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Abstract—In an SDN/NFV-enabled network, the behavior of
virtual switches is a major concern in determining the overall
network performance. The prominent open-source solution for
virtual switching is Open vSwitch while the DPDK library has
been developed to accelerate the packet processing. In this paper,
we develop a general framework for the modeling and the analysis
of DPDK-based virtual switches, taking into account the switch-
over times (amount of time needed for a CPU core to switch from
one input queue to another). Our model delivers performance
metrics such as the buffer occupancy, the loss rate and the
sojourn time of a packet in RX queues. We compare our new
model with two existing models. Numerical results show that our
model combines the accuracy of one model and the efficiency of
the other.

Keywords—NFV; virtual switch; DPDK; modeling; perfor-
mance evaluation; polling system; switch-over time.

I. INTRODUCTION

The softwarization of networking is profoundly reshaping the
landscape of telecom and computer networks. ICT industries
envision costs optimization through a better management of
their resources and a faster deployment of their services. Two
technologies are key enablers to this end. First, Software-
defined networking (SDN) outsources all the decision-making
networking functions into a (set of) controller(s) in charge
of determining how to handle the incoming traffic. Hence,
networking devices, such as routers, load balancers, and
firewalls are replaced by appliances receiving their instructions
directly from the controller(s) (using a standard interface like
OpenFlow [1]). These appliances can thus be reprogrammed
at will by the controller(s). Second, Network function virtual-
ization (NFV) refers to the gradual move of network functions
out of dedicated hardware devices and into software. Routers,
firewalls, load balancers and other networking devices are then
running virtualized on commodity hardware, like a standard x86
server. Therefore, in an SDN/NFV-enabled network, the nodes
forwarding, filtering or performing other advanced operations
on the traffic are typically referred to as virtual switches because
they are software-implemented and not deciding the rules.

The network programmability combined with the softwariza-
tion of its functions allows a greater extent of flexibility in the
way network operators handle their resources. A good case in
point is the dimensioning of a network. Instead of the usual
overprovisioning strategy, an operator will scale up and down
its resources as the demand varies. For instance, when more
bandwidth is required on a virtual switch, additional physical
resources, e.g., CPU cores, can be provisioned to take part of
the load.

In a 2016 paper, Artero et al. [2] describe an analytical model
for virtual switches based on the decomposition of the switch

into several poling systems, each one being decomposed into
simple Markov chains. Presented as a first step towards a more
general model, this work assumes a negligible switch-over time
(time spent by a CPU core to switch from one input queue to
the next one). In [3], Sohail presents another possible model
that takes into account the switch-over time, but that relies on
the analysis of multi-dimensional Markov chains, resulting in a
time-consuming algorithm. The objective of the current paper
is to combine the simplicity of the first model and the ability of
the second one to take into account switch-over times. To this
end, we develop a general framework that first decomposes the
virtual switch into several poling systems and then subsequently
decompose each polling system into several queueing systems
with server vacation. The two pre-cited papers, as well as the
current paper, fall within the scope of this framework, and differ
by the way the vacation is represented and the corresponding
queueing system is analyzed.

The remainder of the paper is as follows. In Section II, we
describe the internal architecture of a virtual switch. Section III
describes our new proposed model. Section IV covers the
numerical results that validate our model accuracy. Section V
concludes this paper.

II. SYSTEM DESCRIPTION

A. Virtual switches solutions

In SDN/NFV-enabled networks, virtual switches are in
charge of the data plane. They are software implemented and
designed to run on commodity hardware, either directly on
the appliance or, more commonly, in a virtual environment.
Therefore they may have to share physical resources with
other virtual machines (VMs) running on the same appliance.
Following rules received from the SDN controller(s), virtual
switches basically commute incoming packets between their
(physical or logical) ports. They may also perform other
operations like filtering, headers editing, and encrypting. A
couple of proprietary virtual switch solutions have been
released; e.g. by Cisco (Nexus 1000V) and VMware (vSphere
Distributed Switch). In the open-source domain, the most
prominent solution is Open vSwitch (OvS) [4]. Although OvS
works in Linux hypervisors such as Xen and KVM, and is
integrated into OpenStack [5], virtual switches performance are
usually seen a bit low for commuting very high rates of packets.
Hence several techniques, e.g., Netmap [6], OpenOnload [7],
PacketShader [8] and DPDK [9], have been developed to
provide a faster packet processing. In this paper, we focus
more specifically on the DPDK library [10].



