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I. INTRODUCTION

WLANs (Wireless Local Area Networks) have become ubiquitous in our everyday life. Internet service providers increasingly employ WLANs to connect users to their network. WLANs are also widespread in airports, train stations, shopping malls, and cities that offer wireless Internet access to their customers. Most WLANs are based on IEEE 802.11 standards. Despite continuous improvements of 802.11 and amendments in its subsequent versions, 802.11-based networks typically feature transmission ranges and data rates that may both be deemed small given the soaring amount of end-users.

These concerns have been largely accommodated by network densification, which refers to the deployment of more APs (Access Points) per unit of area. By doing so, WLANs have improved their spatial reuse of the spectrum, as well as their their transmission rate. However, the management of what used to be a single AP with a few users has become much more complex. WLANs with several APs and tens of users are prone to misconfiguration and poor coordination between APs. Possible effects include inefficient use of the WLAN radio resources, poor overall WLAN performance, and unfairness among users.

Nowadays, WLANs with several APs are increasingly centrally managed to allow for a better use of their resources (e.g., channel allocation, assigning users to the APs, authentication). Besides proprietary solutions, standardized protocols like IETF's CAPWAP and IEEE 802.11v have been developped. These latter enable the exchange of information about the network topology and radio environment (within a WLAN) either from APs to a central controller, in the case of CAPWAP, or between users and APs, in 802.11v. However, the algorithms run by the controller and APs, and exploiting this knowledge, are yet to be designed. Their objectives are diverse and can range from estimating the actual throughput of APs given the network topology to reshuffling the channel allocation scheme. Note that the design of efficient algorithms must cope with the complexity brought by the CSMA/CA scheme used in the 802.11 MAC layer (e.g., random backoff, hidden node problem, starvation).

In this paper, we propose a Markovian, conceptually simple, and computationally efficient modeling approach to discover the behavior of each AP within a WLAN. More specifically, our approach returns an accurate estimation of the output rate (attainable throughput) of each AP given their respective load and the WLAN topology (conflict graph). The outcomes of our approach are manifold: gaining insight into an abnormal WLAN behavior, predicting WLAN performance under new settings, or reconfiguring an existing WLAN. We illustrate two possible applications where we rely on our model to make a better use of WLAN resources.

The rest of this paper is organized as follows. The next section briefly reviews the existing related works. Section 3 describes the system under study. The proposed modeling approach and the associate algorithm are presented in Section 4. Numerical results validating our approach and illustrating possible applications are discussed in Section 5. Finally, Section 6 concludes this paper.

II. STATE OF THE ART

In the last two decades, the performance analysis of the Distributed Coordination Function (DCF) used in IEEE 802.11 wireless networks has been an often revisited topic. Two of the pioneering papers in the field are the works of Bianchi [START_REF] Bianchi | Performance analysis of the IEEE 802.11 distributed coordination function[END_REF] and Cali, Conti, and Gregori [START_REF] Cali | IEEE 802.11 wireless LAN: capacity analysis and protocol enhancement[END_REF]. Both of them model the network at a very fine level of abstraction, taking into account the behavior of each individual packet transmission according to the CSMA/CA principles. In [START_REF] Cali | IEEE 802.11 wireless LAN: capacity analysis and protocol enhancement[END_REF], the authors study the ratio of the average packet size and the average time it takes to transmit a packet, including all the protocol overhead. They apply this approach to study the utilization of the network's capacity for different numbers of contending stations and packet sizes.

Bianchi [START_REF] Bianchi | Performance analysis of the IEEE 802.11 distributed coordination function[END_REF] introduces a two dimensional Markov chain to explicitly model the backoff process happening before each transmission of a packet in DCF in a fully-connected network (in which at most one node can be transmitting at a given time). A common property of these two models is that they were designed to handle only saturated networks. In a saturated network, all nodes have a packet waiting to be sent at all times, i.e., they have backlogged queues. Although saturation is a strong and often limiting assumption, these two works provide some of the ground research in the evaluation of wireless networks.

Bianchi's work has since been extended to non-saturated networks using a few different methods. Felemban and Ekici [START_REF] Felemban | Single hop IEEE 802.11 DCF analysis revisited: Accurate modeling of channel access delay and throughput for saturated and unsaturated traffic cases[END_REF] have removed the condition of saturation by introducing the probability that a node has a packet waiting to be sent. To this aim, they create a second Markov chain, which is embedded into Bianchi's original chain [START_REF] Bianchi | Performance analysis of the IEEE 802.11 distributed coordination function[END_REF]. This embedded chain describes the current state of the channel, which can be either idle, in collision, or in successful transmission. The solution to their model is found by successively iterating between the two chains. Upon convergence, the found solution delivers the steady state transmission probability for each node, which can then be used to evaluate the network's performance.

