 386,
2014.

[6] C. Ren, M. N. E. Korso, J. Galy, E. Chaumette, P. Larzabal, and
A. Renaux, “Performance bounds under misspecification model for
mimo radar application,” in Signal Processing Conference (EUSIPCO),
2015 23rd European, Aug 2015, pp. 514–518.

[7] D. Lahat, T. Adalı, and C. Jutten, “Multimodal Data Fusion: An
Overview of Methods, Challenges and Prospects,” Proceedings of the
IEEE, vol. 103, no. 9, pp. 1449–1477, Aug. 2015.

[8] S. Chlaily, P-O. Amblard, O. Michel, and C. Jutten, “Impact of Noise
Correlation on Multimodality,” in 24th European Signal Processing
Conference (EUSIPCO 2016), Budapest, Hungary, Aug. 2016.
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