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Abstract 
We consider a production system that has to satisfy a random demand during a finite planning horizon 

under a required service level. This study consists in developing an analytical model in order to 

determine a near-optimal integrated maintenance-production plan which takes into consideration the 

influence of the production rate on the system’s failure rate while attempting in the same time to 

smooth the production plan through the production rate control between periods of the planning 

horizon. A numerical example is presented in order to illustrate the contribution of the proposed 

modelling approach and discuss the different trade-offs that are considered. 

 

Key Words: Integrated production-maintenance strategies, Optimization, Variable production rates, 

Degradation, and Smoothing production rate. 

 

1. INTRODUCTION AND LITTERATURE REVIEW 

Manufacturing companies must manage several functional areas successfully, such as 

production, maintenance, quality and marketing. One of the keys to success consists in 

treating all these services simultaneously. In order to ensure an efficient coordination between 

them, managers and decision makers have to consider a global systemic approach integrating 

the interactions between parts or all of those complementary functions. In this perspective, 

several researchers have investigated ways of integrating maintenance and production after 

decades during which those two functions had been studied separately. Works on 

maintenance policies started with Barlow et al. [1] and continued with a huge number of 

contributions as it can be seen in a survey on maintenance models by Wang [2]. During the 

last two decades, several companies have realized that strategies dissociating maintenance and 

production were ineffective. The need for developing new integrated maintenance-production 

strategies became evident. Brandolese et al. [3] proposed a strategy for maintaining a multiple 

machines production system. The planning consists in programming the execution date of 

each task and the machine that should perform it. They integrated preventive maintenance 

tasks in the planning placing them as close as possible to the optimal maintenance periods. 
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Chelbi et al. [4] developed a mathematical model in order to determine both the buffer stock 

size and the preventive maintenance period for an unreliable production unit which is subject 

to regular preventive maintenance of random duration. The optimization of the preventive 

maintenance period and the buffer size was also the problem addressed by Pal et al. [5] in the 

context of an imperfect production system that may shift to an ‘out-of-control’ state after a 

random time. Non-conforming products are reworked incurring an additional cost. They also 

considered the situation where both the buffer size and the production rate are the decision 

variables. Rezg et al. [6] developed an analytical model and a numerical procedure which 

allow determining a joint optimal inventory control and age-based preventive maintenance 

policy for a randomly failing production system. Recently, Tambe and Kulkarni [7] developed 

a selective maintenance and quality control decision optimization framework considering the 

production schedule of the machine. They derive an optimal maintenance decision, consisting 

in one of three actions (repair, replace or do-nothing) for the system components along with 

the optimal sample size, the acceptance number and the time between samples, taking into 

account the optimal production schedule. The authors used a genetic algorithm in order to 

solve the problem. 

In the same framework, some researchers have taken into account several external constraints. 

In fact, integrated maintenance-production strategies which take into consideration 

subcontracting have been studied by Dellagi et al. [8]. They developed and optimized a 

maintenance policy incorporating subcontractor constraints. They demonstrated through a 

case study, the influence of the subcontractor constraints on the optimal integrated 

maintenance-production strategy. Dealing also with the same subject, Dahane et al. [9] 

studied analytically the problem of the integration of subcontracting activities and determined 

the optimal number of subcontracting tasks to be performed during a maintenance cycle. 

Recently, Nourelfath et al. [10] dealt also with the same problem of integrating preventive 

maintenance and production planning, for a production system composed of a set of parallel 

components. A subsequent work by Nourelfath and Châtelet [11] assumed the presence of 

economic dependence and common cause failures in the production system. Mifdal et al. [12] 

considered the same problem in the case of multiple-products manufacturing systems. 

