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Abstract

We aim to present mathematical models of smart devices and smart structures. Smart
devices are made of materials which present significant multiphysical couplings. They are
integrated in smart structures which take technological advantages of some multiphysical
effects. We first propose simplified but accurate models of thin plates or slender rods made
of piezoelectric or electromagneto-elastic materials in both static and dynamic cases. Then
we focus on smart structures such as piezoelectric patches bonded on a linearly elastic body
and piezoelectric junctions between two linearly piezoelectric or elastic bodies.

Keywords: Asymptotic analysis, plates and rods models, piezoelectricity, patches and
junctions.

1 Introduction

On November 2000, Franco Maceri came to the LMGC to present the next Colloquium
Lagrangianum in Taormina and a recent study [2] on piezoelectric plates. Here we present
all the studies about mathematical modeling in piezoelectricity (a topic totally new for
us) we did after this stimulating talk.

In the first part we intend to propose simplified but accurate models of devices made of
piezoelectric or elecromagneto-elastic materials, these devices (thin plates, slender rods)
presenting one or two small dimensions. We also studied the not so well-known case of
piezoelectricity with electric field gradient. The models are obtained by a rigorous study
of the asymptotic behavior of a three dimensional body when some of its dimensions, con-
sidered as parameters, tend to zero. We used various tools of variational and functional
analysis, the point being to consider boundary value problems depending on small param-
eters. This study has been carried out in the steady-state and transient cases. We outline
that different kinds of models appear at the limit, depending on the electrical loading.
These models correspond to the physical situation when the device behaves as a sensor or
as an actuator. Moreover, we are able to show that depending on the crystalline symmetry
class of the material, a striking structural switch-off may appear at the limit, the device
being no more piezoelectric.

The essential technological interest of piezoelectric devices being the monitoring of a
deformable body they are bonded to or integrated in, the second part is devoted to smart
structures. The obtained results are discussed in detail in Section 3.
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Of course, this field of research has led in the past twenty years to a considerable
amount of literature. In this paper, we limit ourselves to our own work. The reader will
find in the references of our studies a great number of articles published in this area.

2 Mathematical modelings of smart devices

As usual we make no difference between the physical space and R3 whose basis is denoted
(e1, e2, e3). For all ξ = (ξ1, ξ2, ξ3) in R3, we denote (ξ1, ξ2) by ξ̂. Greek indices for
coordinates take their values in {1, 2} whereas latin indices run from 1 to 3.

Let H = S3 × R3, where S3 denotes the set of all 3 × 3 real and symmetric matrices.
The set of all linear mappings from a space V into a space W is denoted L(V,W ) and by
L(V ) if V = W .

In the sequel, for every domain G in RN , the subspace of the Sobolev space H1(G)
whose elements vanish on Γ, included in the boundary ∂G of G, will be denoted by H1

Γ(G).

2.1 Piezoelectric thin plates

Finding the equilibrium of a thin linearly piezoelectric plate can be formulated as follows.
The reference configuration of a linearly piezoelectric thin plate is the closure in R3 of the
set Ωε := ω × (−ε, ε), where ω is a bounded domain of R2 with Lipschitz boundary ∂ω
and ε a small positive number. Let Γεlat := ∂ω× (−ε, ε), Γε± := ω×{±ε} and two suitable
partitions of ∂Ωε: (ΓεmD,Γ

ε
mN ) and (ΓεeD,Γ

ε
eN ) with ΓεmD and ΓεeD of strictly positive

surface measures. The plate is clamped along ΓεmD and at an electrical potential ϕε0 on
ΓεeD. It is subjected to body forces fε in Ωε and to surface forces gε in ΓεmN . Furthermore,
we will consider an electrical loading dε on ΓεeN . We note nε the outward unit normal to
∂Ωε and assume that ΓεmD = γ0 × (−ε, ε), with γ0 ⊂ ∂ω. The equations determining the
piezoelectric state sε := (uε, ϕε) at equilibrium are:

P(Ωε)


div σε + fε = 0 in Ωε, σεnε = gε on ΓεmN , u

ε = 0 on ΓεmD,

div Dε = 0 in Ωε, Dε · nε = dε on ΓεeN , ϕ
ε = ϕε0 on ΓεeD,

(σε, Dε) = Mε(x)(e(uε),∇ϕε) in Ωε,

where uε, ϕε, σε, e(uε) and Dε respectively stand for the displacement, the electrical po-
tential, the stress tensor, the tensor of small strains (i.e. the symmetrized gradient) and
the electric induction. The operator Mε is an element of L(H) such that:

σε = aε e(uε) − bε∇ϕε

Dε = bε
T

e(uε) + cε∇ϕε (1)

with bε
T

the transpose of the piezoelectric tensor bε, the elastic tensor aε and the dielectric
one cε being symmetric and positive. Note that because of the piezoelectric coupling, Mε

is not symmetric.
It is easy to give a weak (or variational) formulation of the previous linear boundary

problem and to conclude to the existence and the uniqueness of a solution in suitable
Sobolev spaces through the Stampacchia theorem.

Nevertheless, due to the very low thickness of the plate, this classical model may be
difficult to tackle numerically. The essence of our proposal of simplified but accurate
modeling is to consider ε as a small parameter and to study the asymptotic behavior of sε

when ε goes to 0. In fact, two different limit behaviors indexed by p ∈ {1, 2} will occur,
according to the type of boundary condition in P(Ωε).
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From the mathematical point of view it is convenient to proceed to a change of coor-
dinates Πε and of unknows sp(ε) = Sp(ε)s

ε in order to consider functional spaces defined
on a fixed domain Ω = ω × (−1, 1).

x = (x1, x2, x3) ∈ Ω 7→ Πεx = (x1, x2, εx3) ∈ Ω
ε

sp(ε) := (u(ε)(x), ϕp(ε)(x)) = ((ε−1ûε(Πεx), uε3(Πεx)), ε−pϕε(Πεx)).
(2)