Fig. 1. Internal architecture of a virtual switch with N ports and C cores.

B. Internal architecture

Hardware-wise, a virtual switch includes RAM, several I/O
ports, and a set of (physical or logical) CPU cores. If DPDK is
enabled, each core polls cyclically all the ports, as illustrated
by Figure 1.

Upon arrival on a port, packets are immediately dispatched
in separate queues, called RX queues. This dispatch aims at
spreading evenly the load among the RX queues. This first
step is typically carried out using a hash function on the packet
headers (e.g., Receive Side Scaling). On the other hand, each
core is assigned to a single RX queue of each port (so that
a core handles as many RX queues as the number of ports
in the virtual switch). It follows that the total number of RX
queues is thus equal to the product of the number of cores by
the number of ports. When a core starts polling an RX queue,
it processes the first-in-line packet, if any, (or the M -first if
the batch mode is enabled) before moving to the following RX
queue. We denote the time taken by a core to switch from its
current RX queue to the next one as the the switch-over time.

From the standpoint of cores, a core processes packets from
various RX queues in a polling fashion, as depicted by Figure 1.
To complete the processing of a packet, a core needs at least to
read (and edit) its headers, extract the destination address, and
find out to which output port the packet must be forwarded.
The processing task can include additional steps like flow-
specific operations (e.g., deep packet inspection, encryption,
QoS monitoring). Afterward, the packet is (logically) forwarded
from its RX queue to the TX queue associated to the appropriate
output port. From this time on, the packet is simply waiting
for its transmission on the next link.

Given the current transfer rates of SDRAM and the data rates
of communication links, the bottleneck of a virtual switch, if
any, lies in the packet processing steps. Hence, we concentrate
our modeling efforts on the interactions between the CPU cores
and the RX queues.

C. System notation

We conclude this section by introducing notation used
throughout this paper. We denote by C the total number of
allocated (physical or logical) CPU cores. We let N represent
the number of ports attached to the virtual switch. We use Λi

to denote the packet arrival rate on each port i (i = 1, . . . , N)

paquet being served

Fig. 2. Subsystem involving a single CPU core polling several RX-queues.

while λji refers to the rate of packets dispatched to the j-
th RX queue of port i, and hence handled by the j-th core
(j = 1, . . . , C). It follows that Λi =

∑C
j=1 λ

j
i . Each RX queue

has a finite capacity limiting to K the maximum number of
packets being simultaneously queued in it. We use µj

i to denote
the processing rate of the j-th core when it is serving the i-th
RX queue. In other words, 1/µj

i represents the average time
the j-th core needs to process a packet from the i-th RX queue.
Finally, we denote by 1/β the switch-over time taken by a
core to switch from its current RX queue to the next one (β
is thus the switch-over rate). Note that these latter quantities
are directly measurable on a virtual switch.

III. MODEL

A. Decomposition principle

The first step of the model is to break down the general
switch architecture into C independent subsystems, each of
them consisting of one CPU core that polls N independent RX
queues. Every subsystem is identified with a distinct color in
Figure 1 and is simply referred to as a polling system. In the
rest of the paper we only consider the model associated with
a given CPU core j and its N related RX queues. Therefore,
for the sake of clarity, we drop superscript j in all subsequent
notations and equations. Figure 2 represents the polling system
associated with the considered CPU core having a service rate
µi when serving its i-th RX queue, and a switch-over rate β.

