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We consider the K-User Multiple-Input-Single-Output (MISO) Broadcast Channel (BC) where the transmitter, equipped with M antennas, serves K users, with K ≤ M . The transmitter has access to a partial channel state information of the users. This is modelled by letting the variance of the Channel State Information at the Transmitter (CSIT) error of user i scale as O(P -α i ) for the Signal-to-Noise Ratio (SNR) P and some constant αi ≥ 0. In this work we derive the optimal Degrees-of-Freedom (DoF) region in such setting.

I. INTRODUCTION

The use of multiple antennas at the transmitter has dramatically increased the capacity of wireless networks, as multiple antennas can help to achieve a larger Degrees-of-Freedom (DoF). However, in order to achieve the theoretical multiplexing gain, a sufficiently accurate Channel State Information at the Transmitter (CSIT) is required [START_REF] Clerckx | MIMO broadcast channels with finite-rate feedback[END_REF], [START_REF] Caire | Multiuser MIMO achievable rates with downlink training and channel state feedback[END_REF]. It is well known that in the K-User Multiple-Input-Single-Output (MISO) Broadcast Channel (BC), the Sum-DoF collapses to unity in case of no CSIT [START_REF] Davoodi | Aligned image sets under channel uncertainty: Settling conjectures on the collapse of degrees of freedom under finite precision CSIT[END_REF], while the Full Sum-DoF is preserved if the variance of the channel estimation error of each user decays as P -1 or faster, where P is the Signal-to-Noise Ratio (SNR) [START_REF] Clerckx | MIMO broadcast channels with finite-rate feedback[END_REF], [START_REF] Caire | Multiuser MIMO achievable rates with downlink training and channel state feedback[END_REF]. Nonetheless, acquiring an accurate CSIT is a difficult task. As in [START_REF] Davoodi | Aligned image sets under channel uncertainty: Settling conjectures on the collapse of degrees of freedom under finite precision CSIT[END_REF], [START_REF] Yang | Degrees of freedom of time correlated MISO broadcast channel with delayed CSIT[END_REF], in this work the partial CSIT is captured by letting the variance of the channel estimation error of user i decay as O(P -αi ) for some exponent α i ∈ [0, 1], which represents the CSIT quality. As widely done in the literature, we assume that the number of users K is less than or equal to the number of transmitting antennas M [1]- [START_REF] Yang | Degrees of freedom of time correlated MISO broadcast channel with delayed CSIT[END_REF]. Under such setting, a great deal of research has focused on characterizing the Sum-DoF. By assuming that the CSIT qualities of the users are arranged as α 1 ≥ • • • ≥ α K , it was shown by Davoodi and Jafar in [START_REF] Davoodi | Aligned image sets under channel uncertainty: Settling conjectures on the collapse of degrees of freedom under finite precision CSIT[END_REF] that a Sum-DoF upperbound is given by 1 + α 2 + • • • + α K . Moreover, this upperbound is achievable through a Rate-Splitting (RS) strategy, consequently it corresponds to the optimal Sum-DoF [START_REF] Hao | Rate analysis of two-receiver MISO broadcast channel with finite rate feedback: A rate-splitting approach[END_REF]- [START_REF]Robust transmission in downlink multiuser MISO systems: A ratesplitting approach[END_REF].

In this work, to the best of our knowledge, we characterize for the first time the optimal DoF region. We first derive an outer-bound of the optimal DoF region. Next, we prove the achievability of such an outer-bound by employing RS scheme. We conclude that the outer-bound is tight and coincides with the optimal DoF region. This work has been partially supported by the EPSRC of UK, under grant EP/N015312/1.