A different approach for relaxing the saturation constraint is given in [START_REF] Kosek-Szott | A comprehensive analysis of IEEE 802.11 DCF heterogeneous traffic sources[END_REF] and [START_REF] Gupta | New analytical model for non-saturation throughput analysis of IEEE 802.11 DCF[END_REF], where a new state is added to Bianchi's Markov chain in order to represent a node that has an empty buffer. Similarly to Bianchi's original work, the scope of application for these two models is restricted to fullyconnected networks. Note that Kosek-Szott's model [START_REF] Kosek-Szott | A comprehensive analysis of IEEE 802.11 DCF heterogeneous traffic sources[END_REF] can also be used when users have heterogeneous traffic demands, creating a coexistence of low and high traffic densities inside the network.

In all these works, a fine-grained point of view of the network was taken, with a detailed description of each node. Another approach consists in evaluating the performance of a network from a higher level of abstraction. Two such models, that address non-saturated, multi-hop networks, are given in [START_REF] Shi | Analytical models for understanding space, backoff, and flow correlation in CSMA wireless networks[END_REF] and [START_REF] Begin | Performance analysis of multi-hop flows in IEEE 802.11 networks: A flexible and accurate modeling framework[END_REF]. In a multi-hop network, a packet from node A travels across relay nodes before arriving at its destination node B (as opposed to single-hop networks, where A and B directly exchange packets). Both papers present two-level modeling approaches of unsaturated multi-hop wireless networks, in which the low-level model is a version of Bianchi's original Markov chain, while the high-level model aims at capturing the inter-node dependencies in the network. The solution to the overall model is found using a fixed-point iteration between the high and low levels. In [START_REF] Begin | Performance analysis of multi-hop flows in IEEE 802.11 networks: A flexible and accurate modeling framework[END_REF], the high-level model consists of a set of M/M/1/K queues, where each queue represents a given node of the network. Although their modeling framework was designed to handle any number of nodes, examples shown in their paper involve multi-hop wireless paths with at most 4 nodes. In [START_REF] Shi | Analytical models for understanding space, backoff, and flow correlation in CSMA wireless networks[END_REF], the high-level model is a separate Markov chain describing the channel's behavior depending on the current states of neighboring nodes, with nodes being either idle, transmitting, or in backoff. Because of the three possible states for each node and the added complexity brought by multi-hop networks, the analytical model of [START_REF] Shi | Analytical models for understanding space, backoff, and flow correlation in CSMA wireless networks[END_REF] leads to a large state space as the number of nodes increases, making it intractable, for networks with more than 7 or 8 nodes, for which a decomposition into smaller networks is necessary.

In [START_REF] Nardelli | Closed-form throughput expressions for CSMA networks with collisions and hidden terminals[END_REF]- [START_REF] Jiang | A distributed CSMA algorithm for throughput and utility maximization in wireless networks[END_REF], Markov chains are used to model an entire network based on its topology. The states of the chain describe the set of nodes that are transmitting in the current network state. Nardeli and Knightly [START_REF] Nardelli | Closed-form throughput expressions for CSMA networks with collisions and hidden terminals[END_REF] rely on their proposed Markov chain to derive a model that takes into account the errors due to collisions and hidden terminals for a single-hop network. They come up with a closed-form multi-parameter expression of throughput, which is subsequently used for evaluating the performance of the considered network. Although the model accurately captures the behavior of CSMA/CA networks, it only deals with saturated networks and introduces some complexity due to the calculation of successful transmission probability. In [START_REF] Durvy | Self-organization properties of CSMA/CA systems and their consequences on fairness[END_REF], a similar Markov chain is used to evaluate the fairness and spatial reuse in multi-hop, saturated networks with different carrier sensing and reception ranges. More particularly, the authors study the spatial reuse in line-networks to show that CSMA/CA achieves maximal spatial reutilization as traffic intensity increases, at the cost of creating starvation in certain links. In [START_REF] Boorstyn | Throughput analysis in multihop csma packet radio networks[END_REF], [START_REF] Wang | Throughput modelling and fairness issues in CSMA/CA based ad-hoc networks[END_REF] CSMA/CA networks are modeled as continuous time Markov chains and the model is then used to study the fairness of the network. Jiang and Walrand [START_REF] Jiang | A distributed CSMA algorithm for throughput and utility maximization in wireless networks[END_REF] extend the usage of this model by proposing an adaptive solution that changes the nodes' backoff periods in the goal of maximizing the network's throughput and utilization.