The idea is to subsequently replace each polling system with
a set of N independent queueing models with server vacations.
This decomposition step is illustrated in Figure 3. The buffer of
queue i in the decomposed model represents the i-th RX queue
associated with the considered CPU core. The server of the
i-th queue in the decomposed model aims at reproducing the
way packets of the i-th RX queue are processed by the CPU
core. Because the core polls all its RX queues in-between the
processing of two successive packets of a given queue i, there
is an in-between time that corresponds to the processing of one
packet at all the other non-empty queues and N switch-over
times. In the model, this total time will be referred to as a
vacation time. As an illustration, in Figure 3, the server of
queue N is in process, meaning that the CPU core is currently
processing a packet in RX queue N , and all other queues are
in vacation. In this particular example, when queue N ends its
processing, it goes in vacation, the first in-line packet of queue
N is put on a hold, and at the same time the switch-over time



Fig. 3. Decomposition of a sub-system into N separate queues.
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Fig. 4. Vacation representation.

between RX queue N and RX queue 1 starts. It is only after
the completion of this switch-over time that queue 1 ends its
vacation and starts the processing of its first in-line packet.

Instead of developing, as in Sohail model [3], the vacation
time as the whole succession of switch-over and processing
times, we keep in the vacation time the first switch-over time
and aggregate all the remaining phases. The idea is illustrated
in Figure 4. Following the processing stage of the server, the
vacation starts by a switch-over time between RX queue 1
and RX queue 2. The remaining of the vacation time is then
aggregated into a single phase with a given rate α1 (i.e., with a
given mean duration 1/α1), that has to be accurately estimated.

B. Markov chain

In order to derive a tractable model, we make the following
Markovian assumptions. First, we assume that the arrival of
packets at the entrance of queue i follows a Poisson process of
rate λi. Then, we assume that the processing time of one packet
from queue i is exponentially distributed with rate µi. Finally,
we assume that both phases of the vacation time of queue i
are exponentially distributed with rates β and αi, respectively.

Under these assumptions we can associate with each queue
i of the decomposed model, the continuous-time Markov chain
depicted in Figure 5. A state (k, P ) of this chain, k = 1, . . . ,K,
corresponds to queue i with currently k packets and the first-in-
line packet being processed (P), i.e., the CPU core is assigned
to RX queue i. A state (k, S) of this chain, k = 0...,K,
corresponds to queue i with k packets, in which the CPU
core is not anymore processing a packet but is switching (S)
between RX queue i and RX queue i+1. Finally, a state (k, V )
of this chain, k = 0...,K, also corresponds to queue i with
k packets, but now the CPU core is either processing another
RX queue or switching between the other RX queues.

From any state of this chain (except for the right ones corre-
sponding to a full buffer) we can reach the state immediately on
the right with some rate λi corresponding to the arrival of a new
packet in queue i. We can exit a state (k, P ), k = 1, . . . ,K,
after a processing time of rate µi taking the chain to state
(k − 1, S), and we can exit a state (k, S), k = 0...,K, after
a switch-over time of rate β taking the chain to state (k, V ).
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Fig. 5. Continuous-Time Markov Chain associated with queue i.

Now, as defined above, the exiting rate of any state (k, V ) by
the end of a vacation is αi. Exiting a state (k, V ) with k > 0
corresponds to the CPU core returning to RX queue i and then
processing the next-in-line packet, i.e., coming back to state
(k, P ). Now, exiting state (0, V ) corresponds to skipping a turn
for RX queue i. Indeed, although the core becomes available
for RX queue i, this latter has no packet to be processed. This
corresponds to the transition from (0, V ) to (0, S).

In order to solve this chain corresponding to a particular
queue i, only one parameter remains to be estimated, namely
αi (the other parameters λi, µi, β, and K are supposed to be
known from measurements on the system). However, assuming
that αi is known, we can easily check that this Markov chain
can be solved without resorting to any numerical technique.
As a result, solving a Markov chain of our model is as easy
(in terms of computational complexity) as solving a Markov
chain of Artero et. al model [2].

C. Estimation of the chain parameters

Instead of considering αi, we estimate 1/αi, corresponding
to the mean time between the end of switching from i-th to
(i+1)-th RX queue (marking the time when the core is leaving
queue i) and the end of switching from (i− 1)-th to i-th RX
queue (marking the time when the core is returning to queue
i). Therefore, this time includes N − 1 switch-over times, but
also includes the processing of one packet for all non-empty
RX queue j different from i. It follows that:

1

αi
= (N − 1)× 1

β
+

∑
j 6=i

(1− Ej)×
1

µj
(1)