II. SYSTEM MODEL

This work considers a setup where a transmitter, equipped with M antennas, serves K single-antenna users. The users are indexed by the set K = {1, . . . , K} and we assume that K ≤ M . At the t-th channel use, the signal received by the i-th receiver, i ∈ K, is given by

y i (t) = h H i (t)x(t) + n i (t) (1) 
where h H i (t) ∈ C 1×M is the channel vector and x(t) ∈ C M ×1 is the transmitted signal, which is subject to the power constraint E( x(t) 2 ) ≤ P . The term n i (t) ∼ CN (0, 1) indicates the additive noise. We define the channel matrix

H(t) = [h 1 (t), . . . , h K (t)]
H ∈ C K×M which is drawn from a continuous ergodic distribution such that the joint density of its elements exists and we assume that the matrix and all its sub-matrices are full-rank. In addition, to avoid degenerate situations, we assume that the entries and the determinant of H(t) are bounded away from zero and infinity. These assumptions are in-line with [START_REF] Davoodi | Aligned image sets under channel uncertainty: Settling conjectures on the collapse of degrees of freedom under finite precision CSIT[END_REF].

For each user i, the transmitter has a current estimate of the channel, indicated as ĥi (t). The partial CSIT is modelled as h i (t) = ĥi (t) + hi (t), where hi (t) is the channel estimation error at the transmitter. ĥi (t) and hi (t) are assumed to be uncorrelated. Furthermore, the CSIT error hi (t) has i.i.d. entries CN (0, σ 2 i ), where σ 2 i ≤ 1, while the entries of ĥi (t) have a variance equal to 1 -σ 2 i . For the sake of notational convenience, the index t of the channel use is omitted in the rest of the paper. The variance σ 2 i is assumed to decay with the SNR P as O(P -αi ), where α i is defined as the CSIT quality exponent. We can restrict the exponent α i to the case α i ∈ [0, 1] since, from a DoF perspective, α i = 0 offers no gain over a no CSIT case while α i ≥ 1 corresponds to a perfect CSIT. We assume, without loss of generality, that users are ordered with respect to their CSIT quality, i.e. α 1 ≥ α 2 ≥ . . . ≥ α K . We also remind that, given a unitary Zero-Forcing (ZF) precoded vector v such that ĥH

i v = 0, the equation E[|h H i v| 2 ] = O(P -αi
) is satisfied. The transmitter has messages W 1 , . . . , W K intended for the corresponding users. Codebooks, probability of error, achievable rate tuples (R 1 (P ), . . . , R K (P )) and the capacity region C(P ) are all defined in the Shannon theoretic sense. The DoF tuple (d 1 , . . . , d K ) is said to be achievable if there exists (R 1 (P ), . . . , R K (P )) ∈ C(P ) such that d i = lim P →∞ Ri(P ) log(P ) for all i ∈ K. The DoF region is defined as the closure of all achievable DoF tuples (d 1 , . . . , d K ) and is denoted by D * .

III. MAIN RESULT

In this work we characterize the optimal DoF region of the K-User MISO BC with partial CSIT. We define A as the set of all possible non-empty subsets of K with elements arranged in an ascending order. For instance, in case of K = {1, 2, 3}, the set A is given by A = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Any element of A, which is itself a set, is indicated with a calligraphic upper case letter and its elements are denoted with the corresponding lower case letter (with numbered subscripts). For instance S = {s 1 , s 2 , . . . , s |S| } ∈ A, where s 1 > s 2 > . . . > s |S| . The main result is summarized by the following theorem.

Theorem. The optimal DoF region D * of the K-User MISO BC with partial CSIT is given by all the real tuples (d 1 , . . . , d K ) which satisfy

d i ≥ 0, ∀i ∈ K (2) i∈S d i ≤ 1 + i∈S\{s1} α i , ∀S ∈ A. (3) 
We denote as D the above region described by the inequalities ( 2) and (3). In order to show that D coincides with the optimal DoF region D * , we need to show that D is simultaneously an outer-bound of the optimal region and is achievable. In this section we show that D is an outer-bound of D * , while the achievability will be proven in Section V.

In order to obtain the converse, we start by restating the following Sum-DoF upper-bound derived in [START_REF] Davoodi | Aligned image sets under channel uncertainty: Settling conjectures on the collapse of degrees of freedom under finite precision CSIT[END_REF].

