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Constrained Optimal Control strategy for
multimodal urban traffic network

N. BHOURI

INRETS / GRETIA, 2 Avenue du Gnral Malleret-Joinville, 94114
Arcueil Cedex, France (e-mail: neila.bhouri@inrets.fr).

Abstract: We propose in this paper a receding horizon optimal control strategy for the bimodal
urban traffic, cars and public transport. The aim of this strategy is to control the traffic lights
durations in order to relieve the traffic congestions in the hole of the network making more for
the arcs where the public transport vehicles are present. The bimodal traffic is represented by
a linear model. The constraints on the state and control variables are considered within the
optimization problem. The numerical resolution is carried out thanks to the active set method.
Simulations results are given for a small urban network.

Keywords: Optimal control, Receding horizon, Linear quadratic, Constrained control,
Macroscopic traffic model, Urban traffic, Public Transport.

1. INTRODUCTION

Many efforts are carried out nowadays to improve public
transport and to make their use competitive as compared
to the cars use. Among the range of tools likely to
improve the surface public transport (buses, tramways,
etc.) performances, we can cote the control systems giving
the priority to the public transport vehicles at the traffic
lights.

Giving the priority to the public transport vehicles at
traffic lights allows a good improvement of their quality of
service. When giving them the priority one can improve,
at the same time their speed, their frequency and their
regularity and give by there a better comfort to the users.
By reducing the number and the duration of their stops at
the traffic lights, one can increase their speed and cause
a drop in their total time of courses. The comfort of the
users increases: faster and more regular vehicles, therefore
also less charged, circulating with less accelerations and
decelerations.

Several real-time urban traffic control systems are able
to give the priority to public transport vehicles. We can
cote for example CRONOS Boillot et al. (2000), PRODYN
Henry and Farges (1994), SCATS Chen et al. (1998),
SCOOT Hunt et al. (1982), TUC Diakaki et al. (2002)
and UTOPIA Mauro and Tranto (1989). However, these
systems can be applied to small network zones. A state of
the art of theses systems is given in Bhouri et al. (2008).
However, in urban areas where traffic is very dense and
the number of public transport vehicles is very important,
giving the priority according to local considerations of
the intersection or of small zones is not sufficient. It
can even imply twisted effects, since it can enable to
feed road network sections or congested intersections,
resulting in a deterioration of the general traffic conditions
including buses traffic conditions themselves. That is why
the objectif of our work is to build a global strategy for
large scale networks. Its aim is to act on the intersection

traffic lights in order to give the priority to the public
transport vehicles and to regulate the trafic on the hole of
the network.

A first strategy called NeTPrior (Network Transit Pri-
ority) has been developed (Bhouri and Lotito (2005)
and Bhouri and Lotito (2006)). It consists in a Linear
Quadratic (LQ) optimal control strategy. Its objective is to
regulate the traffic lights with regards to the global traffic
situation and to favor the arcs where and when the buses
are present. The resolution of the LQ problem however
does not take into account the traffic constraints when
computing the optimal control solution. To mitigate this
problem we proceeded in NeTPrior to a projection of the
optimal control values given by the LQ control stage onto
the set of feasible values.

We propose in this paper another methodology consist-
ing in a receding horizon optimisation problem with con-
straints. We are still using, like in NeTPrior, a linear
model and a quadratic criterion. By this way, we can
use the advantages of the particular structure of the LQ
problem and use one of the powerful available optimization
tools. We choose an active set method to resolve this LQ
problem. Active set methods are not very perform in terms
of speed as compared of other methods such the interior-
point methods but they are more robust and better suited
for warm starts.

The rest of the paper is organized as follows. In section
2 we present the the linear bi-modal urban traffic model.
Section 3 gives the quadratic objectif criterion and section
4 states the constraints. Section 5 is concerned with a brief
recall of the NeTPrior strategy. In section 6 we give a
short presentation of the receding horizon optimization.
In section 7 we present the constrained LQ problem we
are concerned with and in section 8 we give a very short
description of the active set method which we use to get
the numerical resolution of the LQ problem. Finally, the
section 9 gives the main simulation results of this strategy.
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Fig. 1. Variables’ definition

2. DYNAMIC MODEL

The network is represented by a directed graph composed
of nodes and arcs. The nodes j ∈ J represent intersections
and the arcs a ∈ A the unidirectional travel links. On
every arc, the model consists in two equations, one of
them modeling the progress of the total number of vehicles
on the arc, expressed as private vehicle unit (PVU) (for
example a bus equals 2,3 PVU). The second equation
models the number of PT vehicles on the arc.