In this expression, Ej represents the probability that RX queue j
is empty when the core is returning to it, i.e., at the particular
instant when the switch-over time from (j − 1)-th to j-th
RX queue ends. This parameters can be extracted from the
Markov chain associated with RX queue j (equivalent to the
one represented in Figure 5 but where i is replaced by j).
Indeed, Ej can be expressed as the ratio between the number
of transitions from state (0, V ) to state (0, S) by unit of time,
and the total number of transitions from red states by unit of
time, each of them correspondonding to the end of a vacation
for RX queue j. Therefore, we have:

Ej =
πj(0, V )αj∑K
k=0 πj(k, V )αj

=
πj(0, V )∑K
k=0 πj(k, V )

(2)

where the πj are the stationary probabilities of the j-th Markov
chain.

Not surprisingly, the parameters of a Markov chain associated
with a given queue i depend on the stationary solution of



the other Markov chains (through Eq. 1 and 2). As a result,
the resolution of the model relies on a fixed-point iterative
technique that is summarized by Algorithm 1. The main loop
of the algorithm is repeated until a given convergence criterion
is reached, e.g., the maximum relative difference of varying
parameters between two successive iterations is very small.

Algorithm 1: Fixed-point iterative technique
Input : System parameters K, µi, λi, β for each queue i
Initialize πi, Ei for each queue i;
while convergence criterion not satisfied do

foreach queue i ∈ [[1, N ]] do
Compute αi using Eq. 1;
Solve the Markov chain associated with queue i and
compute the stationary probabilities πi;
Compute Ei using Eq. 2;

end
end
Compute all performance metrics of interest;

D. Performance parameters

After convergence of our algorithm, we can derive the system
performance parameters from the stationary probabilities of
the Markov chains as follows. The average number of packets
in queue i is given by:

q̄i =

K∑
k=1

k × (πi(k, P ) + πi(k, S) + πi(k, V )), (3)

As for the loss rate at the entrance of queue i, we obtain:

bi = πi(K,P ) + πi(K,S) + πi(K,V ). (4)

The average sojourn time of an accepted packet in queue i is
then obtained using Little’s law [11]:

r̄i =
q̄i

λi(1− bi)
. (5)

IV. NUMERICAL RESULTS

Throughout this section, we validate the analytical results
with a home-made discrete-event simulator. Each simulation is
run for 50 seconds of simulated time, which corresponds to the
completion of millions of packets. Note that the corresponding
confidence intervals are typically very small and hence not
displayed in the subsequent figures. In addition to the simulator,
we also include, where relevant, results from two existing
models: Artero et al. [2] and Sohail [3].

For the sake of clarity, throughout this section we express the
switch-over time as a fraction of the time needed by a CPU core
to process a packet. For instance, for a core processing packets
at rate µ = 1 Mpps (corresponding to a mean processing
time 1/µ = 1 µs), and a switch-over time 1/β = 0.1 µs, the
overhead of the switch-over time amounts to 10%.

A. Model accuracy

This section opens with an assessment of accuracy for our
new model under various settings of load and switch-over time.
We consider a virtual switch with homogeneous CPU cores
and a total of N = 5 ports. As discussed in Section III-A,

we only focus on a given subsystem involving a single CPU
core polling several RX-queues. The processing rate of the
core when poling RX queue i is set to µi = 1 Mpps with
i = 1, . . . , 5, while the overhead due to the switch-over time
amounts to 10%. Each RX queue has a finite capacity of
K = 128 packets. As for the load, we let the total packet
arrival rate (Λ =

∑N
i=1 λi) vary from a low value of 0.5 Mpps

to a high value of 3 Mpps. However, ports are unevenly loaded.
Specifically, ports 1, 2, 3, 4 and 5 capture 10%, 15%, 20%,
25% and 30%, respectively, of the total load (i.e., λ1 = 0.1Λ,
λ2 = 0.15Λ, λ3 = 0.2Λ, λ4 = 0.25Λ, and λ5 = 0.3Λ).