Looking at the literature on integrated maintenance-production policies, we noticed that the 

influence of the production rate on the system degradation in presence of a random demand 

over a finite planning horizon was rarely addressed in depth. Very few works dealt with this 

issue. For example, the study of Hajej et al. [13] which presents an analytical stochastic 

optimization model based on the operational age concept, revealed the significant influence of 

the production rate on the deterioration of the manufacturing system and consequently on the 

integrated production-maintenance policy. Later, Hajej et al. [14] dealt with the same problem 

by integrating a subcontracting constraint in order to recycle a certain quantity of returned 

products. In these two studies, the authors started by establishing an optimal production plan 

which minimizes the total inventory and production cost taking into consideration the 

subcontractor constraint. Then, using this optimal production plan, they derived an optimal 

maintenance schedule which minimizes the total maintenance cost. Their approach is 

sequential. Moreover, they do not consider the influence of having differences between 

quantities produced in successive periods and the impact of such differences on labour and 

set-up related costs. 

The approach adopted in this study favours the fact of smoothing the production rate between 

periods in order to avoid the disadvantages of a significant variation (mainly in terms of set-

up costs). 
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This paper is organized as follows: In the next section we specify the targeted contributions of 

this work. Then the problem and the working assumptions are described in section 3. Section 

4 is dedicated to the working assumptions and the development of the analytical model. A 

numerical example is presented in section 5 to illustrate the proposed modelling approach and 

discuss different trade-offs that are considered. Finally, conclusions and potential future work 

are provided in Section 6. 

 

2. TARGETED CONTRIBUTIONS 

Several industries such as steel production exhibit fluctuation of the production rate between 

production periods. This yields a great deal of set-up and preparation work like unloading and 

loading raw materials using special equipment and human resources. Moreover, in the case of 

production lines, generally buffers with finite capacities are present between machines. The 

variation of the production rate between periods brings the necessity of changing the buffers’ 

levels involving a certain handling and logistics cost. Hence, it is clear that the production rate 

fluctuation between periods may have a significant impact on the set-up cost incurred at the 

beginning of each period. To the best of our knowledge, this issue has not been considered in 

the literature. The adopted approach in this study favors the fact of smoothing the production 

rate between periods in order to avoid the disadvantages of a significant variation (mainly in 

terms of set-up costs). We also propose an integrated (and not sequential) optimization of the 

maintenance schedule and the production plan in order to derive a near-optimal integrated 

maintenance-production strategy taking into account the penalty induced by excessive varia-

tion of the production rate between periods of the planning horizon. To do so, we express the 

set-up cost as being proportional to the production rate variation between successive periods 

of the production plan. Besides, we propose new modelling features in the total integrated 

cost modelling, particularly when dealing with the shortage and inventory holding costs by 

considering them separately contrarily to the previous studies mentioned above. 

The proposed model allows the investigation of different trade-offs.  The first one is between 

the smoothing penalty and the production plan, the inventory, and the preventive maintenance 

schedule. We also consider the effect of the demand variability on the smoothing penalty, the 

production and maintenance plans, and on the total expected cost. 

 

3.  PROBLEM STATEMENT 

We consider a single machine M subject to degradation and random failures. It produces one 

type of product whose demand is random and characterized by a Normal probability 

distribution with known average and standard deviation. The demand is satisfied from a stock 

(Fig. 1). Production is planned over a finite horizon divided in H production periods of equal 

length t. It is assumed that the quantity produced at every period is added to the stock at the 

end of the period and the demand of every period is satisfied at the end of the period. The 

machine failure rate increases with both time and the production rate. Periodic preventive 

maintenance actions have to be scheduled to reduce the probability of failure.  

We are in presence of a production control problem with a state variable, namely the 

inventory level, together with the following control variables: the production rates for every 

period and the number of preventive maintenance actions to be performed over the time 

horizon Ht. 
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Figure 1:  Problem statement 

The objective is to minimize the total expected cost over the production planning horizon 

made of H periods. This cost integrates production costs, inventory and shortage costs, 

preventive and corrective maintenance costs and an additional cost related to a penalty due to 

the production rate variation between successive periods.  

As it will be shown in next section, compared to previous works dealing with the same 

subject, the first contribution of this study consists in the total integrated cost modelling. On 

one hand, the shortage and inventory holding costs are formulated separately, and on the other 

hand, the average number of failures is modelled differently considering an increasing failure 

rate according to both time and production rate.  