2.1 The general traffic dynamic equations

The traffic on each arc a is modeled using the continuity
equation :
xa(k +1) = xa(k)+T [qa(k)+ da(k)−ua(k)− sa(k)], (1)

where xa is the number of cars on the link expressed in
PVU, qa and ua are the inflow and the outflow of link
a during [kT, (k + 1)T ] where k is the discrete time step
and T is the sampling time. da and sa are respectively
the demand and the exit flow within the link. da and sa

can be generated by the parking vehicles or due to non-
controlled intersections situated between intersections M
and N . See figure 1. We We will neglect thereafter this
generated and consumed flow (da and sa ), it would be
easy to include them without substantially changing the
current development.

In order to explicit the equations for q and u we will
consider the saturation flow of each link Sa, that represents
the maximum traffic flow that can exit the link, expressed
in PVU/s. The Store and Forward model assumes that
the vehicles reaching the arc’s end are stored there and
exit with rate Sa during the green light. Hence, we can
write :

ua(k) =
Sa.Ga(k)

C
, (2)

where C is the cycle time and Ga(k) is the effective green
time of link a, i.e., the green light duration attributed to
arc a during the traffic light cycle C of the intersection
situated at the arc exit, and will be the control variable in
our approach.

If the green light periods are attributed to arc a during
different phases (see figure 3), Ga(k) is equal to the sum
of all of these green light durations,

Ga(k) =
∑

i∈P a
N

GN,i(k), (3)

where GN,i(k) is the green light duration for the phase i on
the junction N , P a

N is the set of phases of the intersection
N, during which arc a has the right of way (green light).
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Fig. 2. The store and forward modeling

It also assumes that the outflow is distributed among
the different following links according to the coefficients
τab, called turning rates, that represent the proportion of
outflow from a entering in arc b.
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Fig. 3. Traffic light periods are attributed during different
phases
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If the link a originates at the junction M , the inflow
traffic rate entering arc a can be written as the sum of
the outflow traffic rates coming from the arcs entering
junction M (other than a). If the arc b precedes arc a,
the corresponding flow is τbaub, so the total flow entering
arc a is

qa(k) =
∑

b∈IM

τb,aub(k), (4)

where IM is the set of arcs entering junction M .

Replacing all the previous definitions in the equation (1),
we obtain the following model :

xa(k+1) = xa(k)+
T

C
[
∑

b∈IM

τb,aSbGM,ib
(k)−Sa

∑

j∈P a
N

GN,j(k)]

(5)
or in matrix form :

X(k + 1) = X(k) + B.G(k), (6)
where B is a matrix of dimension N × M, N is the
number of links and M is the total number of phases on



the network.This modeling is possible under the following
assumptions :

• the sampling time interval T is at least equal to the
duration of the light cycle C, we will use T = C. item
the gaps between the intersections are not taken into
account,

• variations in the queue are neglected, which means
that the model considers that all of the input flows
on the arc have the green phase at the same time.

2.2 The Public Transport Traffic Dynamic Equations

As we will be considering two kinds of traffic, the general
one and the public transport one, we will distinguish the
state variables as xv for the number of vehicles and xb for
the number of PT vehicles (buses). Knowing the sequence
of arcs which are used by each PT line, the progress of the
PT vehicles is modeled by a delay equation :

xbi
a (k) = xbi

a′(k − ζi
a) (7)

where xbi
a is the number of vehicles of the public transport

line number i on arc a, a′ is the arc preceding a for the line
i and ζi

a is a parameter which expresses the mean travel
time of the vehicles on line bi to travel from arc a′ to arc a.
These values should be real ones, however, in order to be
able to write the precedent equation, we take ζi

a as integer,
meaning that the travel time is a multiple of the sampling
interval T . Thus we consider that ζi

a is equal to 1 if the
bus line has no station on arc a, otherwise ζi

a is equal to
2 (for example). Substituting these values in equation (7),
the model of the public transport becomes the following :

xbi
a (k + 1) =

{
xbi

a′(k − 1), if line i stops on a
xbi

a′(k), otherwise
(8)

This simplification complies with the dynamical modeling
of the PC, since it consists in assuming that both the
private cars and public transport are ”stored” during the
red light period and then are ”distributed” during the
green light period, thus they spend a light cycle on the
arc. However, the choice of the cycle duration should be
done carefully.