A novel approach to modeling a non-saturated network is introduced in [START_REF] Laufer | The capacity of wireless CSMA/CA networks[END_REF] and [START_REF] Kai | Throughput analysis of CSMA wireless networks with finite offered-load[END_REF], where the authors have chosen to map the idle time of a node to a longer backoff period. This approach keeps the simplicity of a saturated network model by not explicitly representing idle states, and yet allows the study of unsaturated nodes. Laufer and Kleinrock [START_REF] Laufer | The capacity of wireless CSMA/CA networks[END_REF] determine the throughput of a node in a CSMA/CA network using the ratio between the transmitting and the backoff periods of that node, its probability of successful transmission, and the channel capacity. The result is then used in the analysis of a network's capacity region, based on nodes' throughputs, under stability conditions. Bonald and Feuillet [START_REF] Bonald | Performance of CSMA in multi-channel wireless networks[END_REF] also characterize both the capacity region and the stability of a wireless network. However, their work focuses on multi-channel networks in either ad-hoc or infrastructure mode, and they propose a refinement to CSMA to achieve a more efficient and fair access to the channel in the infrastructure mode.

In this paper, we study unsaturated, not fully-connected, single-hop IEEE 802.11 wireless networks. We present a conflict graph-based modeling approach to discover the attainable throughput of each node. Our model consists of a single Markov chain which aims at describing, at a high-level of abstraction, the current state of the entire wireless network. Unlike most existing works, our approach is conceptually and computationally simple, enabling it to easily cope with medium sized networks.

III. SYSTEM DESCRIPTION

The considered system is a wireless network using the IEEE 802.11 DCF to access the radio channel. Nodes may represent APs (Access Points), or user stations in infrastructure or adhoc modes. Either way, we study all nodes that belong to the same radio channel. A node detects, but does not necessarily successfully receive, data sent by nodes within its detection range. Throughout this paper, we refer to two nodes that belong to each other's detection ranges as neighbors. For the sake of simplicity, we assume that all nodes are sending their packets at the same speed (i.e., transmission rate).

The network under study consists of N nodes. We use a conflict graph to describe the interactions between the nodes. It is a simple graph of N vertices in which an edge exists between two vertices whenever, in the wireless network, the corresponding nodes belong to each other's detection ranges. Therefore, each pair of neighbor nodes in the network is connected by an edge in the conflict graph. Because we consider that all nodes have the same detection range, the edges in the conflict graph are undirected. Figure. 1 illustrates a simple example of a conflict graph for a four-node network.

Additionally, each node i, (i = 1, . . . , N ), of the network is characterized by its input rate, denoted by x i . The input rate refers to the node's demanded throughput, normalized by the link speed so that possible values for x i range from 0 to 1. We assume that all x i are mutually independent. Note that x i can be regarded as the percentage of time node i demands access to the channel. Because a saturated node always has a packet waiting to be sent, its input rate is equal to 1. As for the performance parameters of a wireless network, customary metrics include the end-to-end delay, the collision and loss rates, the resource utilization, and the attainable throughput. In this paper, we study the normalized attainable throughput (normalized by the link speed) of each node, which we refer to as its output rate. We let y i denote the output rate of node i. In other words, y i expresses the percentage of time in which node i is occupying the channel, i.e., is sending over the channel. It follows that, for i = 1, . . . , N , y i ≤ x i . The second performance parameter we are interested in is the network utilization, denoted by U and calculated as:

U = N i=1 y i U max , (1) 
where U max is the maximum network utilization. Otherwise stated, U max is simply the maximum number of nodes that can be simultaneously sending, a quantity that clearly depends only on the conflict graph. Table I summarizes the notation needed to describe the studied system, along with those pertaining to its corresponding model, presented in the next section. 

IV. MODELING AND ALGORITHM A. Modeling approach

We now describe our high-level approach to modeling a wireless network as presented in the former section. To cope with the well-known complexity of CSMA/CA-based networks (e.g., random backoff, hidden node problem, starvation), we rely on a single Markov chain, but we deal with two intertwined state spaces, each describing differently and approximately the current state of the network. For the purpose of readability, we illustrate each step of our approach with an example, whose conflict graph is depicted in Fig. 1.