The second feature consists in the integrated (and not sequential) optimization of the 

production plan and the maintenance schedule taking into account the influence of the 

production rate variation on the system degradation. Finally, the third main contribution is the 

control of the production rate variation between successive periods in order to smooth the 

production plan by reducing the penalty induced by excessive variation of the production rate 

over the planning horizon. 

 

4. ANALYTICAL STUDY 

4.1 Used notation  

The following parameters are used in the mathematical formulation of the model: 

  

∆t : length of a production period 

H : number of production periods in the planning horizon 

H.t : length of the finite planning horizon 

z(p) : produced quantity during period p (p=1,…, H) 

zmax : maximum quantity that can be produced during period p 

Z={z(1), ….z(p), ..., z(H)}: Production plan over the horizon H.t 

u(p) : production rate of the system during period p (p=1,…, H); (u(p)=z(p)/ t) 

umax : maximum production rate of the system (umax=zmax/ t) 

U={u(1), ….u(p), ..., u(H)}: Set of production rates adopted for each period 

d(p) : average demand during period p (p=1,…, H)  

V : variance of demand for all periods p (p=1,…, H)  

σ : standard deviation of demand for all periods 

S(p) : inventory level at the end of period p 

S0 : the inventory level at the start of period 1  

Cpr : unit production cost  
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Cs : inventory holding cost of one product unit per time unit. 

Cl : shortage cost of one product unit. 

CTS : expected total cost of production, shortage and inventory holding over the time horizon 

Ht 

Cv : unit set-up cost  

CM :  total average maintenance cost 

Cpm : preventive maintenance action cost 

Ccm : corrective maintenance action cost 

SC : penalty cost relative to production rate variation  

mu : monetary units

 : probability to satisfy the demand (service level). 

f(t) : probability density function associated with the time to failure of M 

F(t) : probability distribution function associated with the time to failure of M   

R(t) : reliability function: 1- F(t)

n(t) : nominal failure rate corresponding to the maximum production rate (depends only on 

time) 

λ(t,u(p)) : machine failure rate function during period p (p= 1,…, H) (depends on time and on 

the production rate during period p)  

tu : time units 

 

The cost model to be developed corresponds to a production/maintenance planning problem 

with constraints related to inventory, production and preventive maintenance. 

4.2 Woking Assumptions 

The following assumptions are considered: 

- The machine failure rate increases with both time and production rate  

- Preventive maintenance actions restore the machine to an “as-good-as-new” state. 

- The planning time horizon starts with a new or as good as new machine. However, it 

doesn’t end necessarily with a perfect preventive maintenance action. The equipment could 

be replaced by a different one or maintained differently after the end of the planning 

period.  

- The quantity z(p) produced in period p is added to the inventory at the end of the period 

and then the demand d(p) is satisfied.  

- Preventive maintenance and repair actions durations are negligible.  

- The units short are lost (no backorders) and a shortage cost is incurred. 

4.3 Formulation of the integrated production-maintenance total expected cost 

We develop in what follows the expressions of the three major components of the total 

expected cost incurred over the planning horizon. These costs are: the production and 

inventory cost, the maintenance cost, and the set-up cost (smoothing penalty). Recall that the 

decision variables are the production rates for every period and the number of preventive 

maintenance actions to be performed over the planning horizon. 

 

4.3.1 Production, shortage and inventory costs formulation 

The constraints related to inventory balance, service level satisfaction, and maximum produc-

tion quantity per period, are expressed as follows:  
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Inventory balance:
 

10,....)1()1()()1(  H,=p +pd+pz+pS=+pS   (1) 

With: )1()1()1( 0 dz+S=S   

Service level satisfaction:  

  1...0,0)1(Prob  H,=p pS                               (2) 

Production capacity: 

H=p zpz 1,...,)(0 max      (3) 

 

Accordingly, the inventory evolves as shown in the example below in Fig. 2:  

Figure 2: Inventory evolution over the planning horizon Ht 

 

Thus, the expression of the total cost of production, shortage and inventory over the finite 

horizon Ht is given by: 

           0 0

1 1 1

1 1

H H H

prS p S p

p p p

CTS Cs t S p Cl S p C z p 

  

     
             
     
     

              (4) 

With: 1S(p)>0 is equal to 1 if  S(p)>0 and equal to zero otherwise 

         1S(p)<0 is equal to 1 if  S(p)<0 and equal to zero otherwise 

 

It is worth noticing here that most of the papers dealing with the same subject such as Hajej et 

al. [13,14,15] and Ayed et al. [16] consider a quadratic model (known as HMMS (Holt, 

Madigliani, Muth, and Simon) [17]) integrating shortage and excess of stock considering 

however the same unitary cost for shortage and for inventory holding.  
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Our approach (Eq. 4) makes this important distinction between these unitary costs that are not 

the same in practice.  