Lemma 1. [3, Th. 1] The Sum-DoF of the K-User MISO BC with K ≤ M is upper-bounded by i∈K d i ≤ 1 + i∈K\{1} α . (4) 
The result was shown assumining α 1 = 1 for the first user. However, since enhancing the CSIT does not harm the Sum-DoF, the same upper-bound holds for a generic value of α 1 ∈ [0, 1]. The region D is constructed by considering any arbitrary subset of users S ∈ A. By applying Lemma 1, it follows that the Sum-DoF of users in S is upper-bounded by

i∈S d i ≤ 1 + i∈S\{s1} α i . (5) 
Considering all possible subsets of users S ∈ A and given that the DoF of each user is a non-negative real value, we obtain D which is an outer-bound of the optimal DoF region D * .

IV. RATE-SPLITTING SCHEME

In this section, we briefly remind the RS transmission scheme which will be used in Section V to show the achievability of the region D. In RS, we transmit two kinds of symbols that are superimposed in the power domain: a common symbol decoded by all users on top of private symbols decoded by the respective users only. This strategy has been shown to be more robust in treating interference when partial CSIT is available compared to conventional linear precoding schemes (where only private symbols are transmitted) [START_REF] Yang | Degrees of freedom of time correlated MISO broadcast channel with delayed CSIT[END_REF]- [START_REF] Joudeh | Sum-rate maximization for linearly precoded downlink multiuser MISO systems with partial CSIT: A rate-splitting approach[END_REF].

In particular, RS can achieve the upperbound in (4), as it will be shown later. Getting into the details of the scheme, the message of each user i ∈ K is split into

W i = (W (c) i , W (p) i ), where W (c) i is a common (or public) sub-message while W (p) i is a private sub-message. All the common sub-messages W (c) 1 , . . . , W (c)
K are jointly encoded into the common symbol x (c) , which has to be decoded by all K users. Each private sub-message

W (p) i is encoded into the private symbol x (p)
i , which is decoded by user i only. It is assumed that all the symbols are drawn from a unitary-power Gaussian codebook. Next, the symbols are linearly precoded and power allocated. The transmitted signal takes the form

x = P (c) v (c) x (c) + i∈K P (p) i v (p) i x (p) i (6) where v (c) ∈ C M ×1 and v (p) i ∈ C M ×1
are unitary precoding vectors, and P (c) and P (p) i are the corresponding allocated powers with P (c) + i∈K P (p) i ≤ P . Since the common symbol has to be decoded by all users, v (c) is chosen as a random (or generic) precoding vector. On the other hand, the private symbols are precoded by ZF over the channel estimate, i.e. v (p) i ⊥ ĥl l∈K\{i} . The power allocation is set such that

P (c) = O(P ) and P (p) i = O(P ai )
, where a i correspond to the power levels and are such that a i ∈ [0, 1]. The values of a i are concatenated into the vector (a 1 , . . . , a K ).

The received signal in (1) for user j ∈ K is given by

y j = P (c) h H j v (c) x (c) O(P ) + P (p) j h H j v (p) j x (p) j
O(P a j )

+ i∈K\{j} P (p) i h H j v (p) i x (p) i O(P a i -α j ) + n j O (1) 
.

All users decode the common symbol by treating the interference from all other private symbols as noise. From [START_REF]Robust transmission in downlink multiuser MISO systems: A ratesplitting approach[END_REF], it can be verified that the common symbol x (c) , in order to be successfully decoded by all users, can carry a DoF of

d (c) = 1 -max j∈K a j . (8) 
The DoF of the common symbol can be split in all possible ways among users in K. We denote as d Next, each user removes x (c) by performing Successive Interference Cancellation (SIC) and proceeds to decode its own private symbol. From [START_REF]Robust transmission in downlink multiuser MISO systems: A ratesplitting approach[END_REF], the private symbol intended for user j ∈ K can carry a DoF of

d (p) j = a j - max i∈K\{j} a i -α j + + . (9) 
where (x) + = max{x, 0}. The DoF of all the private symbols are collected into the vector (d

