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Abstract—In this paper, we propose a new model along
with an algorithm for dictionary-based nonnegative matrix
factorization. We show its effectiveness on spectral unmixing
of hyperspectral images using self dictionary compared to
state-of-the-art methods.
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I. INTRODUCTION

Low-rank matrix approximation problems have become
more and more popular and have applications in a wide
rang of applications; see, e.g., [1] and the references
therein. In general, the problem can be formulated as
follows: given a data matrix X ∈ Rp×n where each
column X(:, j) is a data point in a p-dimensional space
and a factorization rank r, the goal is to compute a basis
matrix U ∈ Rp×r and a weight matrix V ∈ Rr×n such
that

X ≈ UV ⇐⇒ X(:, j) ≈
k∑

k=1

U(:, k)V (k, j) ∀j.

There exists many variants of this problem, depending on
the way to measure the error and the constraints on the
factors (U, V ) and/or on the approximation UV .

In this paper, we study nonnegative matrix factorization
(NMF) that requires that the factors U and V to be
component-wise nonnegative [2]. Moreover, we focus on
a particular variant where the columns of the basis matrix
U belong to a given dictionary D ∈ Rp×d, where d � r
is the number of atoms. Mathematically, this means that
U = D(:,K) for some index set K ⊂ {1, 2, . . . , d} with
|K| = r. Therefore, using the Frobenius norm to quantify
the error, dictionary-based NMF can be formulated as
follows

minK,V≥0 ||X −D(:,K)V ||2F
such that K ⊂ {1, 2, . . . , d} and |K| = r.

(1)

An application where the model (1) is particularly useful
for hyperspectral unmixing (HU). A hyperspectral image

is an image for which there are usually between 100
and 200 channels for each pixel, corresponding to the
reflectance (fraction of light reflected by that pixel) at
different wavelengths. In other words, for each pixel,
there is a vector containing its reflectances at different
wavelengths which is its so-called spectral signature. The
linear mixing model assumes that the spectral signature of
each pixel is a linear combination of the spectral signatures
of the constitutive materials, called endmembers, and is a
valid model for macroscopic mixture of materials in the
scene.

If the resolution of a hyperspectral image is high enough
so that for each endmember there exists at least one
pixel containing only that endmember, then the so-called
pure-pixels assumption is satisfied and HU reduces to
solving (1) using self dictionary D = X . A dictionary
is also available when the endmembers are contained in a
hyperspectral library. For more details on HU, we refer the
readers to the surveys [3], [4] and the references therein.

A. NMF with self dictionary

In this paper, we will focus on the case with self
dictionary D = X . As far as we know, there are mainly
two types of approaches to tackle (1) in that case:

• Geometric approaches that selects the atoms in the
dictionary based on some geometric criteria, typically
based on the volume of the convex hull of X(:,K).
These approaches include for example vertex compo-
nent analysis (VCA) [5] and the successive projection
algorithm (SPA) [6], [7], [8], [9]. They are usually
fast, running in O(pnr) operations. However, they do
not always select atoms leading to a small data fitting
term ||X −X(:,K)V ||F since, most of them do not
take it into account directly, as they usually put an
emphasis on some geometric properties of X(:,K)
(such as having a large volume). In particular, these
methods are in general sensitive to outliers.



• Sparse regression approaches that are based on the
following reformulation of (1), which imposes row
sparsity constraints on the scores Y :

minY ∈Rd×n ||X −XY ||2F
such that Y has r non-zero rows.

Row-sparsity of Y can be achieved in different ways;
in particular using convexifications based on the `1
norm, e.g., `1,2 [10], `1,∞ [11], or using linear
programming [12], [13].
These methods have the advantage to better model (1)
as they take into account the data fitting term ex-
plicitly. They usually provide good solutions but are
rather costly as an optimization problem in dn vari-
ables must be solved. In particular, for D = X , we
have d = n hence n2 variables. In HU, n is the order
of millions and these approaches are impractical.
Hence pixels have to be selected in a preprocessing
step [14] (e.g., using a geometric approach). More-
over, the problem solved is an approximation of the
original problem, which results may not be as close
as desired to the solutions of the non-convex problem.

B. Contribution and outline of the paper

In this paper, we propose a new algorithm to solve the
formulation (1). It will combine the advantages of the two
types of approaches described above: it is fast, running in
O(pnr) operations, but taking explicitly the data fitting
term ||X − X(:,K)V ||2F into account. In Section II, we
describe the new algorithm, and in Section III, we show
that is competes favorably with state-of-the-art approaches
for HU.