 

The constraint relative to the service level is stochastic. It is possible to transform this 

constraint to a deterministic one (Hajej et al. [13]). In fact, it provides the minimal quantities 

to produce at each period p in order to satisfy the service level.  

     1,...,0)1(0)1(Prob ),(  Hp zpzpS pS    (5) 

Where  ),( pSz  represents a minimum cumulative production quantity expressed as follows: 

     10,...)()1()()( 1

1

1),(  H,p pS+pd+V=z +p+ppS    (6) 

With: 

Vp+1 : variance of demand at period p+1;

p+1 : cumulative Gaussian distribution function with mean d(p+1) and finite variance Vp+1. 

-1
p+1 : inverse Gaussian distribution function 

 

4.3.2. The maintenance cost formulation 

We consider a periodic preventive maintenance (PM) policy with minimal repair at failure. 

The interval [0, Ht] is partitioned into N equal parts each of length kt plus a possible 

remaining duration shorter than kt. Perfect preventive maintenance actions are performed 

periodically at times i× kt, i=1,…,N. 

For a given production plan Z (Z={z(1), ..., z(p), ..., z(H)}), and a given PM period kt,  the 

total maintenance cost is given by:  

 

     kU,C+kNC=kU,CM cmpm      (7) 

 

N(k) represents the integer part of (H/k), which corresponds to the number of PM actions. k is 

the decision variable through which the maintenance policy can be defined. (U,k) stands for 

the average number of failures (minimal repairs) over the horizon Ht.  

 

The lemma below provides the expression of the average number of failures:
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(8)
 

uij represents the production rate during period i after the j
th

 PM action.
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Proof 

Recall that PM actions are performed every k production periods, which means every kt  

restoring the system to as good as new state. 
 

The planning horizon Ht is divided into (N(k) +1) periods, each one is noted j, j{0,1,2…. 

,(N(k))}. Hence, j=0 corresponds to the first PM interval [0, kt], the second PM period [kt, 

2kt] corresponds to period j=1, etc. Note that the last PM action is performed at instant 

(N(k).k.t), and the interval (N(k)-1).k.t), (N(k).k.t) corresponds to j = (N(k)-1).  

To illustrate this decomposition, Fig. 3 below shows an example with the following values: 

H = 13 periods; k = 3 periods, N = 4, Δt = 1 tu. Hence, N(k) = 4. (N(k).k.t) = 12 tu.  
 

 

t 

3t 

Ht =13 t 

J=0 J=1 J=2 J=3 

0 

3t 3t 3t 

PM PM PM PM 

Figure 3: Example of PM periods over a planning horizon Ht =13 time units 

The average number of failures over the planning horizon H.t is the sum of the average 

number of failures during periods j=0 to (N(k) -1), to which  should be added the average 

number of failures during the last interval (N(k).k.t,  HΔt corresponding to j= (N(k)). 

Average number of failures during a PM period j 

Recall that the system failure rate evolves according to time and to the production rate which 

varies from one period to another. In order to take into account the influence of the production 

rate variation on the system degradation, we use Cox model [18]. Formally, the failure rate is 

expressed according to the production rate during each period and the nominal failure rate. 

The following expression is proposed (Hajej et al. [13]):  

       ,p nt u p t g u p    

Where λp(t,u(p)) represents the instantaneous failure rate function at period p as a function of 

the production rate u(p). λn(t) is the failure rate for nominal conditions which corresponds to 

the failure rate when the production system is operating with its maximum production rate, 

and   
 

max

u p
g u p

u
 .