(p) 1 , . . . , d (p) 
K ). To sum up, a DoF tuple (d 1 , . . . , d K ) is achievable by RS with power levels given by (a 1 , . . . , a K ) if the following equality holds:

(d 1 , . . . , d K ) = (d (p) 1 , . . . , d (p) K ) + (d (c) 1 , . . . , d (c) K ) (10) 
where d (p) j for any j ∈ K is given by (9), while (d

(c) 1 , . . . , d (c) 
K ) indicates an admissible partition of the total DoF carried by the common symbol, which is given by (8), as described above.

As mentioned earlier, RS attains the Sum-DoF upper-bound in (4), which is achievable considering (a j ) j∈K = b, for any b such that α 2 ≤ b ≤ α 1 , and any split of the DoF carried by the common symbol (which is irrelevant to the Sum-DoF). In fact, from (9), we have that such power allocation leads to d

(p) 1 = b and d (p) j = α j for j ∈ K \ {1}, while d (c) 1 = 1 -b from (8).
Hence, the Sum-DoF is equal to [START_REF] Yang | Degrees of freedom of time correlated MISO broadcast channel with delayed CSIT[END_REF]. As it will be shown in the next section, RS is also the key technique to show the achievability of the region D.

V. PROOF OF THE ACHIEVABILITY OF D

In this section we show the achievability of the region D characterized in Section III. The region D is the Kdimensional polyhedron given by the intersection of the halfplanes described by ( 2) and (3). We show that D is achievable by induction over the number of users K, considering a number of antennas at the transmitter M ≥ K. The hypothesis is clearly true for K = 1. We assume that the hypothesis is valid for K = 1, . . . , k -1 and we consider the case K = k. First, the half-spaces in ( 2) and ( 3) are delimited by the hyperplanes obtained by substituting the half-spaces' inequalities with equalities. Any of these hyperplanes contains a facet of the polyhedron D and the set of all the facets corresponds to the boundary of D.

We first show the achievability of the facets contained in the hyperplanes which delimit the half-spaces in [START_REF] Davoodi | Aligned image sets under channel uncertainty: Settling conjectures on the collapse of degrees of freedom under finite precision CSIT[END_REF]. Since any of these hyperplanes is identified by a subset S ∈ A, we denote the corresponding facet as F S . Taking any of such subsets S, the corresponding facet F S is given by all the non-negative real tuples (d 1 , . . . , d k ) which satisfy

i∈G d i ≤ 1 + i∈G\{g1} α i , ∀G ∈ A, G = S ( 11 
) i∈S d i = 1 + i∈S\{s1} α i ( 12 
)
where the elements of G (arranged in an increasing order) are indicated as G = {g 1 , . . . , g |G| }.

Showing directly the achievability of F S by ( 11) and ( 12) is a difficult task. We start by rewriting F S in an easier form where the values which can be taken by d j , for each user j ∈ K, are bounded through inequalities. This is obtained, for each j ∈ K, by comparing an inequality in (11), considering a specific G, with the equality in (12). Then we will show that the new form of F S is achievable by RS. We first consider the case |S| ≥ 2. We start by analysing the elements j ∈ S. In case of j = s 1 , we consider the inequality in (11) for the specific G = S \ {s 1 } and the equality in (12), i.e.

i∈S\{s1} d i ≤ 1 + i∈S\{s1,s2} α i i∈S d i = 1 + i∈S\{s1} α i . (13)
By comparing the inequality and the equality, it follows that d s1 ≥ α s2 . We then move to the case j ∈ S \ {s 1 }. Here, we consider the inequality in (11) for G = S \ {j} and (12), i.e.

i∈S\{j} d i ≤ 1 + i∈S\{s1,j} α i i∈S d i = 1 + i∈S\{s1} α i . (14)
By comparison, it follows that d j ≥ α j . Summarizing, for j ∈ S, we have d s1 ≥ α s2 and d j ≥ α j for j ∈ S \ {s 1 }.