II. PROPOSED ALGORITHM FOR (1)

Solving the combinatorial model (1) directly is difficult.
We propose in this paper to use an alternating strategy:
• Update of V . For fixed K, solving (1) in variable V

is a convex optimization problem that can be solved
efficiently; it is a nonnegative least squares (NNLS)
problem.

• Update of K. The update of K is difficult, being a
combinatorial problem. Moreover, for V fixed, the
optimal subset K is most likely to be unique hence
this approach would not be able to modify an initial
solution (V,K). To circumvent these difficulties, we
introduce an auxiliary variable for the hidden factor
U = D(:,K), and consider the problem

minK,U≥0,V≥0 ||X − UV ||2F + δ||U −D(:,K)||2F
such that K ⊂ {1, 2, . . . , d} and |K| = r,

(2)
for some penalty parameter δ > 0. Solving for U
is again an NNLS problem while for K, it is now a

trivial problem to pick the atoms of the dictionary the
closest to the columns of matrix U . The parameter δ
is progressively increased to ensure convergence of
the model (2) to the model (1).

On top of allowing to solve each subproblem effectively,
the auxiliary variable U can be used as a correction of the
selected atoms since U minimizes the data fitting term
while being close to D(:,K) for some K. This way the
self-dictionary model allows for some flexibility on the
spectra actually contained in the data, which can vary from
pixel to pixel due to spectral variability [15].

Note that to update U and V , we do no solve the NNLS
subproblems to a high precision, which is not necessary
and would be computationally rather costly, but use a few
steps of block coordinate descent [16] (we performed 10
iterations).

Algorithm 1 provides the pseudocode for our proposed
algorithm.

Algorithm 1 Alternating Optimization for (2)
Input: X ∈ Rp×n, integer r, maxiter.
Output: U ∈ Rp×r

+ , V ∈ Rr×n
+ and an index set K such

that ||X −D(:,K)V ||F is small and U ≈ D(:,K).
1: Choose some initial matrices U ≥ 0, V ≥ 0 and index

set K, and initial value of δ.
2: for k = 1 : maxiter do
3: Solve for V : minV≥0 ||X −D(:,K)V ||2F .
4: Solve for U :

min
U≥0
||X − UV ||2F + δ||U −D(:,K)||2F .

5: Find K so that D(:,K) matches U the best:
6: K = ∅.
7: for k = 1 : r do
8: K = K ∪ argmaxk

D(:,k)TU(:,k)
||D(:,k)||2 .

9: end for
10: if ||U −D(:,K)||F > 0.01||U ||F then
11: Increase δ.
12: end if
13: if ||U −D(:,K)||F < 0.05||U ||F and K has not

changed for 5 iterations then
14: return; the algorithm has converged.
15: end if
16: end for

a) Initialization: Our algorithm tries to solve a
highly non-linear and combinatorial problem. This ex-
plains why, as we will see, it is sensitive to initialization.
In this paper we use the following initialization scheme

1) Compute K using your favorite algorithm. In the
numerical experiments section, we will use random
initialization and several state-of-the-art pure-pixel
search algorithms.



2) Define U = D(:,K) and, for V , compute the
optimal solution of the unconstrained problem and
project it onto the nonnegative orthant, that is, use
V = max

(
0, argminY ||X − UY ||2F

)
(in Matlab,

V=max(0,U\M)).
3) Improve (U, V ) using an NMF algorithm (this as-

sumes δ = 0). We used 10 iterations of A-HALS [16].
4) Initialize

δ = 0.01
||X − UV ||2F
||U −D(:,K)||2F

,

so that the data fitting term has initially more im-
portance in the objective function. In fact, when δ is
large, the algorithm is less likely to be able to update
K since U will be very close to D(:,K).
b) Other related algorithms: There are a number of

arbirary choices that were made to design Algorithm 1, we
here shortly discuss some variants. First, in the estimation
of V , D(:,K) can be swapped with U to minimize the
same cost function for the two factors U and V . We
noticed however that by doing so, the performance of the
algorithm decreased. In particular, when D(:,K) is used
in the estimation of V , after some iterations K should
not change much whereas U can still be modified, so that
the number of iterations is larger in this modified version.
Second, the flexible approach is not mandatory. Indeed, U
can be updated using a two-step procedure involving non-
negative least squares followed by a projection on the set
of atoms. An advantage of this method is that it does not
require to tune or fix any parameter. However we found
this simpler version of the algorithm to impose too hard
constraints in the first iterations where exploring the set of
unconstrained U seems important. This is the reason why
δ is introduced, and starts at a relatively small value.