 
Although this linear relationship between the production rate and the failure rate does not 

necessarily hold for any type of systems, it is adopted here like in (Hajej et al. [13], [14], [15]) 

as an approximation.   

 

Let uij represent the production rate during period i after the j
th

 PM action. 

    )(,...,0,,...,1),( kNkjiwithuij 
 

Hence, the failure rate during period i after the jth PM action is given by: 
 

    )(,...,0,,...,1),()(),(
max

kNkji
u

u
tut

ij

nijij  
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The evolution of the production system’s failure rate within any preventive maintenance cycle 

period j = h is presented in Fig. 4 below:  
 

t 

λ(t,u) 

t 

(uih/umax)λn(t) 

S1h 

Sih 

S2h 

(h+1)kt 
J=h 

hkt 

PM PM 

 

 Figure 4: Evolution of the production system failure rate within a preventive maintenance 

cycle (period j = h)
 

Let S1j be the average number of failures during the first production period after the j
th

 PM 

action: 
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In the same way, S2j, corresponding to the average number of failures during the second 

production period after the j
th

 PM action, is given by: 
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Generalizing this to all production periods after the j
th

 PM actions, we obtain: 
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Hence, the average number of failures during any period j is expressed as follows: 
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Average number of failures over the period 0, (N(k).k.t  

Considering all periods j (j=0 to N(k)-1), the total average number of failures over the interval 

0, (N(k).k.t  is expressed as follows:
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Average number of failures over the interval (N(k).k.t, HΔt
 

Looking at the remaining period N(k).k.t, Ht after the last PM action is performed during 

the planning horizon, one can distinguish three possible cases: 
 

 Case 1: this period doesn’t exist. This means that the last preventive maintenance action 

coincides with H.
 
t, the end of the planning horizon. 

Formally:  H-(N(k).k) = 0 

 Case 2: we have only one production period of length t, in the interval N(k).k.t, Ht. 

Formally:   H-(N(k).k) = 1
 

 Case 3: we have more than one production period in the interval N(k).k.t, Ht 

Formally: H-(N(k)*k) > 1
 

 

Taking into account these three possible situations, the average number of failures in the in-

terval N(k).k.t, Ht is given by:
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The first term of this sum corresponds to case 2, and the second and third terms correspond to 

case 3. Obviously, in the first case (case 1), the number of failures is equal to zero. 

 

Average number of failures over the planning horizon H.t  

Summing up the obtained average number of failures for all periods, we obtain:  
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End of the proof 

 

4.4 Penalty cost relative to the production rate variation: variable set-up cost 

As mentioned earlier, one of the objectives of this study is to smooth the production rate 

between periods. To do so, we consider a variable set-up cost, which is proportional to the 

difference of the quantity produced from one period to the next one. Indeed, reducing or 

increasing the quantity to produce may induce in many situations labour related costs 

(overtime, or hiring/firing costs) and more or less complexity of the set-up.  

We define Cv as unit set-up cost. It corresponds to the direct cost of resources needed to adapt 

the production unit to the production quantity change between successive periods.  

Hence, the penalty cost relative to production rate variation is given by: 

 

   
1

1

1
H

v

p

SC C z p z p




                                             (9) 

 

4.5 The total integrated maintenance/ production/inventory cost taking into account the 

set up cost 

Using the developed mathematical expressions above in this section, the total cost 

optimization problem can be formulated as follows:  

 

                                                     )(
),(

SCCMCTSMin
k


Z

                                 (10)

       

Subject to: 

 10,...,)1(1)()()1(  H=p +pd+pz+pS=+pS  

  1...0,0)1(Prob  H,=p pS   

H=p zpz 1,...,)(0 max   

 

4.6 Solution method 

Formally, solving the constrained minimization problem stated above (Eq. 10), yields the 

determination of optimal production quantity for every period {z(1)*, z(2)*, ..., z(p)*, …, 

z(H)*} and the optimal period (k*t) of PM actions to be performed over the finite horizon 

Ht. Due to the obvious complexity of the model, we developed an iterative search procedure 

to find a near-optimal solution. It is presented below in four steps.  
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 Step 1: Use Eqs. (5) and (6) to determine the minimum cumulative production quantity to 

produce in each period in order to satisfy the service level constraint given by Eq. (2).  