The equation (8) written in vectorial form gives :

Xb(k + 1) = Ab
0X

b(k) + Ab
1X

b(k − 1), (9)
where the matrix Ab

0 is the adjacency matrix correspond-
ing to the bus line for the arcs without stops. Ab

1 is the
adjacency matrix corresponding to the bus line for the
arcs with a stop, and Xb(k) is the vector of numbers of
buses at each traversed arc. It can be further simplified as
:

XB(k + 1) = Ab.XB(k) (10)
where XB is the vector obtained stacking Xb(k) and
Xb(k − 1), and matrix Ab is given by :

Ab =
(

Ab
0 Ab

1

I 0

)
. (11)

2.3 The total bimodal Model

The state variable of the whole system consists is a vector
of dimension (N + 2Nb), where N is the number of arcs

in the system, Nb is the number of arcs crossed by the PT
lines. The dynamics of the system thus is represented by
the following equation

X(k + 1) = AX(k) + BG(k) (12)
where A is a matrix of dimension (N + 2Nb)× (N + 2Nb).
The matrix B is composed of two stacked blocks the
upper one is defined by the topology of the road network,
i.e., the coefficient Baj when different from 0 means that
phase j is found entering or leaving arc a and its value is
defined according to (5). The lower block corresponds to
the influence of the green lights on the bus, which, as it is
neglected, has to be 0. We have then

A =
(

I 0
0 Ab

)
, B =

(
B
0

)
. (13)

With these matrices, it is clear that it will not be possible
to command the public transport because of the null block
of matrix B. However, it doesn’t set any problem because
in the definition of the model, we suppose that the travel
times of the public transport are fixed. What we want is to
act in such way that buses can comply with their schedules.

3. OPTIMISATION CRITERIA

From the viewpoint of the traffic regulation, our objective
is to improve the traffic conditions of the public transport
on the network, relative to the cars flow, without deterio-
rating the global traffic conditions. The objective function
need to be quadratic in terms of the state and control
variables to rest in the LQ case. We propose the following
objective function :

J(G) =
∞∑

k=0

(α(X(k)′Xb(k))+β‖X(k)‖2+γ‖G(k)‖2) (14)

where α, β and γ are non-negative weighting parameters
and the X are given by the dynamic equations (5) and (8).
The first term of the criteria, (X(k)′Xb(k)) puts forward
the traffic conditions on the arcs crossed by the public
transport at the time these public transport vehicles are
present on it. The second member aims at reducing the
number of vehicles on every arc on the network and thus
to equalize the congestion on every arc. The role of this
second term is mainly to not degrade too much the traffic
in the other arcs. The last term is used in order to avoid
large variations of the control (green light times).

This criteria can be written in the matrix form :

J(G) =
∞∑

k=0

‖x‖2Q + ‖u‖2R (15)

where Q =
(

β ∗ INxN α/2 ∗ INbxNb

α/2 ∗ INbxNb
β ∗ INxN

)
,

R = (γ ∗ IMxM ); IMxM is the M-dimension identity
matrix.

The choice of the values of these parameters enables to
modify the objective of the regulation. For example, for
α = 0, β = γ = 1 the strategy is equivalent to TUC,
which doesn’t take into account the presence of the public
transport. On the other hand a significant parameter α
(α >> β) will strongly penalize the arcs which don’t
support the public transport.