Next, we analyse the elements j ∈ S, where S = K \ S. The set S is partitioned into three subsets, denoted as S1 , S2 and S3 , such that the subset

S1 = { j ∈ S | j < s 1 }, the sub- set S2 = { j ∈ S | s 1 < j < s 2 } and S3 = { j ∈ S | j > s 2 }.
In case of j ∈ S1 , we first compare the inequality in (11) for the case G = S ∪ {j} and the equality in (12), i.e.

i∈S∪{j} d i ≤ 1 + i∈S α i i∈S d i = 1 + i∈S\{s1} α i . (15) 
It follows that d j ≤ α s1 . We then compare the inequality (11) for G = (S ∪ {j}) \ {s 1 } and the equality in (12), i.e.

i∈(S∪{j})\{s1} ≤ 1 + i∈S\{s1} α i i∈S d i = 1 + i∈S\{s1} α i . (16) 
It follows that d j ≤ d s1 . Hence, d j ≤ min(α s1 , d s1 ) for j ∈ S1 . We then move to the case j ∈ S2 . Proceeding as above, by comparing (11) for the case G = S ∪ {j} and (12), we obtain d j ≤ α j . Also, from (11) for the case G = (S ∪ {j}) \ {s 1 } and (12), we obtain d j ≤ d s1 . Hence, d j ≤ min(α j , d s1 ) for j ∈ S2 . Lastly, we consider j ∈ S3 . By simply comparing (11) for the case G = S ∪ {j} with (12), we get d j ≤ α j for j ∈ S3 .

We can conclude that the facet F S is included in the set of all the non-negative real tuples (d 1 , . . . , d k ) given by

                   d s1 ≥ α s2 d j ≥ α j , j ∈ S \ {s 1 } d j ≤ min(α s1 , d s1 ), j ∈ S1 d j ≤ min(α j , d s1 ), j ∈ S2 d j ≤ α j , j ∈ S3 j∈S d j = 1 + j∈S\{s1} α j . (17) 
Furthermore, it is an easy exercise to verify that each tuple (d 1 , . . . , d k ) in (17) satisfies the conditions in (11) and ( 12). It follows that F S coincides with the set of tuples described by the inequalities in (17). We show the achievability of each point of F S through RS. First, we split F S into two subsets, denoted by F S,1 and F S,2 , on the basis of the value of d s1 . The subset F S,1 contains all the tuples of F S such that α s2 ≤ d s1 ≤ α s1 , while F S,2 contains all the tuples of F S such that d s1 > α s1 . The subset F S,1 is so given by

                         α s2 ≤ d s1 ≤ α s1 d j ≥ α j , j ∈ S \ {s 1 } d j ≤ d s1 , j ∈ S1 d j ≤ d s1 , j ∈ S21 d j ≤ α j , j ∈ S22 d j ≤ α j , j ∈ S3 j∈S d j = 1 + j∈S\{s1} α j (18) 
where, for any value of d s1 , the subsets S21 and S22 are defined as 

S21 = { j ∈ S2 | α j ≥ d s1 } and S22 = { j ∈ S2 | α j < d s1 }
a j =                d s1 , j ∈ S d j , j ∈ S1 d j , j ∈ S21 d j + d s1 -α j , j ∈ S22 d j + d s1 -α j , j ∈ S3 .
d (p) j =      d s1 , j = s 1 α j , j ∈ S \ {s 1 } d j , j ∈ S. (20) 
The common symbol's DoF, which is equal to d (c) = 1 -d s1 from (8), is partitioned in the following way

d (c) j =      0, j = s 1 d j -α j , j ∈ S \ {s 1 } 0, j ∈ S. (21) 
Equality in (10) is satisfied and the achievability of the tuple (d 1 , . . . , d k ) follows.