Our foremost state space, denoted by S and referred to as the sending state space, describes which nodes among the N are currently sending, and hence occupying the channel. We denote each sending state of S by S k so that: S = {S k } k≥1 . Therefore, each sending state S k is a vector of size N in which the i-th value, S k (i), is set to 1 if node i is currently sending, and to 0 otherwise. Note that, in our work, a node's sending period includes the data packet transmission itself, as well as all protocol overhead (SIFS and DIFS intervals and ACK transmission). Our objective is to derive a Markov chain representing the possible transitions between these sending states, to compute the probabilities of its state transitions, i.e., its transition matrix, and finally, to derive the steady-state probabilities of S k .

Because we deal with an unsaturated network, we need to introduce a secondary state space, referred to as the activity state space and denoted by A, that describes the activity of each node as being either ON or OFF. A node whose activity is ON has at least one packet waiting to be sent, while an OFF node has currently no backlogged packets. Analogously to S, each activity state, A t k , is a vector of size N whose i-th value denotes the activity of node i. Let P A u l denote the (steadystate) probability that the activity state A u l occurs. The mutual independence of the nodes' input rates x i enables us to obtain P A u l as follows:

P A u l = A u l (i)=ON x i A u l (j)=OFF (1 -x j ). (2) 
Note that a sending state, S k , can typically be associated to one or up to T different activity states, each denoted by A t k with t = 1, . . . , T . Indeed, whereas a sending node necessarily implies that its activity is ON, the inverse does not hold. A node that is not sending and has no sending neighbors is (undoubtedly) OFF. On the other hand, if it does have a sending neighbor, then its activity can be either ON or OFF. This means that, when a node is not currently sending, it can be simply because it does not have a packet to be sent, or because it is waiting to access the channel. For example, assuming a given sending state S k = [ 0 1 0 1 ] for our network of four nodes, a total of four activity states (T = 4) may be associated:

A 1 k = [ OFF ON OFF ON ] A 2 k = [ ON ON OFF ON ] A 3 k = [ OFF ON ON ON ] A 4 k = [ ON ON ON ON ] (3) 
1) Determining Sending States: An intrinsic property of 802.11-based networks is that two neighbor nodes cannot (or virtually not) be transmitting simultaneously. In terms of modeling, this means that a sending state of the network is possible if and only if it does not include two transmitting vertices connected by an edge in the conflict graph.

In the case of our sample network represented in Fig. 1, out of a total of 16 sending states, only the following seven remain possible for the purpose of our modeling approach:

S 1 = [ 1 0 0 1 ] S 5 = [ 0 1 0 0 ] S 2 = [ 0 1 0 1 ] S 6 = [ 0 0 0 1 ] S 3 = [ 0 0 1 0 ] S 7 = [ 0 0 0 0 ] S 4 = [ 1 0 0 0 ] (4) 
2) Establishing Possible Transitions: Having defined the set of possible sending states, S k , we need to decide when we allow a transition from a possible sending state, S k , to another, S l . This transition represents the fact that the network goes from state S k to S l upon a packet-sending completion. We apply a three-rule policy to determine if the transition from S k to S l is possible.

First, at most one element of S k changes its value from 1 to 0 in S l . This rule expresses that no more than one node stops sending at the same time (i.e., upon a change of state in the Markov chain). Considering our sample network, positive examples include transitions from S 1 to S 2 and from S 1 to S 4 . Conversely, a negative example is the transition from S 1 to S 3 .

Second, at most one element of S k changes its value from 0 to 1 in S l , unless in the exception case of a synchronizing node. A node i is said to be synchronizing if (i) it was sending in state S k (i.e., S k (i) = 1), and (ii) it has at least two neighbors that have an ON activity but are not neighbors themselves. The exception allows to account for the situation where a central node's end of sending triggers the beginnings of sending of several of its neighbor nodes. Said differently, in a case with two nodes, labeled m and n, and assuming that they have a common neighbor node i for which S k (i) = 1 and S l (i) = 0, we allow the transition from S k to S l even if we have

S k (m) = S k (n) = 0 and S l (m) = S l (n) = 1.
Apart from this exception, this second rule implies that no more than one node starts sending at the same time. In the case of our sample network, a positive example is the transition from S 4 to S 1 while a negative example is the transition from S 5 to S 1 . The exception to the rule applies twice, namely when we allow the transitions from S 3 to S 1 and from S 3 to S 2 .

Third, considering all potential activity states {A t k } (t = 1, . . . , T ) associated to S k and all potential activity states {A u l } (u = 1, . . . , U ) associated to S l , there must be a combination (A t k , A u l ) in which at most one element changes its value from ON in A t k to OFF in A u l or from OFF to ON. A clear negative example is the transition from S 5 to S 6 (and vice versa) since this would require two nodes, i.e., the second and the fourth, to undergo a simultaneous change of activity.