 Step 2: Perform a simple enumeration by varying the production quantity for each period p 

(using a relatively small step) between the minimum value obtained in step 1 and the 

maximum one zmax given in constraint (3) in order to consider all possible production 

plans. 

 Step 3: For every production plan established in step 2, vary k, number of production 

periods between preventive maintenance actions, between 1 and H, and calculate each time 

the corresponding total cost (Eq. 10).  

 Step 4: Determine the values of the decision variables ((z(1)*, z(2)*, ... z(p)*, …, z(H)*), 

k*) which yielded the minimal total cost.  

 

MATHEMATICA
®

 software was used to perform the calculations and obtain a near-optimal 

solution for all instances of the problem considered in this paper. 

 

5. NUMERICAL EXAMPLE AND TRADE-OFFS ANALYSIS 

5.1 Reference example 

A numerical example is presented in this section in order to illustrate the use of the analytical 

model developed in the previous sections. We assume that the finite planning horizon is made 

of 36 periods of one month each (t = 1 month). The other input data are summarized in 

Table 1 below (‘mu’ stands for ‘monetary units): 

Reliability data  

System time to failure distribution  F(t): Weibull distribution with :  

Scale parameter : β = 16 & Shape parameter : = 3 

Corrective maintenance cost Ccm = 3000 mu  

Preventive maintenance cost Cpm = 500 mu 

Inventory data 

Shortage cost per unit  Cl = 1 mu/unit short 

Inventory holding cost per unit per time unit  Cs = 0.65 mu/unit/tu 

Initial inventory level  S(0) = 0 

Service level   = 0.9 

Production data 

Unit production cost  Cpr = 7 mu/unit  

Maximum production rate   

Maximum production quantity per period 

umax = 500 units per month 

zmax = 500 units 

Nominal set-up cost Cv = 5 mu 

Table 1: Numerical data 
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As for the demand, the variance is supposed to be equal for all periods: V = 4.52. The average 

demand per period is presented in Table 2 below: 

 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

350 420 340 392 431 444 442 340 392 375 392 400 

350    370     395    415     431     444     442     340      392    375    400        420 

350 340 392 370 431 392 500 350 320 420 365 480 

Table 2: Monthly mean demand 

 

Solving the problem using the procedure described in section 3, we obtain the following near-

optimal maintenance/production plan presented in Table 3 below:  

Near-optimal production plan over the finite horizon Ht = 36 months N* k* 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

500 500 439 500 500 269 434 352 500 500 395 470 

500 438 485 400 400 127 400 500 465 193 400 370 

65 438 500 200 400 400 499 323 407 351 166 400 
 

 

6 

 

6 

N*: Optimal number of preventive maintenance actions over Ht 

k*:  Optimal number of production periods between preventive maintenance actions 

 

Table 3: Near-optimal maintenance/production plan  

 

The total cost related to this plan is equal to : 5.24429×10
7
 mu. 

 

5.2 Sensitivity analyses 

 Effect of Cv on the production plan, the inventory, and the preventive maintenance 

schedule 

 

In the perspective of smoothing the production plan through the production rate control 

between periods of the planning horizon, we studied the impact of the variation of the unit 

set-up cost between successive periods, Cv, on the obtained solution.  

Considering the same input data, we obtained the following results presented in Table 4: 
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Cv: Unit set-up cost 

between successive 

periods 

Average production quantity 

variation between successive 

periods 

N* k* 
Average end of 

month inventory 

2 143.71 4 9 156.94 

5 126.17 6 6 464.56 

7 75.31 7 5 955.58 

8 74.57 7 5 1200.53 

10 58.34 9 4 1221.47 

Table 4: Effect of the variation of the unit set-up cost  

Fig. 5 below shows the trade-off between the unit-setup cost and the average production 

quantity variation between successive periods, the optimal number of preventive maintenance 

actions, and the average end of month inventory. 