The formulae defining Sp(ε) stem from the assumptions on the magnitude of the elec-
tromechanical loading and are justified by the convergence results they lead to. If we
consider forces and displacements, these hypotheses are the ones of [3] and supply a math-
ematical justification of the Kirchhoff-Love theory of thin linearly elastic plates. In addi-
tion, we assume that ϕε0 has an extension into Ωε still denoted by ϕε0 and that ϕ0 ∈ H1(Ω)
is such that ϕε0(Πεx) = εpϕ0(x) with:


if p = 1 : ϕ0 does not depend on x3.

if p = 2 : the closure of the projection of ΓεeD on ω coincides with ω,

moreover, either dε = 0 on ΓεeN ∩ Γεlat or ΓεeN ∩ Γεlat = ∅.
(3)

Thus s(ε) is the solution of the variational problem:

{
Find sp(ε) ∈ (0, ϕ0) + V = {r = (v, ψ) ∈ H1

ΓmD
(Ω)3 ×H1

ΓeD
(Ω)} such that∫

Ω
M(x) kp(ε, s) · kp(ε, r) dx = L(r), ∀r ∈ V

where the linear form L does not depend on ε and
kp(ε, r) = kp(ε, (v, ψ)) = (e(ε, v),∇p(ε, ψ)),

e(ε, v)αβ = e(v)αβ , e(ε, v)α3 = ε−1e(v)α3, e(ε, v)33 = ε−2e(v)33,

∇̂p(ε, ψ) = εp−1∇̂ψ, ∇p(ε, ψ)3 = εp−2∂3ψ.

(4)

The signs of the various powers of ε in the components of kp(ε, r) induce an orthogonal
decomposition of H in subspaces H?p, with ? ∈ {−, 0,+}, which is crucial to fully describe
plates models in all admissible crystal classes. We denote by h?p the projection on H?p of
any element h of H so that M can then be decomposed in nine elements M?�

p ∈ L(H�p,H?p),
with ?, � ∈ {−, 0,+}. Because M00

p and M−−p are positive operators on H0
p and H−p , the

Schur complement

M̃p := M00
p −M0−

p (M−−p )−1M−0
p (5)

is an element of L(H0
p). The key point of the asymptotic study is to show that if kp is

the limit (in a suitable topology) of kp(ε, sp(ε)), then (M kp)
−
p = (kp)

+
p = 0. This will

enable us to exhibit M̃p as the operator governing the limit constitutive equations due to
the fundamental relation:

(M h)−p = h+
p = 0⇒ M̃p h

0
p = (M h)0

p and M̃p h
0
p · h0

p = M h · h. (6)

The limit space of displacements will be the space of Kirchhoff-Love displacements
defined by VKL := {v ∈ H1

ΓmD
(Ω)3; ei3(v) = 0} while the limit electrical spaces will

be Φe,1 := {ψ ∈ H1
ΓeD

(Ω); ∂3ψ = 0} and Φe,2 := {ψ ∈ H1
∂3

(Ω);ψ|ΓeD∩Γ± = 0}, where
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H1
∂3

(Ω) := {ψ ∈ L2(Ω); ∂3ψ ∈ L2(Ω)} and where ΓeD stands for the image of ΓεeD by

Πε−1

. Finally, we have the following convergence result:

Let K1 := H1(Ω) and K2 := H1
∂3

(Ω). When ε → 0, the familly (sp(ε))ε>0 of the
unique solutions of P(ε,Ω)p strongly converges in Xp := H1

ΓmD
(Ω)3 ×Kp to the unique

solution sp of

P(Ω)p

{
Find s ∈ (0, ϕ0) + Sp such that∫

Ω
M̃p k(s)0

p · k(r)0
p dx = L(r), ∀ r ∈ Sp := VKL × Φe,p.

To get physically meaningful results, we define an electromechanical state sεp over the
real plate Ωε by the descaling sεp = Sp(ε)

−1sp: it is the unique solution of a problem

P(Ωε)p posed over Ωε which is the transportation by Πε of the (limit scaled) problem
P(Ω)p. This transported problem is our proposal to model the thin linearly piezoelectric
plate of thickness 2ε. Our model in fact involves two dimensional problems set on ω, which
is very attractive and favourable from the numerical point of view. It is also accurate in
the sense that the convergence result on the scaled states implies that sε is asymptotically
equivalent to sεp.

The first model (p = 1) with ϕ0 = 0 deals with the physical situation when the plate
is used as a sensor, the second model corresponds to an actuator. The model involves
”reduced” state variables, the sole component k0

p of the couple strain/gradient of the
electrical potential, and the constitutive equation are supplied by the Schur complement (or
the ”condensation” of the initial operator Mε) with respect to the maintained components.
This identification is the keypoint for obtaining some decoupling and symmetry properties
very important in practice (see [20], [19] and [4]) by due account of the influence of the

crystalline symmetries on the coefficients of M̃p. More precisely, it is possible to list some

properties of the operator M̃p (p = 1, 2), which supplies the constitutive equations of the
piezoelectric plate.

The fundamental coupling property of M remains true for M̃p:

M̃pme
= −(M̃pem)T , (7)

where m and e respectively denote the mechanical and electrical components of the gen-
eralized kinematics and stresses.

Considering the influence of crystalline symmetries on the three-dimensional constitu-
tive law (see [13] for example), we can deduce, in the case of a polarization normal to the
plate, that:

- M̃2mm involves mechanical terms only,

- M̃1mm
= M̃2mm

for the crystalline classes m, 32, 422, 6̄, 622 and 6̄m2,

- M̃1mm
involves electrical terms except for these previous classes,

- when p = 1, there is an electromechanical decoupling (M̃pme = 0) for the classes 2,
222, 2mm, 4, 4̄, 422, 4mm, 4̄2m, 6, 622, 6mm and 23, when p = 2, this decoupling
occurs with the classes m, 32, 422, 6̄, 622 and 6̄m2, nevertheless the operators
M̃pmm

and M̃pee involve a mixture of elastic, piezoelectric and dielectric coefficients.
In these cases, the plate can be considered as no more piezoelectric. We are then in
a situation of a structural switch-off of the piezoelectric effect.
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Let us consider for example a thin piezoelectric plate constituted by a material whose
crystalline symmetry class is 222. Then (1) takes the following form:



σ11

σ22

σ33√
2σ23√
2σ31√
2σ12

D1

D2

D3


=



a11 a12 a13 0 0 0 0 0 0
a12 a22 a23 0 0 0 0 0 0
a13 a23 a33 0 0 0 0 0 0
0 0 0 a44 0 0 −b41 0 0
0 0 0 0 a55 0 0 −b52 0
0 0 0 0 0 a66 0 0 −b63

0 0 0 b41 0 0 c11 0 0
0 0 0 0 b52 0 0 c22 0
0 0 0 0 0 b63 0 0 c33


·



e11(u)
e22(u)
e33(u)√
2 e23(u)√
2 e31(u)√
2 e12(u)
ϕ,1
ϕ,2
ϕ,3


.