Overall, the rationale behind these three rules resorts to the fact that we consider as negligible the probability that two nodes undergo simultaneous changes in their behavior (either in terms of sending or activity).

By applying this three-rule policy, we discover all the possible transitions between the sending states, i.e., the transition matrix, in which a value of 1 in the k-th row and l-th column indicates that the transition from S k to S l is possible, and has a value of 0 otherwise. We represent below an extract from the 7 × 7 transition matrix obtained when applying the three-rule policy on the sample four-node network: 

S 1 S 2 S 3 S 4 S 5 S 6 S 7           S 1 1 
3) Computing Transition Probabilities: The next stage of our modeling approach is to find the probabilities of each transition. Let us consider the transition from S k to S l . First, we evaluate the number of activity states associated to S l that are compatible with S k . An activity state A u l is said to be compatible with S k if there is at least one activity state associated to S k that differs by at most one ON to OFF change (or vice versa) with A u l . We denote by A kl the set of activity states associated to S l that are compatible with S k . For example, in our sample network, there are four activity states associated to S 1 , namely:

A 1 1 = [ ON OFF OFF ON ] A 2 1 = [ ON ON OFF ON ] A 3 1 = [ ON OFF ON ON ] A 4 1 = [ ON ON ON ON ] (6) 
while those associated to S 2 are:

A 1 2 = [ OFF ON OFF ON ] A 2 2 = [ ON ON OFF ON ] A 3 2 = [ OFF ON ON ON ] A 4 2 = [ ON ON ON ON ] (7) 
We observe that all the activity states associated to S 2 are compatible with S 1 , and thus belong to the set A 12 , i.e., A 12 = {A 1 2 , A 2 2 , A 3 2 , A 4 2 }. Then, we simply derive the transition probability from S k to S l as:

P kl = A u l ∈A kl (P A u l S l (n)=1 1 1 + m∈vn 1 ON(m) ), (8) 
where v n represents the set of neighbor nodes of node n. The sum m∈vn 1 ON(m) returns an integer value equal to the number of neighbors of node n that are ON in the activity state A u l . Note that Eq. ( 8) captures that the transition probabilities depend both on the nodes' input rates and the conflict graph. For each activity state A u l that is compatible with the transition from the sending state S k to S l , we calculate the associated transition probability by first assuming that all concerned nodes are evenly likely to access the channel access, and then, we weigh the obtained value by the probability of occurrence of that activity state, P A u l . The term P A u l in Eq. ( 8) ensures that the presence of a node with a high input rate will increase the probability that the whole network is in a sending state in which that node is sending. On the other hand, the other term within the sum represents the fact that a node that is well connected in the conflict graph experiences a lot of competition for channel access, which in turn diminishes its probability of gaining that access.

We now present two refinements to Eq. ( 8) that may occur, or not, depending on the network topology. Considering a given sending state S k , some nodes may be viewed as blocked or as preempted by their neighbors. To cope with these nodes, we simply identify them and remove them from the considered neighbors of node n, i.e., v(n), when using Eq. [START_REF] Nardelli | Closed-form throughput expressions for CSMA networks with collisions and hidden terminals[END_REF]. A node is said to be blocked when it cannot start sending because it has two (or more) sending neighbors. For instance, node 3 is an example of a blocked node when our sample network is in sending state S 1 = [ 1 0 0 1 ]. Indeed, it is very unlikely for node 3 to start sending, as this would require nodes 1 and 4 to simultaneously stop sending. Analogously, a node is said to be preempted if it has one neighbor that is sending, and at least one other neighbor that is ON, which itself has no sending neighbors. This pertains to node 3 when our sample network is in sending state S 4 = [ 1 0 0 0 ] with an activity state [ ON OFF ON ON ]. Under these circumstances, node 4 does not need to wait for the end of node 1's sending in order to start sending, which in turn means node 3 is likely to be preempted. In our modeling approach, we simply account for these nodes by phasing them out from the actual neighborhood of node n when considering the sending state S k . In other words, in Eq. ( 8), we replace the set of neighbor nodes of n, i.e., v(n), by the restricted set of neighbor nodes which excludes blocked and preempted nodes.