  

 

 
 

Figure 5: Evolution of the average production quantity variation between successive periods, 

and the average end of month inventory according to the unit set-up cost Cv 

First, one can easily notice that, as expected, when the unit set-up cost between successive 

periods increases, the average variation of the production quantity, between successive 

periods, decreases.  This clearly illustrates the effect of production smoothing.  
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Furthermore, it is interesting to notice that the decrease of the average variation of the 

production quantity between successive periods yields an increase of the quantity to be 

produced in some periods, and consequently a higher average end of month inventory. Indeed, 

we know that the quantity to be produced in each period should be between a certain 

minimum given by the service level constraint (Eqs. 5 and 6) and a given maximum 

corresponding to the capacity of the machine (Eq. 3). These limits are considered in the first 

two steps of the solving procedure. Hence, as the smoothing penalty increases, reducing the 

average variation of the production quantity between successive periods can be achieved 

either by increasing or by decreasing successive production quantities between the two limits. 

This is achieved using the model considering simultaneously the trade-off between inventory 

and shortage costs. The near-optimal solutions, for this specific example, display an increase 

of the quantities to be produced and therefore an increase of the average end of month 

inventory. In the same time, the increase of the production rate through the production periods 

affects the system degradation and induces the need for a more frequent preventive 

maintenance as it can also be seen in Fig. 5. 

The above observations illustrate the fact that the developed model allows the simultaneous 

consideration of the different trade-offs between the smoothing penalty, the production plan, 

the inventory, and the preventive maintenance schedule. 

We performed several other numerical experiments with different input parameters settings to 

check the smoothing effect. We present below a sample of the obtained results corresponding 

to a situation involving a higher shortage cost. While keeping the original combination of 

input parameters, we increased the shortage cost Cl from 1 mu to 5 mu. A priori, for such a 

situation, the quantities to be produced should be higher throughout the production periods 

since shortages are more costly while production and inventory holding costs remain the 

same. 

The following near-optimal maintenance/production plan has been obtained (Table 5): 

Near-optimal production plan over the finite horizon Ht = 36 months N* k* 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

500 500 392 422 481 500 500 500 500 444 481 404 

388 500 322 321 443 132 434 480 467 500 438 500 

437 330 500 500 479 377 0 500 450 500 500 200 
 

 

7 

 

5 

Table 5: Near-optimal maintenance/production plan with Cl = 5 mu and Cv = 5 mu 

The total cost related to this near-optimal plan is equal to : 7.38×10
8
 mu.  

 

Compared to the situation with a lower shortage cost (Cl = 1 mu), one can easily observe 

comparing Tables 3 and 5 that, in total, more products are produced in the second situation (a 

total of 15782, compared to a total of 14186 items). Moreover, this increase of total 

production over the same horizon yielded an increase of the number of preventive 

maintenance actions that have to be performed (from 6 to 7 actions). This is due to the fact 

that the machine failure rate increases with the production rate. 
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Again, in this situation, we studied the impact of the smoothing penalty on the optimal 

strategy and on the inventory.  

 

The following results were obtained (Table 6): 

Cv: Unit set-up cost 

between successive 

periods 

Average production quantity 

variation between successive 

periods 

N* k* 
Average end of 

month inventory 

2 116.74 4 9 592.22 

5 75.14 7 5 950.42 

8 63.97 7 5 967.5 

10 60 9 4 1296.22 

Table 6: Effect of the variation of the unit-setup cost with Cl = 5 mu 

 

One can easily notice the same trade-offs as in the case of (Cl=1 mu) discussed above. The 

increase of Cv induces a decrease of the average production quantity variation between 

successive periods, the need for more preventive maintenance (higher N*) and the increase of 

inventory. 