III. NUMERICAL EXPERIMENTS ON HYPERSPECTRAL
IMAGES

In this section, we compare Algorithm 1 with three
geometric algorithms, namely VCA [5], SPA [6] and
SNPA [17], one clustering-based algorithm, H2NMF [18],
and a sparse regression framework from [14], referred to
as FGNSR (where a subset of 100 and 500 columns is
identified using H2NMF).

We will initialize Algorithm 1 with the atoms extracted
by the above methods and refer to the corresponding
algorithm as d-X, where X is the algorithm; for example,
d-VCA stands for Algorithm 1 initialized with VCA.
We will also use 10 random initializations (picking r
pixels at random as initial endmembers) and report the
worst, average and best solution (in terms of reconstruc-
tion error), denoted RAND-wo, RAND-av and RAND-
be, respectively. For all these numerical experiments, we

increase δ using 1.5δ. In order to keep δ bounded, we
only increase it if ||U − D(:,K)||F is large; see step 10
of Algorithm 1.

When we report the CPU time of Algorithm 1, we do
not report the time for the initialization. The CPU time of
FGNSR does not take into account the preprocessing time
by H2NMF.

We compare the different approaches on the same data
sets as [14] with the same factorization ranks:
• Urban data set with 162 wavelength and 309 × 309

pixels, r = 6, 8.
• San Diego airport with 158 wavelength and 400 ×

400 pixels, r = 8, 10.
• The Terrain data set with 166 wavelength and 400 ×

400 pixels, r = 5, 6.
Tables I, II and III report the results. For an index set K

extracted by an algorithm, the relative reconstruction error
(rel. err.) is given by

min
V≥0

||X −X(:,K)V ||F
||X||F

.

In these tables, the relative error is given in percent.
The lowest reconstruction error is highlighted in bold. In
brackets, next to the CPU time, we indicate the number
of iterations needed for Algorithm 1 to converge. All tests
are preformed using Matlab on a laptop Intel CORE i5-
3210M CPU @2.5GHz 6GB RAM.

r = 6 r = 8
Time (s.) Rel. err. Time (s.) Rel. err.

RAND-wo 0.00 7.87 0.00 11.66
d-RAND-wo 22.46 (13) 5.09 34.87 (18) 5.35

RAND-av 0.02 11.51 0.02 9.60
d-RAND-av 23.91 (13) 4.65 30.77 (15) 4.65
RAND-be 0.00 13.77 0.00 5.54

d-RAND-be 22.01 (11) 4.36 36.18 (19) 4.16
VCA 2.01 18.38 1.86 20.11

d-VCA 26.89 (15) 5.83 29.06 (14) 5.05
SPA 0.30 9.58 0.30 9.45

d-SPA 24.37 (13) 4.67 28.61 (14) 4.62
SNPA 24.34 9.63 36.72 5.64

d-SNPA 23.04 (13) 4.94 27.94 (13) 3.97
H2NMF 19.02 5.81 22.35 5.47

d-H2NMF 26.66 (15) 4.05 28.92 (14) 4.24
FGNSR-100 2.73 5.58 2.55 4.62

d-FGNSR-100 26.72 (14) 4.36 20.81 (8) 4.04
FGNSR-500 40.11 5.07 39.49 4.08

d-FGNSR-500 25.07 (13) 4.40 26.83 (12) 4.13
TABLE I

NUMERICAL RESULTS FOR THE URBAN DATA SET.

Figure 1 shows the best solution found for the Urban
data set with r = 6 (with d-H2NMF), and Figure 2 the
corresponding abundance maps. We can identify consti-
tutive materials such as trees, roof tops, dirt, grass, and
roads.



r = 8 r = 10
Time (s.) Rel. err. Time (s.) Rel. err.