The other refinement refers to the case when the z-th node of S k is a synchronizing node (whose definition was stated in Section IV.A.2) and continues to have an ON activity in the next activity state A u l associated to S l . First, for each activity state associated to S l , i.e., A u l , we estimate the probability that the synchronizing node continues to send in S l using:

P z u l = 1 1 + m∈vz 1 ON(m) , (9) 
where the sum 1 ON(m) returns an integer value equal to the number of neighbors of node z that are ON in activity state A u l . For example, considering the sending state S 3 of our sample network, node 3 is a synchronizing node. A possible activity state associated to S 3 is [ON OFF ON ON] in which node 3 has two neighbors that are also ON (i.e., nodes 1 and 4). Using Eq. ( 9), we obtain: P z u l = 1 3 . The second step consists in refining the computation of the transition probability P kl as follows:

P kl = A u l ∈A kl (P A u l S l (n)=1 1 1 + m∈wn 1 ON(m) (1-1 z sync .P z u l )), (10 
) where 1 z sync .P z u l returns the probability P z u l if a synchronizing node z exists in node n's neighborhood, and 0 otherwise, and w n denotes the restricted neighborhood of node n (without blocked, preempted, and synchronizing nodes).

Finally, we ensure that the matrix is row-stochastic by dividing each P kl probability with the corresponding sum N m=1 P km . 4) Deriving the Output Rates: Having evaluated all the transition probabilities between the sending states, we can easily obtain the steady-state probability of each sending state S k . Let us denote by the vector π = [π S1 , π S2 , ...] the corresponding steady-state probabilities. We then evaluate the output rate of node i by summing the steady-state probabilities π S k over the set of sending state S k in which node i is sending. Hence, we have:

y i = k; S k (i)=1 π S k . (11) 
In our sample network, we notice that node 1's is sending only in sending states S 1 and S 4 . Thus, its output rate is given by:

y 1 = π S1 + π S4 .
We conclude by briefly discussing the main approximations involved in our modeling approach. First, in our model, we do not allow two neighbor nodes to simultaneously access the channel. This implies that we neglect the potential collisions, and a fortiori their effect on the network performance. Second, our approach relies on a homogeneous Markov chain in which the transition probabilities are kept constant. In a real CSMA/CA network, owing to the backoff mechanisms, nodes do not have constant odds to access the channel. However, despite these simplifying approximations, our approach provides accurate results as discussed in the next section. Find all the activity states associated to S k as described in Section IV-A 11: end for 12: Blocked nodes: 13: For any node i in a network state S k where S k (i) = 0:

B. Algorithm

14: if ∃m, n ∈ {v i } 2 s.t. S k (m) = S k (n) = 1 then 15:
node i is a blocked node in state S k 16: end if 17: Preempted nodes: 18: For any node i in a network state S k and its activity state Calculate activity state probabilities using [START_REF] Cali | IEEE 802.11 wireless LAN: capacity analysis and protocol enhancement[END_REF] 42:

A t k where S k (i) = 0: 19: if ∃m, n ∈ {v i } 2 , m / ∈ v n s.t. S k (m) = 1 and A t k (n) = ON and ∃r ∈ v n s.t. S k (r) =
: if ∃m, n ∈ {v i } 2 , m / ∈ v n s.t. A t k (m) = A t k (n) = ON then
If synchronizing nodes exist, calculate P z u l using [START_REF] Durvy | Self-organization properties of CSMA/CA systems and their consequences on fairness[END_REF] 43:

Calculate the probability P kl of T kl with (10) 44: end for 45: Normalize:

Normalize each transition probability P kl by diving it with the sum of all transition probabilities of transitions leaving state S k . 46: Solve the chain: Find the stationary distribution π of the Markov chain created by the states in S and the transitions in T 47: Calculate output rates: Use [START_REF] Boorstyn | Throughput analysis in multihop csma packet radio networks[END_REF] to calculate the output rates of all N nodes.

V. NUMERICAL RESULTS

We begin this section with a study of our model's accuracy in predicting output rates. Then, we present two examples of possible applications. Throughout this section, all results were obtained using the IEEE 802.11g standard with a link speed of 54 Mbps. All nodes have equal detection ranges and transmit packets with a fixed size of 500 bytes.

A. Accuracy validation

We evaluate the accuracy of our model by comparing its values with those provided by the discrete-event simulator ns2 [START_REF]The Network Simulator[END_REF]. Every simulation point presented in the results is the average of 20 independent simulation runs lasting 60 seconds each. The resulting confidence intervals are very narrow so we only use the mid-point in our validation. As for the input rates x i , we represent their intensity in the simulator by alternating between active and inactive periods with exponentially distributed lengths whose mean values ratio is set to x i . In active periods the node's queue is constantly backlogged, while in inactive period its queue is empty and the node is not attempting to access the channel. The throughput obtained in simulation is then normalized by the link speed, in order to obtain the dimensionless output rate, y i , which is comparable with that of our model.