4. THE CONSTRAINTS

For operative needs, at every intersection j, the durations
of green lights should comply with a certain number of
constraints :

• the cycle duration (C),
• the phase diagram : all of phases Pj should have their

green light within the cycle,
• the clearance times between phases Rj ,

which implies :

∑

i∈Pj

Gj,i + Rj = C. (16)

On the other hand, for safety reasons, the traffic lights have
to respect some constraints. The duration of green lights
is limited by a minimum and a maximum value. Indeed, a
too short green light can not allow pedestrians to cross the
road safely and a too long implies a long red light duration
on the antagonistic road which can be interpreted by users
as a malfunction of the intersection lights and imply their
non-compliance :

Gj,i,min ≤ Gj,i ≤ Gj,i,max. (17)

Also the state variable X, the number of vehicles on each
arc must respect the capacity of the road and can not be
negative :

0 ≤ Xa ≤ Xa,max. (18)

5. THE NETPRIOR STRATEGY

In the already published strategy NeTprior Bhouri and
Lotito (2005), we resolve a non-constrained LQ optimal
control problem over an infinite horizon. The advantage
of that relies in the fact that the optimal solution can
be written as a linear feedback law and the matrix that
defines this law is the solution of a matrix equation (Ricatti
equation) stated in terms of the given data.

5.1 Control Law

The problem of optimal control consists in minimizing the
criteria given by equation (14) respecting the dynamics of
the system given by the equations (12).

Using the LQ optimisation method, the applied command
law is given by the following equation

G(k) = GN − F.X(k) (19)
where F is the Feedback matrix defined as F = (R +
BT PB)−1BT PA and the matrix P solves the Riccati
matrix equation P = Q+AT PA−AT PBF which depends
on the coefficients α, β, and γ of the objective function
through matrices Q ad R.

5.2 Constraints

The solution of the optimal control problem by the LQ
methodology doesn’t enable us to take the constraints
into account because the Ricatti equation will no longer
be valid. We solved this problem in NeTPrior, through a

projection of the obtained control values onto the set of
feasible values defined by the above constraints. It means
to obtain the closest (for some distance) values to the
optimal but not feasible ones.

6. RECEDING HORIZON OPTIMAL CONTROL
WITH CONSTRAINTS

The Receding Horizon Optimal Control consists in starting
with a fixed optimization horizon, of length K, using the
current state of the plant as the initial state, we then
optimize the objective function over this fixed interval
accounting to constraints, obtain an optimal sequence of K
control moves {ui, ..., ui+K−1}. Apply only the first control
move{ui} to the plant. Time than advances one step and
the same K-step optimization problem is considered using
the new state of the plant as initial state as shown on
the Figure 4. Thus one continuously revises the current
control action based on the current state and accounting
for the constraints over an optimisation horizon of length
K (Goodwin et al., 2005).

k

0 1 2 3
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0 1 2 3

k

0 1 2 3 4
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Fig. 4. Receding horizon optimisation principle

As the traffic conditions in the dense urban areas are
very changeable it is important that control solution can
be applied in a feedback loop, this is possible with the
receding horizon optimal control as shown on the diagram
5.

The control variable

State vector

Prediction 

model

Receding Horizon Control
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Fig. 5. Receding horizon optimal control operating in a
feedback loop

In the general case the algorithms for the receding hori-
zon optimal control remain relatively complex, however
remarkable simplifications occur for the particular case
of linear systems subject to linear inequality constraints.
Thats why we will place our selves in this particular
case. The fixed horizon optimal control problem for linear
system with a quadratic objective function and linear
constraints can be set up as a quadratic program, written
for the general case as follows :



PN (x) :





J(xk),(uk) = Min
1
2
xT

KPxK+

1
2

K−1∑

k=0

(xT
k Qxk + uT

k Ruk)

xk+1 = Axk + Buk

x0 = x
uk ∈ Uk∀k = 0, 1, . . . , N − 1, u ∈ Rm

xk ∈ Xk∀k = 0, . . . , N, x ∈ Rn

The control and state variables uk and xk are subject to
the inequality :

{
Uk = {uk : Kuk ≤ vu}
Xk = {xk : Dxk ≤ vx}

7. OUR CONSTRAINED LQ OPTIMAL CONTROL

Given the time-invariant model of the system (12) the fixed
horizon optimization problem (14) can be transformed into
a Quadratic Problem (QP).