(8)
Therefore, (5) leads to

M̃1 =



a11a33−a213
a33

a12a33−a13a23
a33

0 0 0
a12a33−a13a23

a33

a22a33−a223
a33

0 0 0

0 0
a66c33+b263

c33
0 0

0 0 0
c11a44+b241

a44
0

0 0 0 0
c22a55+b252

a5


(9)

in the sensor case and to

M̃2 =


a11a33−a213

a33
a12a33−a13a23

a33
0 0

a12a33−a13a23
a33

a22a33−a223
a33

0 0

0 0 a66 −b63

0 0 b63 c33

 (10)

in the actuator case.
As outlined previsouly, the relation (9) shows that σ and D respectively depend only

on e(u) and ∇ϕ when the plate acts as a sensor, so that it can be considered as no more
piezoelectric. But, when the same plate acts as an actuator, the piezoelectric coupling
does not vanishes as it can be seen in (10).

2.2 Electromagneto-elastic thin plates

Besides the piezoelectric coupling, some materials are sensitive to magnetic effects, thus
in [22] we extended the previous modeling to linearly electromagneto-elastic thin plates.
Now the state is described by sε = (uε, ϕε, φε) where the additional variable φε denotes
the magnetic potential and the constitutive equations read as:

σε = aε e(uε) − bε∇ϕε − dε∇φε,
Dε = bε

T

e(uε) + cε∇ϕε + eε∇φε,
Bε = dε

T

e(uε) + eε
T ∇ϕε + fε∇φε.

(11)

In these constitutive equations, dε, eε and fε respectively stand for the piezomagnetic,
electromagnetic coupling and magnetic permeability tensors, while Bε denotes the mag-
netic induction.
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A similar mathematical analysis of the asymptotic behavior of sε can be done to derive
a simplified but accurate model of thin electromagneto-elastic plate. It involves reduced
state variable and constitutive equations supplied by the condensation M̃ε of Mε with
respect to the maintained components of (e(uε),∇ϕε,∇φε).

But the novelty here is that four limit behaviors may appear according to the type of
boundary conditions and the magnitude of the data on the electric and magnetic fields.
These cases can be described as previously but by a couple of indices (p, q) ∈ {1, 2}2
in place of the sole indice p. The physical situation when the thin plate is used as an
electrical (resp. magnetic) sensor corresponds to p = 1 (resp. q = 1) while the actuator
case corresponds to p, q = 2. It therefore appears two original mixed behaviors when p 6= q.
In these situations, the plate is at the same time a sensor and an actuator excepted for the
classes for which the plate is no more electromagneto-elastic (i.e. the electromechanical

and magnetomechanical coefficients in M̃ε vanishes). The two cases p 6= q allow the
modeling of electrically commanded magnetic devices and of magnetically commanded
electric ones, which is of considerable interest in the development of non-volatile magnetic
random access memories. We emphasize on the point that this behavior is here fully
described for any admissible crystal class.

2.3 Piezoelectric plates with electric field gradient

In the 1960’s the study of unexplained aspects of piezoelectricity led Mindlin [10] to extend
the classical Voigt theory [17] in Toupin’s formulation [15] by assuming that the stored
energy function not only depends on the strain tensor and polarization vector but also
on the polarization gradient tensor. What motivated Mindlin to study the effects of the
polarization gradient was the capacitance of a very thin dielectric film. Experiments
showed that the capacitance of a very thin film is systematically smaller than the classical
prediction. Moreover, performing experimental tests, Mead [9] showed that piezoelectric
effects can also appear in centrosymmetric crystals, which is in contradiction with classical
Voigt theory. And, indeed, the Mindlin’s theory of elastic dielectrics with polarization
gradient accomodates the observed and experimentally measured phenomena, such as
electromechanical interactions in centrosymmetric materials, capacitance of thin dielectric
films, surface energy of polarization, deformation and optical activity in quartz.

As in the classical piezoelectric case the physical state is described by sε = (uε, ϕε).
However, the constitutive equations read as:

σε = aε e(uε) − bε∇ϕε − αε∇2φε,

D1,ε = bε
T

e(uε) + cε∇ϕε + βε∇2φε,

D2,ε = αε
T

e(uε) + βε
T ∇ϕε + γε∇2φε.

(12)

Depending on the type of electric loading, three different models indexed by p appear
at the limit. This result extends our previous study in [23] and shows that gradient theory
broadens the understanding of sensors and actuators. When p = 2 and p = 3 we are able
to express the constitutive laws as a Schur complement of the second order piezoelectric
tensor in a framework valid for any symmetry class, which means that we do not make any
simplifying assumptions dealing with the crystal symmetry of the material constituting
the plate. When p = 1, we are not able to explicitly derive the constitutive law of the limit
model. Therefore, as in the case of first order piezoelectric rods treated treated in the next
section, it seems very likely to us that non-local terms appear in this delicate situation.
The study of the influence of the crystal symmetries on our models for p = 2, 3 shows that
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even for second order piezoelectricity, an electromechanical switch-off may appear in the
structure if the plate is designed with specific materials.

2.4 Piezoelectric slender rods

From a technological point of view, piezoelectric materials can also be used in wires or
slender rods. Now, the reference configuration of the piezoelectric structure is Ωε =
ε× (0, L) with L a fixed positive real number. The equations describing the equilibrium of
the structure are the same as in the section 2.1 but of course the geometry of the various
boundaries is different: we assume that ΓεmD = εω × {0, L}.