In our first example, we consider the four-node network of Fig. 1. We set the input rates of nodes 1, 3, and 4 to x 1 = 0.5, x 3 = 1, x 4 = 0.5, respectively. On the other hand, we let the input rate of node 2 vary from x 2 = 0 (always off) to x 2 = 1 (constant saturation), taking several values in that interval. We then evaluate the output rates of nodes 1 and 2, i.e., y 1 and y 2 , as well as the network utilization, as delivered by the simulator and by our model. Figure . 2 shows the corresponding results.

As expected, as the input rate of node 2, i.e., x 2 , grows from 0 to 1, so does its output rate, i.e., y 2 , though to a lesser extent. Because y 2 < x 2 (except for x 2 = 0), we conclude that node 2 cannot meet all its demands, regardless of their actual intensity. As for node 1, whose input rate x 1 is kept constant, its output rate tends to decrease with increasing values of x 2 . This behavior ensues from the competition between nodes 1 and 2. Note that, even for x 2 = 0, node 1 struggles to meet its demands as y 1 = 0.4 (while x 1 = 0.5). Finally, the network utilization grows steadily from around 0.6 to 0.75 as the input rate of node 2 increases. Overall, we observe that our proposed model is able to accurately capture these behaviors with a relative error typically less than 10%.

The second example involves a more complex network with a nine-node topology whose conflict graph is given in Fig. 3. Here, we consider several values for the input rate for node 6, x 6 , ranging from 0 to 1 while we keep the input rates of other nodes constant, i.e., x 1 = 0.7, x 2 = 0.8, x 3 = 0.6, x 4 = 0.5, x 5 = 0.8, x 7 = 0.7, x 8 = 0.6, and x 9 = 0.9.

The corresponding results are shown in Fig. 4. In order to keep the figure legible, we choose to trace the output rates of nodes 5, 6, 7, and 9, bearing in mind that node 8's output rate evolves similarly to that of node 7, and that the first four nodes of the network are not highly influenced by the change in input rate of node 6. We observe that, as x 6 grows from 0 to 1, the behaviors of nodes can be significantly changed, with some increasing their output rates (e.g., nodes 6 and 9), while others experience a decrease (e.g., nodes 5 and 7), that may result in a near node starvation as x 6 comes closer to 1. As shown by Fig. 4, our model was able to reproduce these non-trivial behaviors with a good degree of precision. In the aim of providing a more comprehensive idea of the accuracy of our model, we present, in Table II, the overall error distribution obtained on over 250 samples. Each sample depicts the precision of the output rate of a node in the nine or four-node network. The median value indicates that, in 50% of the samples, the deviation between y i as returned by the simulator and by our model is less than 0.047. Table II also shows that, in all our samples, the difference between the model's and the simulator's y i is never larger than 0.20. Note that in order to investigate the robustness of our approach, we explored several other examples with different network topologies, packet sizes, and means and distributions for the active and inactive periods. Due to space constraints, the corresponding results are not presented in this paper. However, it was our experience that our model's accuracy was similar to that described by the two former examples.

Median

B. Model applications

Having validated the accuracy of our model, we now describe how its application can help to improve the general behavior of a network by ensuring a better share of the channel resources. In the two scenarios that follow, we assume the nodes to be APs. Furthermore, we assume the presence of a network controller possessing the knowledge of the nodes' input rates and the network topology. We show how such a controller can be used to either restrain a node's input rate, or to completely turn off a node, in the goal of improving the network's performance.

In our first scenario, we suppose that the controller is able to regulate the input rate of a given node. Let us consider the nine-node network of Fig. 3 and that node 9 is selected. Note that node 9 plays a central role in the network topology as it is able to block or preempt nodes 7 and 8 with the help of node 6. Using our model, we discover the output rates of all nodes (including y 9 ) for values of x 9 ranging from 0.2 to 1, and we compute the associated value of Jain's index [START_REF] Jain | A quantitative measure of fairness and discrimination for resource allocation in shared computer system[END_REF], a commonly used metric of fairness revealing how close the y i values are to each other. Figure 5 reports the corresponding results. As expected, we observe that, as we relax the constraint on x 9 , nodes 7 and 8 undergo a significant decrease in their output rates, unlike node 6 that experiences a growth of its output rate. More interestingly, the network's Jain's index exhibits a peak value for x 9 close to 0.35. This peak is about 30% higher than the value obtained with x 9 = 1. In other words, to ensure a fair share of the channel resources among the nodes, the best scheme would be to restrain the input rate of node 9 to no more than x 9 = 0.35.