we denote by us and xs the desired steady state values for
uk and xk. We have then :

us = [(I −A)−1B]−1xs

xs = (I −A)−1Bus
(20)

our aim is to find, for the system (12) the K control
sequence {u0, · · · , uK−1} and corresponding state sequence
{x0, · · · , xK} that minimize the finite horizon objective
function :

J(xk),(uk) = Min
1
2
xT

KPxK +
1
2

N−1∑

k=0

(xT
k Qxk + uT

k Ruk)

(21)

where P > 0, Q ≥ 0 and R > 0, K is the prediction
horizon, K ≤ K is the control horizon, and uk, xk are
the input and state setpoints given by (20). The control
is set equal to its steady state setpoint after M steps,
that is uk = us for all k ≥ K. The above fixed horizon
minimization problem is solved at each time step for the
current state and disturbance values. Then the first move
of the resulting control sequence is used as the current
control, and procedure is repeated at the next time step
in a RHC fashion, as described in section (6)

7.1 Objective function handling

Writing from (12)with x0 = x, and using the constraint
that uk = us for all k ≥ M .





x1 = Ax0 + Bu0

x2 = Ax1 + Bu1 = A2x0 + ABu0 + Bu1

x3 = Ax2 + Bu2 = A3x0 + A2Bu0 + ABU1 + Bu2

...
xN = ANx0 + AN−1Bu0 + · · ·

· · ·+ A1BuN−2 + BuN−1

let us note :
U ′ = (u′0, u

′
1, · · · , u′N−1) ; X ′ = (x′1, x

′
2, · · · , x′N )

the state equation ((12) became :
X = S.U + A.x (22)

where S is an (N.n) ∗ (N.m) and A an N.n matrices given
by :

S =




B 0 · · · · · · 0
AB B 0 · · · 0
...

...
AN−1B AN−2B · · · AB B


 ; A =




A
A2

...
AN




using this vector notation (22) and rewriting the objective
function (21) to yield :

J =
1
2
x0Qx0 +

1
2
(Ax)′Q(Ax)

︸ ︷︷ ︸
constante

+
1
2
U ′ (S′QS)︸ ︷︷ ︸

H1

U+U ′ (S′QAx)︸ ︷︷ ︸
F

⇔
J =

1
2
U ′ (S′QS + R)︸ ︷︷ ︸

H

U + U ′ (S′QAx)︸ ︷︷ ︸
F

(23)

This criterion is a function only of the control vector U ;
matrices Q and R are given by:

Q =




Q · · · 0 0
...

. . .
...

...

0 · · · Q
...

0 · · · 0 P


 R =




R · · · 0
...

. . .
...

0 · · · R




We can notice that to have a positive definite matrix H
it is sufficient to have matrices Q and R positive definite
independently of the system dynamic. However, due to
the non controllability of the model, this H matrix is
independent of the parameter ”α” of the Q matrix. Only
the second term of the objective function (matrix F ) is
sensitive to transit vehicles.

7.2 Contraints Handling

In the same way, we use the vector notation to write the
constraints. Let us note V ′u = (v′u, v′u, · · · , v′u)︸ ︷︷ ︸

Ntimes

; So

Uk = {uk : Kuk ≤ vu} ⇔ KU ≤ V u;

and V ′x = (v′x, v′x, · · · , v′x)︸ ︷︷ ︸
Ntimes

; ; so Xk = {xk :

Dxk ≤ vx} ⇔ DX ≤ V x;

where K =




K · · · 0
...

. . .
...

0 · · · K




and D =




D · · · 0
...

. . .
...

0 · · · D




State constraints can be expressed as a function of the only
control variables :

DX ≤ V x ⇔ DS.U ≤ V x −DAx (24)



The QP problem is than formulated :

(QP )





J =
1
2
U ′HU + U ′F

subject to :
DS.U ≤ V x −DAx
KU ≤ V u

(25)

8. NUMERICAL SOLUTION

There are several approaches for solving the constrained
QP problem given by (25). One could use, for example,
methods of feasible directions, which solve the problem by
moving from a feasible point to an improved feasible point.
Methods of primal-dual interior point algorithms have also
been proposed, such the infeasible interior point methods
proposed by Wright (1996). Another used algorithm is
the active set method, in which at each step certain
constraints, indexed by the active set, are regarded as
equalities whilst the rest are temporarily disregarded. The
method then sequentially solves an equality-constrained
QP and adjusts the active set in order to identify the
correct active constraints at the optimal solution. It is this
method which is used in this work (for more details see
Bonnans et al. (2006)).