Figure 6 shows the performance parameters associated with
each port of the virtual switch as found by our new model, the
simulation and Sohail model. Figure 6(a) depicts the average
queue size (i.e., the number of packets being buffered in
RX queues) as a function of the load. As expected, possible
values range from 0 to 128, and the 5-th port (depicted in
black) receiving the greater fraction of the load is the first to
saturate when load increases. It is worth noting that curves are
significantly steep revealing a high sensibility to the load. In
Figure 6(b) we show the loss rate (i.e., the blocking probability)
undergone by each port for increasing levels of load. We
observe that losses start to appear for a total load near 0.9
Mpps (while the core is able to process packets at a speed
of 1.0 Mpps). This gap is of course due to the non-zero
value of the switch-over time. Finally, Figure 6(c) reports
the evolution of the average sojourn time spent by a packet
in its RX queue. Note that, under a heavy load, the average
sojourn times of each port converge to a limiting value given
by ((K− 1)N + 1)(1/µ+ 1/β) = 699.6 1 µs. Overall, Figure
6 shows the good accuracy of both models (ours and Sohail)
as both closely match values found by the simulation.

We now study more specifically the accuracy of our new
model for various levels of the switch-over time. To this end,
we focus on the behavior of a single port (the 3rd) from the
previous example. We consider switch-over times ranging from
a very low overhead representing 0.1% of the average packet
processing time, to a heavy overhead of 10%.

The results are reported in Figure 7, which represents the
average size of the corresponding RX queue as a function of the
load for several switch-over time overheads. First, we observe
that the switch-over time can have a huge impact on the queue
behavior: its saturation occurring 10% sooner when the switch-
over time is high. Second, when the switch-over time is as
small as 0.1% of the processing time, its footprint is virtually
null. Interestingly, under these circumstances, the results found
by our new model precisely match those brought by Artero et
al. model (which was designed to handle only examples with
no switch-over time). Last but not least, Figure 7 also illustrates
the good ability of our model to evaluate the average size of
RX queues over a large and realistic spectrum of switch-over
times as its values and those delivered by the simulator almost
coincide. Note that we obtained similar accuracy for other
performance metrics, not shown here for the sake of brevity.
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Fig. 6. Accuracy on the behavior of RX queues for a virtual switch with N = 5 ports loaded respectively with 10%, 15%, 20%, 25% and 30% of the traffic.
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B. Model complexity

We now examine the complexity of our new model. Its
memory requirement is very small as the number of states
in the Markov chains grows in O(KN) like in Artero et al.
model but unlike Sohail model where it goes in O(KN2).

To describe its computational complexity, we proceed in
two steps: (i) we evaluate the number of iterations, and (ii) we
evaluate the cost of each iteration. Unlike Sohail model, each
iteration of our model involves a finite and known number of
simple mathematical operations, which is in O(KN). However,
as often when dealing with a fixed-point solution, the number
of iterations cannot be analytically determined. Therefore, we
report in Table I the number of iterations to convergence for
a growing number of ports, N (using the example described
in Section IV-A with a convergence criterion equal to 10−9).
This table shows that the number of iterations typically lies
in the several tens. Furthermore, it grows only slightly with
the number of ports and tends to stabilize around 50 when the
number of ports exceeds 8.

Thus, in practice, our model is much faster to run than Sohail
model. The difference is particularly marked when the number
of ports is large.This is confirmed by Figure I which represents
the execution time for both model as a function of the number
of ports. Unlike Sohail model whose execution time can exceed
several tens of seconds, our model, like Artero et al. model, is
solved at a click-speed, regardless of the number of ports.

TABLE I
NUMERICAL BEHAVIOR OF OUR MODEL.

Number of of ports, N 2 4 6 8 12 16
Number of iterations of our model 30 43 48 50 52 53
Execution time (ms) of our model 26 88 165 230 342 467
Execution time (ms) of Sohail model 317 934 1,857 3,077 6,740 12,014

V. CONCLUSIONS

This paper deals with the modeling of a virtual switch
architecture taking into account the switch-over times (amount
of time needed for a CPU core to switch from one queue
to another). We not only develop a new model, but we also
propose a general framework that can be applied to estimate the
performance of very general virtual switches. The contributions
of the current paper are the following. First, we link together
previous papers by showing that they fall within the scope
of this general framework. Second, we use this framework to
enhance the accuracy of previous models. Third, we propose a
new model that accounts for switch-over times but that remains
both computationally efficient and accurate. Future works aim
at extending our model to the processing of batches of packets.
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