The subset F S,2 is equal to F S \ F S,1 and it is given by all the non-negative real tuples (d 1 , . . . , d k ) such that

                   d s1 > α s1 d j ≥ α j , j ∈ S \ {s 1 } d j ≤ α s1 , j ∈ S1 d j ≤ α j , j ∈ S2 d j ≤ α j , j ∈ S3 j∈S d j = 1 + j∈S\{s1} α j . (22) 
Each tuple (d 1 , . . . , d k ) of F S,2 is achieved by RS considering (a 1 , . . . , a k ) equal to

a j =          α s1 , j ∈ S d j , j ∈ S1 d j + α s1 -α j , j ∈ S2 d j + α s1 -α j , j ∈ S3 . (23) The DoF (d (p) 1 , . . . , d (p) k ) carried by each private symbol is d (p) j = α j , j ∈ S d j , j ∈ S. (24) 
The DoF carried by the common symbol, which is equal to d (c) = 1 -α s1 from (8), is partitioned in the following way

d (c) j = d j -α j , j ∈ S 0, j ∈ S. (25) 
Equation ( 10) is satisfied and the tuple (d 1 , . . . , d k ) is achievable. Since the subsets F S,1 and F S,2 are both achievable, F S is achievable. We have so shown the achievability of all the facets F S for the case |S| ≥ 2.

Next, we move to the case |S| = 1, i.e. S = {s 1 }. The set S = K \ S is partitioned into two subsets, denoted as S1 and S2 , such that S1 = { j ∈ S | j < s 1 } and S2 = { j ∈ S | j > s 1 }. In case of j ∈ S1 , by comparing (11) for the case G = {j, s 1 } and (12), we deduce that d j ≤ α s1 . Similarly, in case of j ∈ S2 , by comparing (11) for the case G = {s 1 , j} and (12), we deduce that d j ≤ α j . Using the same argument as in the previous case, the facet F S is rewritten as the set of all the non-negative real tuples (d 1 , . . . , d k ) given by

     d s1 = 1 d j ≤ α s1 , j ∈ S1 d j ≤ α j , j ∈ S2 . (26) Each tuple (d 1 , . . . , d k ) of F S is achieved by RS considering (a 1 , . . . , a k ) given by a j =      α s1 , j = s 1 d j , j ∈ S1 d j + α s1 -α j , j ∈ S2 . ( 27 
)
The common symbol's DoF, which is equal to d (c) = 1 -α s1 , is given to user s 1 only, i.e. the partition is such that d We finally consider the facets contained in the hyperplanes which delimit the half-spaces in [START_REF] Caire | Multiuser MIMO achievable rates with downlink training and channel state feedback[END_REF]. Taking any j ∈ K, we denote the facet contained in the hyperplane d j = 0 as F (0) j . After removing the redundant inequalities, F (0) j is given by all the non-negative real tuples (d 1 , . . . , d k ) which satisfy

d j = 0 i∈S d i ≤ 1 + i∈S\{s1} α i , ∀S ∈ Āj (28)
where Āj is the set of all possible non-empty subsets of K \ {j} with elements arranged in an ascending order. For instance, in case of K = {1, 2, 3} and j = 1, we have that Āj = {{2}, {3}, {2, 3}}. While d j = 0 (so user j is not considered), the set of admissible tuples (d i ) i∈K\{j} corresponds to the region in (2) and (3) when considering the k -1 users K \ {j}. Since we have M antennas, with M ≥ k (hence M larger than k -1), it follows that the facet F (0) j is achievable by induction hypothesis. Since all facets of the polyhedron are achievable, all the remaining points of the polyhedron are achievable by time-sharing. Hence, D for K = k is achievable. In conclusion, since D is a tight outer-bound, it coincides with the optimal DoF region D * .

VI. CONCLUSION

While previous studies have addressed Sum-DoF upperbounds and the optimal Sum-DoF of the K-User MISO BC with partial CSIT and a number of users less or equal to the number of transmitting antennas, in this letter we provide the characterization of the optimal DoF region.
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