8.1 active set method

To give a clear presentation of the method, let us simpli-
fying the notation by writing the constraints in the form
of A′iu ≤ bi∀i ∈ I which means that A = [DS; K] and the
constraints b = [(V x − DAx); V u]. The problem can be
written in a classical form :





Minimize{fu
1
2
u′Hu + u′b}

subject to :
A′iu ≤ bi∀i ∈ I

(26)

where H est positive definite, and where the index set I
correspond to inequality contraints. Let uk be a feasible
solution for (26) and let Ik = {i ∈ I : A

′
iuk = bi} the

set that records the active constraints at uk. Because
the constraints are linear, and since the the optimization
problem is strictly convex, a necessary and sufficient
condition for a feasible solution to be unique optimal
solution of (26) is that there exist Lagrange multipliers
λi for i ∈ Ik, such that the following Karush-Kuhn-Tucker
(KKT) conditions holds :

Huk + c +
∑

i∈Ik

λiAi = 0 (27)

λi ≥ 0, i ∈ Ik

The active set method iterates to find the optimal solution
of (26) in the following way. At the kth iteration we
assume that a feasible solution uk is available. The method
now seeks to minimize the objective function subject only
to equality constraints recorded in Ik and ignoring the
remaining inequality constraints.
If we parameterize u as u = uk + d, so :

f(u) = f(uk + d) = f(uk) +
1
2
d′Hd + d′(b + Huk)
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Fig. 6. The simulation urban network

Hence instead of solving (26), we solve the equivalent
direction-finding problem :

1
2
d′Hd + d′(b + Huk) subject to A

′
id = 0 for all i ∈ Ik

We use a feasible direction method.

9. SIMULATION RESULTS

In order to evaluate the receding horizon strategy we
performed several simulation tests on a small urban traffic
network (Figure 6). This network has two inputs (E1)
and (E2), and two outputs (S1) and (S2). It has seven
intersections and fourteen arcs numerated according to
the notation of section (6) : J = {1, 2, ...7} and A =
{1, 2, ...14}. Arcs related to exits are not considered. The
transit vehicles follow a fixed line which is given by the arcs
(1), (4) and (6) (the green lanes on (Figure 6). Vehicles has
a commercial stop at arc (2).

For example we show here the traffic state on the arcs re-
spectively 1 and 4 on which circulate the public transport
vehicles (figures 7 and 8). The first parts of these figures
give the state of the traffic optimized without favoring
the public transport (α = 0). In the second part, the
blue curves give the traffic state when the public trans-
port vehicles are given a favor (α = 104) and the green
color curves gives the moments of presence of the public
transport vehicles on the arcs.

Arc without priority with Gain
category (α = 0) (α = 104)

Arc 1 bus 536 18 97%

Arc 4 bus + bus-stop 437 27 94%

Arc 6 bus 214 28 87%

Arc 13 entree 579 1977 −241%

Arc 14 entree 891 2783 −212%

Network total 3830 6006 −56%

Network without the entrees 2360 1246 0, 47%

Table 1. Number of vehicles on the network

As we can see on the second curves: when the value of (α)
is very large, the strategy manages to cancel the queue on
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Fig. 8. Traffic state on the arc 4

the arcs when the buses are present. For the arc 4 (Fig. 8),
where a bus vehicle is always present, there is no-vehicle
on the queue since the fifth step of the regulation. On
the other hand, as we can see on the table (1) we can
notice that the total congestion is more important when
the parameter alpha is important. A finer analysis of the
results shows than the improvement of the arcs supporting
public transport is done by retaining the traffic on the
entries of the network and not on its totality. It is the
price to pay to improve the trajectory of public transport.

10. CONCLUSION

The simulation shows that the strategy makes a good im-
provement to the arcs on which public transport circulates
exactly when they are present but by retaining the traffic
on the entries of the network Future work should include
a nonlinear model of the traffic which will give a better

precision on the progression of the buses and will thus
allow a better precision at their time of presence in the
arcs.
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