To get our simplified models, we proceed as in the case of plates. Due to classical
assumptions on the mechanical loading (which permits the justification of Bernoulli-Navier
theory of elastic slender rods (see [11] and [16]) and on electrical loading:{

if p = 1 the extension of ϕε0 into Ωε does not depend on x̂ and ΓεeD ⊂ εω × {0, L},
if p = 2 there exists γe ⊂ ∂ω such that ΓεeD ⊂ ε× (0, L).

(13)
the scaling is defined by:

x = (x̂, x3) ∈ Ω = ω × (0, L) 7→ Πεx = (εx̂, x3) ∈ Ω
ε

sp(ε) = Sp(ε)s
ε

(û(ε)(x), u3(ε)(x), ϕ(ε)(x)) = (ûε(Πεx), ε−1uε3(Πεx), ε−pϕε(Πεx))

(14)

so that sp(ε) is the unique solution of the variational problem

Find sp(ε) ∈ (0, ϕ0) + V such that

∫
Ω

M(x)kp(ε, s(ε)) · kp(ε, r) = L(r), ∀ r ∈ V,

with now:

kp(ε, (v, ψ)) = ((ε2eαβ(v), εeα3(v), e33(v)), (εp−2∇̂ψ, εp−1∂3ψ)).

As in the case of purely elastic slender rods (cf. [11]), finding the limit is a little bit
more difficult and the limit problems are as follows:

R(Ω)1

{
Find (u, v, w, φ, ψ) ∈ V1 such that∫

Ω
M(x) k1(u, v, w, φ, ψ) · k1(u′, v′, w′, φ′, ψ′) dx = L(u′), ∀ (u′, v′, w′, φ′, ψ′) ∈ V1,

with



V1 = VBN (Ω)×Rb(Ω)×RD⊥2 × Φ×Ψ,

VBN (Ω) = {v ∈ H1
ΓmD

(Ω)3; eαβ(v) = eα3(v) = 0},
Rb(Ω) = {v;∃c ∈ H1

0 (0, L); v̂(x) = c(x3)(−x2, x1), v3 ∈ L2(0, L;H1
m(ω))},

H1
m(ω) = {v ∈ H1(ω);

∫
ω
ψ(x̂) dx̂ = 0},

RD⊥2 (Ω) = {ω; ŵ ∈ L2(0, L;H1
m(ω)2), w3 = 0 and∫

ω
(−x2w1(x̂, x3) + x1w2(x̂, x3)) dx̂ = 0, ae x3 ∈ (0, L)},

Φ = {φ ∈ H1
0 (0, L);φ(x) = φ(x3)},

Ψ = L2(0, L;H1
m(ω)),

k1(u, v, w, φ, ψ) = (ê(w), eα3(v), e33(u), ∇̂ψ, dφdx3
)

(15)
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and

R(Ω)2

{
Find (u, v, w, φ) ∈ V2 such that∫

Ω
M(x) k2(u, v, w, φ) · k2(u′, v′, w′, φ′) dx = L(u′), ∀ (u′, v′, w′, φ′) ∈ V2,

with {
V2 = VBN (Ω)×Rb(Ω)×RD⊥2 × L2(0, L;H1

γe(ω)),

k2(u, v, w, φ) = (ê(w), eα3(v), e33(u), ∇̂φ).
(16)

The space VBN (Ω) is the Bernoulli-Navier displacements space.
Of course, our proposal of model is obtained by taking the inverse scaling, that is

to say a transported problem R(Ωε)p posed over Ωε. On the contrary to the case of
plates, the state variables of the model do not reduce to the couple displacement/electrical
potential but involve additional variables: two fields of displacements (easy to interpret
mechanically) and a scalar field of electrical nature. Nevertheless,the kinematics of the
state variables is simpler than the one of the genuine three-dimensional model which is very
favourable from a numerical point of view. As in the purely elastic case it is worthwhile to
note that for particular classes of monoclinic materials the additional variables v, w and
ψ disappear [18]. Anyway, in the case p = 1, the additional variables can be eliminated
but it leads to non standard equations involving non local terms.

2.5 Dynamical response of piezoelectric plates

The interest of an efficient modeling of the dynamic response of piezoelectric plates lies
in the fact that a major technological application of piezoelectric effects is the control of
vibrations of structures through very thin plates or patches. We present two modelings
depending on the various extents to which the magnetic effects are taken into account.
Actually, because of the large discrepancy between the celerities of the mechanical and
electromechanical waves, magnetic effects can be disregarded. That is why first we propose
a modeling in the appropriate framework of the quasi-electrostatic approximation which
claims that the electrical field still derives from an electrical potential.

2.5.1 Quasi-electrostatic case

Now a new parameter appears: the density ρ of the plate. In the framework of the realistic
quasi-electrostatic approximation, the electrical equilibrium equation remains true but the
mechanical equilibrium equation is replaced by

div σε + fε = ρüε in Ωε

where the upper dot denotes the differentiation with respect to time. Under mild assump-
tions on the initial state and the essential assumption∫ +1

−1

x3M̃1(x1, x2, x3) dx3, M̃2 independent of x3 (17)

it is possible to proceed to the study of the convergence of sεp when ε goes to zero ([20],
[21]), the result depends strongly on the relative behaviour of ε and ρ. A unified accurate
and simplified modeling is then obtained by simply adding

∫
Ωε ρü

ε
p dx to the left hand side

of the equation defining the descaled limit problem P(Ωε)p. Thus the relationship between
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the reduced stress, electric displacement, strain and gradient of electrical potential remains
the same as in the static case: M̃ε

p really describes the constitutive equations of the plate!
The displacement fields involved in our simplified modeling being of Kirchoff-Love type,
clearly four cases, indexed by q, of relative behaviours of the parameters determine the
essential nature of the limit response of the plate to the electromechanical loading:

q = 1 : ρ→ ρ ∈ (0,+∞) , q = 2 : ρ→ 0 and ρ/ε2 →∞
q = 3 : ρ/ε2 → ρ ∈ (0,+∞) , q = 4 : ρ = o(ε2).

