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Abstract: This paper proposes a method to formally check whether formal properties hold on a dynamic 

model which has been designed by experts for Model Based Safety Analysis/Assessment. As repairable 

and reconfigurable systems are considered, this model is assumed to be described in the Generalized 

Boolean-logic Driven Markov Processes (GBDMP) modelling framework. Translation rules are given to 

obtain a formal model that describes correctly the evolution of the initial model with the semantics of the 

verification tool. The approach is exemplified on a simple case of standby redundancy. 
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

1. INTRODUCTION 

Model Based Safety Analysis/Assessment (MBSA) 

techniques are aiming to compute dependability attributes 

(instantaneous and asymptotic reliability and availability, 

minimal cut sequences, for instance) by analysing models 

which have been previously designed by safety/dependability 

experts (Bouissou 2003, Lipaczewski 2015). Accurate and 

trustworthy computation results require that the initial models 

are flawless; unfortunately, as any model based on expertise, 

these models may contain flaws coming from ambiguous or 

misunderstood specifications, human errors, etc. The overall 

aim of this work is to contribute to tackle out (or at least 

limit) this issue by proposing an approach of formal 

verification of models that will be used later for MBSA. 

The modelling framework which was selected for this work is 

GBDMP (Generalized Boolean-Logic Driven Markov 

Processes). This framework has been developed for MBSA of 

dynamic, repairable, and reconfigurable systems (Piriou and 

al, 2017); it particularly enables fine modelling of different 

reconfiguration strategies and of the failure of these 

strategies. Construction rules of well-formed GBDMP 

models have also been defined in the above reference to 

ensure syntactic consistency. However, these rules do not 

guarantee that a well-formed model satisfies dynamic 

properties, i.e. properties that consider evolutions of the 

model during time. Verification of such properties require to 

translate the model into the language of a verification tool 

then to check whether the properties hold or not on the model 

(Figure 1). Last, only logical time is considered in this work 

because functional correctness must be checked before time 

correctness; hence, the properties to check will be stated in 

Computation Tree Logic (CTL). Formal verification will be 

performed by using the widespread NuSMV model-checker; 

therefore, the formal model of the GBDMP will be a 

transition system in the language of this tool. 

The outline of the paper is the following. A state of the art on 

formal verification of models for MBSA is given in the next 

section. The GBDMP modelling framework is shortly 

presented in section 3 while section 4 focuses on translation 

of a GBDMP model into the NuSMV language. Examples of 

positive and negative verification of dynamic properties are 

detailed in section 5. Finally, concluding remarks and 

perspectives for future works are drawn up in the last section.  

 

Fig. 1. Principle of the work 

2. RELATED WORKS 

Several worthwhile results have been obtained in the field of 

formal verification of MBSA models since the beginning of 

the 2000s. Checking correctness of a fault tree is the 

objective of the work presented in (Schäfer 2003); the 

semantics of fault trees is expressed in Duration Calculus 

with Liveness and phase automata that model the behaviour 

of the system components are introduced to model-check. 
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The objective of (Thums and Schellhorn 2003) is similar, but 

the semantics of fault trees is given in CTL and the 

components behaviour is modelled with timed automata. 

Moreover, two kinds of gates are defined: decomposition 

gates with the Boolean semantics and cause consequence 

gates, where time may elapse between the causes and the 

consequence. A last contribution in this domain that deserves 

to be mentioned is the work reported in (Ortmeier and 

Schellhorn 2007) where fault trees are described in Interval 

Temporal Logic (ITL) and state charts model the behaviour 

of the system components. 

To allow modelling of failures that depend on the order of 

fault events, a modelling framework named State/Event Fault 

Trees (SEFTs) is proposed in (Kaiser and al, 2007). This 

framework subsumes fault tree, deterministic state machines 

and Markov chains. Analysis of models developed in this 

frame is performed by translating the component models into 

Deterministic and Stochastic Petri Nets (DSPNs). This 

framework is implemented in the ESSaRel (Embedded 

Systems Safety and Reliability Analyser) tool. Last, 

(Bozzano et al. 2015) proposes recently to check properties 

of AltaRica OCAS models by using the NuSMV verification 

tool while (Sharvia and Papadopoulos 2015) focuses on 

verification of HiP-HOPS models with the same tool. Despite 

their interest, none of these works has addressed models for 

dynamic, repairable, and reconfigurable systems. This study 

is aiming at filling this gap. 

3. BRIEF REMINDER ON GBDMP 

3.1 Overall description 

A GBDMP model is a 3-tuple composed of: 

• an extended fault tree that describes the physical and 

functional structure of the considered critical 

process; this fault tree comprises classical gates and 

leaves as well as switches to introduce explicitly 

reconfigurations of the process. 