 

 Effect of demand variability on the production and maintenance plans, and on the total 

expected cost 

While keeping the original set of input parameters (Table 1) as well as the monthly average 

demand (Table 2), we ran experiments varying the demand variance. The following near-

optimal maintenance/production plans have been obtained (Tables 7, 8 and 9): 

 

Near-optimal production plan over the finite horizon Ht = 36 months N* k* 

 

Jan Feb Mar Apr Ma Jun Jul Aug Sep Oct Nov Dec 

500 500 439 500 500 369 434 352 500 500 395 470 

500 438 485 500 500 127 490 500 465 393 500 370 

365 438 500 200 500 500 499 323 407 351 366 500 
 

 

7 

 

5 

Table 7: Near-optimal maintenance/production plan with demand variance V=8 
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Near-optimal production plan over the finite horizon Ht = 36 months N* k* 

 

Jan Feb Mar Ap May Jun Jul Aug Sep Oct Nov Dec 

500 500 500 500 500 500 500 500 449 500 305 500 

500 500 500 500 500 500 500 500 500 500 500 500 

500 500 500 500 500 500 500 377 269 318 500 500 
 

 

7 

 

5 

Table 8: Near-optimal maintenance/production plan with demand variance V=10 

 

Near-optimal production plan over the finite horizon HΔt = 36 months N* k* 

 

Jan Feb Mar Ap May Jun Jul Aug Sep Oct Nov Dec 

500 500 500 500 500 500 500 500 500 500 500 500 

500 500 500 500 500 500 500 500 500 500 500 500 

500 500 500 500 500 500 500 500 500 500 500 500 
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Table 9: Near-optimal maintenance/production plan with demand variance V =20 

 

We summarize the obtained results V in table 10 below: 

V: Demand 

Variance 
N* k* 

Average production quantity 

variation between successive 

periods 

Average end of 

month inventory 

Total Cost 

(mu) 

4.52 6 6 126.17 464.56 5.25×10
7
 

8 7 5 90.8 987.33 5.77×10
7
 

10 7 5 27.25 1741.83 6.07×10
7
 

20 12 3 0 1980.25 6.57×10
7
 

Table 10: Effect of the variation of the demand 

One can clearly see that a demand with a higher variability causes the system to produce more 

and generate higher levels of inventory. Hence, because of higher production rates yielding a 

faster degradation of the machine, more frequent preventive maintenance is needed (N* in-

creases). We also note that higher variability of demand yields an increase of the total ex-

pected cost. 

In fact, as the demand variance increases, obviously, the minimum quantity determined in 

Step 1 increases in order to satisfy the required service level. The system is then forced to 
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produce more per period without exceeding the machine capacity. Here comes the trade-off 

between the smoothing penalty, the inventory, and the maintenance policy. Going further with 

a relatively high variance (V= 20), the obtained near-optimal integrated policy consists in pro-

ducing at the maximum production rate for all periods. In this situation, smoothing is perfect-

ly achieved (set-up cost, SC, is null).  

  

6. CONCLUSION 

In this paper we considered a manufacturing system made of a single machine that is subject 

to random failures. In order to reduce the failure frequency, a periodic preventive maintenance 

policy with minimal repair at failure is adopted. The production system must satisfy a random 

product demand over a finite planning horizon with a given required service level. The finite 

horizon is divided into equal periods. A mathematical model has been developed in order to 

derive a joint near-optimal production plan and preventive maintenance schedule minimizing 

the total cost of production, maintenance and inventory, taking into account constraints 

related to the production system capacity, the service level to be satisfied and the inventory 

balance. 

Compared to previous works, a different cost modelling approach has been proposed. 

Furthermore, an integrated (not sequential) optimization of the production plan and the 

maintenance schedule has been proposed. It takes into account the influence of the production 

rate variation on the production system failure rate. Finally, expressing the set-up cost as 

being proportional to the production rate variation between successive periods, allowed 

reducing the penalty induced by excessive variation of the production rate over the planning 

horizon.  

The proposed modelling approach has been illustrated through a numerical example. A 

sensitivity study with respect to the set-up cost has been performed in order to show the 

impact of the production plan smoothing on the obtained solution. 

The trade-off between the smoothing penalty and the production plan, the inventory, and the 

preventive maintenance schedule has also been discussed. We finally studied the effect of the 

demand variability on the smoothing penalty, the production and maintenance plans, and on 

the total expected cost. 

Extensions to this work are under consideration. One of them consists in the investigation of 

more realistic situations in which preventive maintenance actions are imperfect and have non-

negligible durations. Another extension of this work would consist in going beyond the 

limitation imposed by the linear relationship between the production rate and the failure rate 

of the system. More general expressions should be investigated empirically and analytically.  
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