(18)

In the cases q = 2 and q = 4, the limit response of the plate to the electromechanical
loading is essentially quasi-static, while the cases q = 1 and q = 3 involve the acceleration
of the displacement. Moreover, because of the assumption (17), appears a decoupling
between the membrane motion and the flexural one. If q = 1, 2, the flexion is neglectible
and the membrane response is dynamic if q = 1, quasi-static if q = 2. When q = 3, 4,
the membrane response is quasi-static whereas the flexural response is dynamic if q = 3
and quasi-static if q = 4. In these last two cases, the equation giving the flexion does not
involve the limit electric potential if p = 1. The uncoupled elliptic and hyperbolic involved
problems are two-dimensional and set on ω.

The steps of the derivation of our model are the following. Firts we proceed to the
same scaling as in section 2.1 and to a decomposition s(ε) = s(ε)e + s(ε)r, where s(ε)e
solves a problem like P(ε,Ω)p and consequently whose asymptotic behavior is provided by
section 2.1. Hence s(ε)r = (u(ε)r, ϕ(ε)r) satisfies an homogeneous variational evolution
equation. Because the time derivatives do not act on ϕ(ε)r, it is possible to exhibit a
linear evolution equation for u(ε)r governed by a maximal monotone operator in a suit-
able Hilbert space whose norm depends on (ε, ρ). Since the Trotter results of convergence
of semi-goups of linear operators acting on variables spaces claim that the study of con-
vergence of the transient problems reduces to the static case, the asymptotic behavior of
u(ε)r, and consequently of s(ε)r is easily determined by straightforward variants of the
convergence results of the section 2.1.

2.5.2 The fully dynamic case

In the previous case, the electrical field Eε was assumed to be curl-free and, consequently,
equal to the gradient of the so-called electrical potential ϕε. If we want to take into account
the magnetic effects, the state of the plate is now described by a triplet zε = (uε, Eε, Hε)
where Hε is the magnetic field and the equations of the problem read as:

div σε + fε = ρüε in Ωε

Ḋε = c curlHε in Ωε

µḢε = −c curlEε in Ωε

(σε, Dε) = Mε(e(uε), Eε) in Ωε

with two kind of boundary conditions intimately linked to those of the previous cases (and,
then, still indexed by p!):

p = 1 : Hε ∧ nε = jε on ∂Ωε, p = 2 : Eε ∧ nε = Eε0 ∧ nε on ∂Ωε

Here c, µ, jε, Eε0 stand for the light celerity, the magnetic permeability, the surface current
density and the exterior electrical field respectively. We will assume that there exist
sufficiently smooth fields E0, j such that:
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{
Eε0(Πε) = ε2E0(x), ∀x ∈ ∂Ω, jε(Πε) = ε2j(x), ∀x ∈ Γ±

jεα(Πεx) = εjα(x), jε3(Πε) = ε2j3(x), ∀x ∈ Γlat.
(19)

Let



E
ε

1 = {E ∈ L2(Ωε)3;E3 = 0, ∂3Eα = 0},
E
ε

2 = {E;E3 ∈ L2(Ωε); ∂3(∂αE3 − ∂3Eα) = 0, Eα = 0 on Γε±},
H
ε

1 = {H ∈ L2(Ωε)3;Hα = 0, ∂3H3 = 0},
H
ε

2 = {H ∈ L2(Ωε)3;H3 = 0, ∂3Hα = 0},
Z
ε

p = V
ε × Eεp ×H

ε

p, k1(v,E) = (eαβ(v), Eα), k2(v,E) = (eαβ(v), E3), 1 6 α, β 6 3.

(20)
Under (17), (19) and mild assumptions on the smoothness of the initial state, it can be
shown that the state zεp is asymptotically equivalent to zεp = (uεp, E

ε

p, H
ε

p) which satisfies:



∫
Ωε ρü

ε
p · v dx+

∫
Ωε M̃

ε
pkp(u

ε
p, E

ε

p) · kp(v, 0) dx = Lεp(v, 0), ∀v ∈ VKL(Ωε)

(Ḋ
ε

1)1(x̂) = −c ∂2(H
ε

1)3(x̂) + jε1(x̂, ε) + jε1(x̂,−ε), ∀x̂ ∈ ω
(Ḋ

ε

1)2(x̂) = c ∂1(H
ε

1)3(x̂) + jε2(x̂, ε) + jε2(x̂,−ε), ∀x̂ ∈ ω
Ḋ
ε

2)2(x̂) = c (∂1(H
ε

2)2 − ∂2(H
ε

2)1)(x̂), ∀x̂ ∈ ω
µ(Ḣ

ε

1)3(x̂) = −c (∂1(E
ε

1)2 − ∂2(E
ε

1)1)(x̂), ∀x̂ ∈ ω
µ(Ḣ

ε

2)1(x̂) = −c (∂2(E
ε

2)3 − ∂3(E
ε

2)2)(x̂), ∀x̂ ∈ ω
µ(Ḣ

ε

2)2(x̂) = −c (∂3(E
ε

2)1 − ∂1(E
ε

2)3)(x̂), ∀x̂ ∈ ω
(σεp, D

ε

p) = M̃ε
pkp(u

ε
p, E

ε

p)

(21)

with the boundary conditions:

H
ε

1 ∧ nε =
1

2ε

∫ +ε

−ε
jε(·, x3) dx3 on Γεlat, E

ε

2 ∧ nε = E
ε

0 ∧ nε on Γε±. (22)

The structure of the equations of our model is the same that those of the genuine model,
but the problems are two-dimensional and with a lesser number of degrees of freedom for
the state fields!

Again, the key-point is to formulate a suitable scaling of the problems in terms of
an evolution equation governed by a maximal monotone operator in an Hilbert space of
possible states with finite scaled energy. By using Trotter theory we only have to consider
the limit behavior of a perturbation of the variational equation which defines P(ε,Ω)p.
This perturbation taking into account a scaling of the curl operator, the limit behavior
is obtained by using weak continuity and integration by parts in the terms involving the
curl operator.

3 Mathematical modelings of smart structures

The essential technological interest of piezoelectric devices being the monitoring of a de-
formable body they are bonded to or integrated in, this section is devoted to smart struc-
tures. Here we intend to propose various asymptotic models for the behavior of the body
through the study of the system constituted by a very thin linearly piezoelectric flat patch
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perfectly bonded to or integrated in a linearly elastic or piezoelectric three dimensional
body.