RAND-wo 0.00 10.63 0.02 11.44
d-RAND-wo 38.55 ( 9) 4.86 62.23 (13) 4.69

RAND-av 0.02 9.41 0.01 10.39
d-RAND-av 49.50 (14) 4.21 60.80 (13) 3.83
RAND-be 0.02 8.49 0.02 10.71

d-RAND-be 59.17 (18) 3.57 57.67 (12) 3.42
VCA 3.51 7.47 3.48 8.83

d-VCA 68.45 (22) 5.15 89.65 (22) 5.79
SPA 0.45 12.62 0.53 7.01

d-SPA 68.45 (22) 4.08 75.88 (17) 3.91
SNPA 64.96 12.84 87.24 7.67

d-SNPA 64.04 (18) 3.75 68.14 (16) 4.45
H2NMF 36.77 4.75 39.48 4.28

d-H2NMF 44.18 (10) 4.13 74.86 (18) 3.36
FGNSR-100 2.55 3.73 2.47 3.40

d-FGNSR-100 43.85 (11) 3.63 78.79 (20) 3.28
FGNSR-500 38.70 4.05 38.28 3.40

d-FGNSR-500 43.88 (11) 3.67 61.62 (14) 2.95
TABLE II

NUMERICAL RESULTS FOR THE SAN DIEGO AIRPORT.

r = 5 r = 6
Time (s.) Rel. err. Time (s.) Rel. err.

RAND-wo 0.03 16.29 0.02 8.64
d-RAND-wo 26.69 ( 8) 4.05 29.70 ( 8) 3.34

RAND-av 0.02 9.75 0.01 7.83
d-RAND-av 38.13 (15) 3.49 36.83 (12) 3.25
RAND-be 0.03 6.59 0.03 9.35

d-RAND-be 32.87 (12) 3.21 38.59 (13) 3.12
VCA 2.95 16.99 2.98 7.54

d-VCA 32.92 (14) 4.25 44.55 (17) 3.25
SPA 0.34 5.89 0.36 4.81

d-SPA 46.38 (20) 3.37 42.85 (15) 3.81
SNPA 32.01 5.76 40.26 4.60

d-SNPA 41.47 (18) 3.88 44.09 (16) 3.70
H2NMF 28.86 5.09 33.68 4.85

d-H2NMF 38.74 (16) 3.52 39.06 (13) 3.30
FGNSR-100 4.23 3.34 2.63 3.21

d-FGNSR-100 28.14 (9) 3.08 46.58 (17) 2.84
FGNSR-500 40.29 3.68 40.13 3.39

d-FGNSR-500 28.00 (9) 3.12 36.88 (12) 3.22
TABLE III

NUMERICAL RESULTS FOR THE TERRAIN DATA SET.

We observe that
• In all cases but one (FGNSR on the Urban image

with r = 8, with an increase of 0.05%), Algorithm 1
is able to improve the initial solutions provided by
RAND, VCA, SPA, H2NMF and FGNSR.

• In all cases, Algorithm 1 converges in less than 20
iterations. The reason is that we increased δ rather
aggressively.

• Even with random initial index sets K, Algorithm 1
provides solutions with small reconstruction errors.
In fact, it is rather surprising that even the worst
solution generated among 10 random initial sets K is
better than the solutions generated by VCA, SPA and

Fig. 1. Spectral signatures of the endmembers exctracted using d-
H2NMF for the Urban data set with r = 6.

Fig. 2. Abundance maps identified using d-H2NMF for the Urban data
set with r = 6.



H2NMF. Moreover, the best solution found for the
San Diego airport image with r = 8 is from random
initialization.
This means that although Algorithm 1 is sensitive
to initialization, which was expected, it allows to
identify reasonable solutions regardless of the initial-
ization.

• In all cases, Algorithm 1 leads to the best solution
compared to the original algorithms.

A reason why Algorithm 1 works remarkably well for
these data sets is because the spectral signatures of the
pixels are close to one another and form a dense cloud
of data points. This allows the index set K to change
progressively between neighboring pixels. Analyzing the
behavior of Algorithm 1 in other settings is a direction for
further research.

IV. CONCLUSION

In this paper, we proposed a new algorithm for NMF
with self dictionary; see Algorithm 1. Like geometric
methods, it is fast, running in O(mnr) operations, hence
can be applied to large problems. Like sparse-regression
methods, it takes into account the data fitting term explic-
itly, hence identifying good atoms in the dictionary with a
small approximation error. We illustrate the effectiveness
of Algorithm 1 on several hyperspectral images. In all
cases, it identifies the set of endmembers providing the
lowest reconstruction error. We focused in this paper on
this particular variant of dictionary-based low-rank matrix
approximations. However, our technique can be applied to
the broader class of problems, which will be presented in
an extended version of this paper.
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