Our second scenario addresses the case in which the network controller is entitled to completely turn off a node (e.g., by moving it to another radio channel). Our goal is to show how our model can help determine which node should be turned off in order to maximize a given performance metric (Jain's index or the network utilization U ). To that effect, we consider the ten-node network whose conflict graph is given in Fig. 6 in which the input rates have been set to x 1 = 0.3, x 2 = 0.6, x 3 = 0.8, x 4 = 0.5, x 5 = 0.7, x 6 = 0.3, x 7 = 0. x 8 = 0.4, x 9 = 0.9, and x 10 = 0.7. One at a time, we turn off each node of the network, and then we calculate the nodes' output rates, together with the Jain's index and the network utilization. The corresponding results are shown in Fig. 7. Note that Ni denotes the case where the i-th node is turned off, while Original refers to the original ten-node network without any nodes off. It appears that turning node 3 off would be the best option as not only does it allow to achieve the largest network utilization, but also maximizes the Jain's fairness index. 6 VI. CONCLUSIONS In this paper, we consider the performance evaluation of unsaturated, and not fully-connected networks based on IEEE 802.11 DCF. We present a conflict graph-based modeling approach to discover the attainable throughput of each node. Our model consists of a single Markov chain which aims at describing, at a high-level of abstraction, the current state of the entire wireless network. Owing to its low complexity, our approach is simple to implement, can cope with medium sized networks, and its execution speed is fast. We validate its accuracy against a discrete-event simulator. Results show that our approach is typically accurate, with associated relative errors generally less than 15%, and that it captures complex phenomena such as node starvation. We investigate two potential applications of our proposed approach in which, starting with a given network, we improve its performance in terms of overall throughput or fairness by throttling the throughput demand of a node, or by turning a node off altogether. Future works aim at validating our model against real-life measurements.
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 1 Fig. 1: Conflict graph for a four-node network.

Algorithm 1 1 : 8 :

 18 Sending States: Find all possible sending states: 2: S = {0, 1} N 3: for k = |S| ...1 do 4: if S k contains two sending neighbor nodes then 5: remove S k from S 6: end if 7: end for Activity States: 9: for S k ∈ S do 10:

  a synchronizing node for nodes m and n 26: end if 27: Transitions: Find the possible network state transitions 28: for k = 1... |S| ; l = 1... |S| do 29: if S k → S l implies more than one 1 → 0 change in the network state then 30: transition T kl is not possible 31: else if S k → S l implies more than one 0 → 1 change in the network state except for having up to n such changes in the n nodes synchronized by the same node then 32: transition T kl is not possible 33: else if there is no state A u l compatible with S k then 34: transition T kl is not possible 35: for 39: Probabilities: Calculate all transition probabilities 40: for T kl ∈ T do 41:
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 2 Fig. 2: Accuracy for the network of Fig. 1 as a function of node 2's input rate.
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 34 Fig. 3: Conflict graph for a nine-node network.
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 5 Fig. 5: Jain's fairness index and output rates for the network of Fig. 3 as a function of node 9's input rate.
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 6 Fig. 6: Conflict graph for a ten-node network.
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 7 Fig. 7: Jain's fairness index and network utilization for the network in Fig. 6

  N total number of nodes v i the set of neighbors of node i, v i ⊆ {1, 2, ..., N } w i the restricted set of neighbors of node i with synchronized, blocked, and preempted nodes removed S the set of possible sending states, S ⊆ {0, 1} N S k k-th sending state, S k ∈ S S k (i) state of node i in sending state S k , S k (i) ∈ {0, 1}, where 1 means node i is sending A the set of possible activity states, A = {ON, OFF} N

	A t k A kl	an activity state associated to sending state S k , A t k ∈ A the set of all activity states associated to sending state S l and
	P A t k T	compatible with sending state S k probability of occurrence of activity state A t k the set of possible transitions between sending states
	T kl	transition from sending state S k to S l , T kl ∈ T
	P kl	probability of transition from sending state S k to state S l
	x i	input rate of i-th node, x i ∈ [0, 1]
	y i	output rate of i-th node, y i ∈ [0, 1]
	U	network utilization, U ∈ [0, 1]
	π	stationary probability distribution of the Markov chain that
		describes the network
	π S k	steady state probability of sending state S k

TABLE I :

 I Notation.

  1 then Synchronized nodes: 23: For any node i in a network state S k where S k (i) = 1 and an activity state A t k : 24

	20:	node i is a preempted node in state S k for activity
		state A t k
	21: end if
	22:	

TABLE II :

 II Distribution of the absolute errors for the output rates, y i .
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