3.1 Piezoelectric patches

A reference configuration for the body is an open set Ω laying in {x3 < 0 } whose part
of its Lipschitz-continuous boundary ∂Ω is a non-empty domain S in {x3 = 0 } and such
that S×(−L, 0) is included in Ω for some positive real number L, while the patch occupies
Bε := S × (0, ε), ε being a small real number; let Oε := Ω∪S ∪Bε. The body is clamped
on a part Γ0 of ∂Ω \ S with a positive two-dimensional measure H2(Γ0), and subjected
to body forces and surface forces on Γ1 := ∂Ω \ (S ∪ Γ0) of densities f and F . Moreover,
for all δ in R, let Sδ denotes S + δe3, { e1, e2, e3 } being a basis of the Euclidean physical
space assimilated to R3, surface forces of density G acts on Sε whilst the patch is free of
mechanical loading and electric charges in Bε and on its lateral boundary ∂S × (0, ε). If
uε, e(uε), σε denote the fields of displacement, strain and stress in Oε and ϕε, Dε stand
for the electric potential and the electric displacement, part of the equations describing
the electromechanical equilibrium read as:

div σε = f̃ in Oε, uε = 0 on Γ0,

σεn = F on Γ1, σ
εn = Gε on Sε, σεn = 0 on ∂S × (0, ε),

divDε = 0 in Bε, Dε · n = 0 on ∂S × (0, ε),

σε = ae(uε) in Ω, (σε, Dε) = 1
εM

(
e(uε),∇ϕε

)
in Bε,

(23)

f̃ is the extension of f to Bε by 0, n is the unit outward normal and a denotes the elasticity
tensor which satisfies

a ∈ L∞
(
Ω;L(S3)

)
, ∃c; c|e|2 ≤ a(x)e · e, ∀e ∈ S3, a.e. x ∈ Ω, (24)

while M is an element of L∞
(
S;L(H)

)
satisfying

M =

[
α −β
βT γ

]
, ∃κ > 0 ; κ|h|2 ≤Mh · h, ∀h ∈ H, a.e. x ∈ S. (25)

The models will be distinguished according to the additional necessary boundary con-
ditions on Sε and S, characterized by an index p in { 1, 2 }2. Case p1 = 1 corresponds to
a condition for the electric displacement on Sε:

Dε · n = qε on Sε, (26)1

qε being a density of electrical charges, while p1 = 2 corresponds to a condition of given
electrical potential:

ϕε = ϕε0 on Sε; (26)2

roughly speaking, p1 = 1 deals with patches used as sensors whereas p1 = 2 concerns
actuators (see [19], [20]). Index p2 accounts for the status of the interface between the
patch and the body: p2 = 1 corresponds to an insulating interface, p2 = 2 corresponds to
a grounded interface:

Dε · n = 0 on S, (27)1

ϕε = 0 on S. (27)2

11



Introducing the transverse average of the strain and of the electrical field, it is easy
to go to the limit as ε goes to 0 and to show that the limit model corresponds to purely
mechanical reinforcement problem along S.

Moreover, when p = (1, 2) or p = (2, 1), the electric data q or ϕ0 does not have any
influence on the limit model which corresponds to a purely elastic surface reinforcement of
the body. However, the characteristics of this reinforcement may depend on the dielectric
or piezoelectric coefficients (see [6]). On the contrary, electrical data q or ϕ0 plays a role
in models (1, 1) or (2, 2). More precisely, f , F and G being fixed, there is a one-to-one
mapping between the applied electrical potential and the limit displacement. It is thus
”theoretically” possible to determine what could be the electrical potential to apply on
Sε in order to get a desired displacement. An approximate procedure may be done easily
by finite elements. Another application is that the patch may shift the spectrum of the
body in an interesting way, that is why we may regard the patch as an actuator. When
p = (1, 1) there is also a one-to-one mapping between the limit displacement and the
electrical charges. Thus the measurement of the latter may supply the knowledge of the
state of displacements: the patch acts as a sensor!

3.2 Piezoelectric junctions

In this section, we first present our results dealing with smart structures composed of
materials whose coefficients are of the same order of magnitude. However, as it is often
observed that the electric permeability is very small compared to other coefficient, next
we carry out a general study of piezoelectric junctions whose material coefficients are of
different order of magnitude.

3.3 Piezoelectric junctions with material coefficients of same mag-
nitude

In this section, we present various asymptotic models, indexed by p = (p1, p2) ∈ { 1, 2, 3, 4 }2,
for a thin piezoelectric junction between two linearly piezoelectric (p2 = 1) or elastic
(p2 > 1) bodies. Index p1 is relative to the magnitude of the piezoelectric coefficients of
the adhesive, characterized by a single parameter µ, with respect to that of the constant
thickness 2ε of a layer containing the adhesive. More precisely, we assume that h := (ε, µ)
takes values in a countable set with a sole cluster point h̄ ∈ { 0 } × [0,+∞] so that:

p1 = 1 : µ̄1 := limh→h̄(εµ) ∈ (0,+∞)

p1 = 2 : µ̄1 := limh→h̄(εµ) = 0, µ̄2 := limh→h̄(µ/2ε) = +∞
p1 = 3 : µ̄2 := limh→h̄(µ/2ε) ∈ (0,+∞)

p1 = 4 : µ̄2 := limh→h̄(µ/2ε) = 0.

(28)

As previously said, index p2 characterizes the status of the adherents but also that of the
interfaces between adherents and adhesive:

p2 = 1 : the two interfaces are electromechanically perfectly permeable,

p2 = 2 : the two interfaces are electrically impermeable,

p2 = 3 : one interface is electrically impermeable while the other is electroded,

p2 = 4 : the two interfaces are electroded.

(29)
Let Ω be a domain, with Lipschitz-continuous boundary, whose intersection S with

{x3 = 0 } is a domain of R2 of positive two-dimensional Hausdorff measure H2(S). Let
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Ω± := Ω ∩ {±x3 > 0 } and ε be a small positive number, then adhesive and adherents
occupy Bε := S× (−ε, ε), Ωε± := Ω±±εe3, respectively; let Ωε = Ωε+∪Ωε−, Sε± := S±εe3,
Oε := Ωε ∪Bε ∪± Sε±. Let (ΓmD,ΓmN), (ΓeD,ΓeN) be two partitions of ∂Ω with H2(ΓmD),
H2(ΓeD) > 0 and 0 < δ := dist(ΓeD, S). For all Γ in {ΓmD,ΓmN,ΓeD,ΓeN }, Γ±, Γε±, Γε

denotes Γ∩{±x3 > 0 }, Γ±±εe3, ∪±Γε±, respectively; if (γD, γN) is a partition of γ := ∂S,
we denote { γD, γN, γ } × (−ε, ε) by {ΓεDI,Γ

ε
NI,Γ

ε
lat }. The structure made of the adhesive

and the two adherents, perfectly stuck together along Sε±, is clamped on ΓεmD, subjected
to body forces of density fε and to surface forces of density F ε on ΓεmN and vanishing on
Γεlat. Moreover, a given electric potential ϕhp0 is applied on ΓεDI and, when p2 = 1, on ΓεeD,
while electric charges of density dε appear on ΓεNI and, when p2 = 1, on ΓεeN.

If σhp , uhp , e(uhp), Dh
p , ϕhp stand for the fields of stress, displacement, strain, electric dis-

placement and electric potential, respectively, the constitutive equations of the structure,
for all p1 in { 1, 2, 3, 4 }, read as:

(σhp , D
h
p ) = µMI

(
e(uhp),∇ϕhp

)
in Bε ∀ p2 ∈ { 1, 2, 3, 4 },{

(σhp , D
h
p ) = Mε

E

(
e(uhp),∇ϕhp

)
in Ωε if p2 = 1,

σhp = aεEe(u
h
p) in Ωε if p2 > 1

(30)

where

(Mε
E, a

ε
E)(x) = (ME, aE)(x∓ εe3) ∀x ∈ Ωε± (31)

(MI,ME) ∈ L∞
(
S × Ω ; L(H)

)
such that

MP =

[
aP −bP
bTP cP

]
;

∃κ > 0, κ|k|2 ≤MP(x)k · k, ∀k ∈ H := S3 × R3, a.e. x ∈ Ω, ∀P ∈ { I,E } .

(32)

Lastly we have to add the following conditions on Sε±:
p2 = 2 Dh

p · e3 = 0 on Sε±,

p2 = 3 Dh
p · e3 = 0 on Sε+, ϕhp = ϕhp0 on Sε−,

p2 = 4 ϕhp = ϕhp0 on Sε±,

(33)

the electric potential ϕhp0 being given on Sε+ or Sε±.
The same averaging method through the junction easily leads to our limit models. We

are then able to show that in the case of piezoelectric adhesive and adherents (p2 = 1),
our results extend those obtained in elasticity (see [1, 5]). The asymptotic behavior of
the adhesive strongly depends on the magnitude of the stiffness compared to that of
the thickness. When the magnitude of the stiffness is of the order of the inverse of the
thickness, the adhesive is replaced by a material piezoelectric surface perfectly bonded to
the adherents. When it is lesser, the adhesive is replaced by an electromechanical constraint
between the two adherents which can be perfect adhesion, electromechanical pull-back or
free separation, according to the order of magnitude of the stiffness which is, respectively,
larger, equal or lower than that of the thickness.

Similarly, in the case of a thin piezoelectric layer embedded between two elastic adher-
ents, depending on the magnitude of the stiffness, the adhesive is replaced by a material
elastic surface perfectly bonded to the adherents or by a mechanical constraint between
the adherents. In the case of electrically impermeable interfaces, the material surface has
a non local elastic behavior (see [7]), the constitutive equations being derived from the
asymptotic behavior of a thin piezoelectric plate acting as a sensor (case p = 1 in [23]).
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When one interface is electrically impermeable while the other is electroded, the material
surface is an elastic membrane. When the two interfaces are electroded, the material sur-
face is an elastic membrane with residual stress. In these last two cases, the constitutive
equations are derived from the asymptotic behavior of a thin piezoelectric plate acting
as an actuator (case p = 2 in [23]). The mechanical constraint is perfect adhesion, elas-
tic pull-back or free separation according to the order of magnitude of the stiffness. In
the case of electrically impermeable interfaces, the elastic pull-back is of non local nature
(since the state variable of electric nature φ, additional to the relative displacement, can
be eliminated). In the two other cases, the elastic pull-back is local. When the two inter-
faces are electroded, it is similar to the purely elastic case, while, if only one interface is
electroded, piezoelectric and dielectric coefficients enter the limit constitutive equations.

3.3.1 Piezoelectric hybrid junctions

Due to the wide range of values taken by the elastic, piezoelectric and dielectric coefficients
of various devices, it is worthwhile to extend our previous study [7] devoted to thin linearly
piezoelectric junctions to the case when the elastic, piezoelectric and dielectric coefficients
of the junction are not of the same order of magnitude. Our various asymptotic models
for a thin piezoelectric junction between two linearly piezoelectric or elastic bodies will
be indexed by p = (p1, p2, p3) in { 1, 2, 3, 4 }3. Indices p1 and p2 are respectively relative
to the magnitude of the elastic and dielectric coefficients of the adhesive with respect to
that of the constant thickness 2ε of the layer containing the adhesive. More precisely, we
assume that h := (ε, µ) = (ε, µmm, µee, µme) takes values in a countable set with a sole
cluster point h̄ ∈ { 0 } × [0,+∞]3, so that

p1 = 1 : µ̄1
mm := limh→h̄(2εµmm) ∈ (0,+∞)

p1 = 2 : µ̄1
mm := limh→h̄(2εµmm) = 0,

µ̄2
mm := limh→h̄(µmm/2ε) = +∞

p1 = 3 : µ̄2
mm := limh→h̄(µmm/2ε) ∈ (0,+∞)

p1 = 4 : µ̄2
mm := limh→h̄(µmm/2ε) = 0

(34)



p2 = 1 : µ̄1
ee := limh→h̄(2εµee) ∈ (0,+∞)

p2 = 2 : µ̄1
ee := limh→h̄(2εµee) = 0,

µ̄2
ee := limh→h̄(µee/2ε) = +∞

p2 = 3 : µ̄2
ee := limh→h̄(µee/2ε) ∈ (0,+∞)

p2 = 4 : µ̄2
ee := limh→h̄(µee/2ε) = 0.

(35)

The parameters µmm, µee, µme respectively characterize the order of magnitude of the
elastic, dielectric and piezoelectric coefficients of the adhesive. The case p1 = p2, being
already treated in [7], in the following we assume p1 6= p2. As in [7], index p3 characterizes
the status of the adherents but also that of the interfaces between adherents and adhesive:
p3 = 1 : the two interfaces are electromechanically perfectly permeable,

p3 = 2 : the two interfaces are electrically permeable,

p3 = 3 : one interface is electrically permeable while the other one bears an electrode,

p3 = 4 : the two interfaces bear an electrode.

(36)
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Therefore, the constitutive equations of the structure, for all p̂ := (p1, p2), read as:
(σhp , D

h
p ) = Mµ

I

(
e(uhp),∇ϕhp

)
in Bε ∀p3 ∈ { 1, 2, 3, 4 },{

(σhp , D
h
p ) = Mε

E

(
e(uhp),∇ϕhp

)
in Ωε if p3 = 1,

σhp = aεEe(u
h
p) in Ωε if p3 > 1

(37)

where
(Mε

E, a
ε
E)(x) = (ME, aE)(x∓ εe3) ∀x ∈ Ωε± (38)

(MI,ME) ∈ L∞
(
S × Ω;L(H)

)
such that

Mµ
I :=

[
µmmaI −µmebI
µmeb

T
I µeecI

]
, ME :=

[
aE −bE
bTE cE

]

MP :=

[
aP −bP
bTP cP

]
;∃κ > 0 κ|k|2 ≤MP(x)k · k ∀k ∈ H a.e. x ∈ Ω, ∀P ∈ { I,E } .

(39)
Lastly we have to add the following conditions on Sε±:

p3 = 2 Dh
p · e3 = 0 on Sε±,

p3 = 3 Dh
p · e3 = 0 on Sε+, ϕhp = ϕhp0 on Sε−,

p3 = 4 ϕhp = ϕhp0 on Sε±,

(40)

the electric potential ϕhp0 being given on Sε+ or Sε±.
Our results show that for piezoelectric adhesive and adherents, when the elastic and

dielectric coefficients of the adhesive are not of the same order, the piezoelectric coupling
remains in the asymptotic model only when p̂ = (1, 3) or (3, 1). More generally, when
(necessarily only) one index p1 or p2 is equal to 1, the status of the limit model for the
adhesive is hybrid. When p1 = 1, the adhesive is replaced by both a material surface per-
fectly bonded to the adherents, from the mechanical point of view, and a constraint, from
the electrical point view. On the contrary when p2 = 1, a mechanical constraint appears
with an electrical material surface perfectly permeable. The mechanical material surface
is an elastic membrane with a possible nonvanishing (only when p̂ = (1, 3)) residual stress
stemming from the possible discontinuity of the electrical potential induced by the limit
electrical constraint which is perfect permeability, electric pull-back or impermeability,
according to the magnitude of the dielectric coefficients. The electrical material surface is
of linear conductor type with a possible nonvanishing (only when p̂ = (3, 1)) residual term
stemming from the possible nonvanishing relative displacement induced by the mechanical
constraint which is perfect adhesion, elastic pull-back or free separation according to the
magnitude of the stiffness of the adhesive. When both p1 and p2 are greater than 1, the
adhesive is replaced by an electromechanical constraint. As the orders of magnitude of
the elastic and dielectric coefficients differ, this electromechanical constraint reduces to
two independent mechanical and electrical constraints of the types previously evocated
according to the values of p1 and p2, respectively.

For a thin piezoelectric layer embedded between two purely elastic adherents through
two electrically impermeable interfaces, the piezoelectric coupling remains in the asymp-
totic model only when p̂ = (1, 3) or (3, 1). When p̂ = (1, 3) the adhesive layer is replaced
by a piezoelectric material surface; when p̂ = (3, 1), it is replaced by a material conductive
surface and a mechanical constraint. This constraint is of elastic pull-back type with a
residual term stemming from the electrical potential in the conductive surface. Actually,
when p1 = 1, the adhesive layer is replaced by a material elastic surface perfectly bonded
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to the adherents. When p2 = 3, the material surface has a non-local elastic behavior since
the electrical potential can be eliminated, in the other cases the material surface is a stan-
dard elastic membrane. When p1 ranges from 2 to 4, the adhesive layer is replaced by a
mechanical constraint which is perfect adhesion, elastic pull-back or free separation. The
elastic pull-back is nonlocal when p2 = 1. When p2 = 2, the electric potential vanishes, in
the remaining cases the limit surface is a linear elastic conductor.

The limit models for a thin piezoelectric layer embedded between two elastic adherents,
through either two electroded interfaces or one electroded and the other being imperme-
able, only differ when p̂ = (1, 3). In all cases, there is a perfect decoupling between Elec-
tricity and Mechanics. When the magnitude of the stiffness is of the order of the inverse of
the thickness, the adhesive is replaced by an elastic material membrane perfectly bonded
to the adherents; when it is lesser, the adhesive is replaced by a mechanical constraint
which is perfect adhesion, elastic pull-back, free separation according to the magnitude of
the stiffness. The limit surface is at a given applied potential when p̂ ∈ { 3, 4 } × { 1 }, at
a vanishing one in the other cases. Actually when p = (1, 3, 3), the memory of electricity
remains because piezoelectric and dielectric coefficients enter in the constitutive equations
of the elastic membrane the adhesive layer reduces to.

Eventually the previous method may work when the elastic and dielectric coefficients
of the junction are of the same order of magnitude with piezoelectric coefficients of lesser
order. Obviously the conclusions of [7] remain but with bI replaced by 0, so that the
piezoelectric coupling disappears in the asymptotic models.
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