• a set of Switched Markov Processes (SMP) which 

represent the functional and dysfunctional 

behaviours of the components of the critical process; 

a SMP is associated to every leaf l  L, where L is 

the set of leaves of the fault tree. 

• a set of Moore machines which model 

reconfiguration strategies; a Moore machine is 

associated to every switch s  S, where S is the set 

of switches of the fault tree.  

The three components of this tuple are interconnected. 

Hence, syntactic rules to build well-formed GBDMP models 

have been stated; the input/output alphabets of a Moore 

machine must be consistent with the inputs/outputs of the 

associated switch, for instance. It will be assumed in what 

follows that the model to formally verify is well-formed. For 

space reasons, it is not possible to give a complete syntax of 

GBDMP; detailed presentations can be found in (Piriou and 

al, 2017) and (Piriou and al, 2016). 

3.2  Example 

The example of Fig. 2 is composed of two groups of 

redundant components {C1a, C1b, C1c} and {C2a, C2b} in a 

series. The nature of these components does not matter; the 

only assumptions are that each component can be activated 

and deactivated and may fail and be repaired when active and 

inactive. The configuration of each group is managed by a 

controller (D1 for the first group and D2 for the second one) 

that performs a reconfiguration strategy: 

• for the first group, C1a and C1b are by default active 

and C1c inactive. Then, if one of the active 

components fails while the other two ones are not 

faulty, the failed component is deactivated, and the 

inactive component activated. 

• for the second group, if C2a is not faulty, C2a and 

C2b must be respectively active and inactive, 

whatever the dysfunctional state (faultless/faulty) of 

C2b; if C2a is faulty, C2a and C2b must be 

respectively inactive and active. 

 

Fig. 2. Standby redundancy example 

The GBDMP model of this example, with the above 

reconfiguration strategies, is shown at Fig. 3. In the fault tree, 

the leaves C1a, C1b and C1c are linked by dashed arrows to 

the switch S1; this means that the SMP associated to these 

leaves send/receive variables to/from the Moore machine. 

This latter is associated to this switch to model the first 

strategy where the activation status (active/inactive) of the 

components C1a, C1b and C1c depends on the failure 

statuses of these components. A similar explanation can be 

given for the leaves C2a and C2b and the switch S2. It must 

be noted nevertheless that no variable is sent to S2 from the 

leaf C2b because the activation status of C2a does not depend 

on the failure status of C2b, for the second strategy. 

Moreover, the success of a reconfiguration strategy is not 

guaranteed because the component where it is implemented, a 

Programmable Logic Controller for instance, may fail. Two 

failure modes of this controller will be considered hereafter: 

• Frozen: no more switching is possible, i.e. the 

configuration of the process remains the same; 

• Bad contact: there is no connection between D1 

(D2) and the group {C1a, C1b, C1c} ({C2a, C2b}).



 

 

     

 

 

Fig. 3. GBDMP model of the system of Figure 2, a) Extended Fault Tree; b) Moore Machine associated to switch S1; c) Moore 

Machine associated to switch S2; d) SMP associated to leaf De; e) SMP associated to leaf SF 

This possible issue is modelled by the link between the leaf 

D1 (D2) and the switch S1 (S2). The activation status of a 

component of the groups {C1a, C1b, C1c} and {C2a, C2b} 

depends on the failure status of the reconfiguration controller. 

3.3 Evolutions of a GBDMP model  

A GBDMP model describes a stochastic system whose 

components may fail and be repaired. However, when focus 

is put on formal verification of functional (and not 

quantitative) dynamic properties of this model, the random 

transitions of its SMP must be replaced by deterministic 

transitions labelled by the appropriate event. Hence, the 

transitions that model failures (repairs) will be labelled with 

failure (repair) events, and not failure (repair) rates, in what 

follows. With this modelling, the global state of a GBDMP 

model is completely defined by two sets of variables: 

• The set of state variables of the Moore machines. 

The state variable of the Moore machine associated 

to the switch s ∈ S will be noted Us.  

• The set of state variables of the Switched Markov 

Processes. The state variable of the SMP associated 

to the leaf l ∈ L will be noted Xl. 

Moreover, for each node (leaf or gate) n of the fault tree, 

three other variables can be computed from these two sets of 

state variables, as detailed in (Piriou, 2017):  

• Fn: Boolean variable that represents the failure status 

of the node n (Fn=True/False means that n is 

faulty/faultless).  

• Rn: Boolean variable that represents the requirement 

status of the node n (Rn=True/False means that n is 

required/not required to perform the process 

function).  

• Mn: Integer that represents the activity status of the 

node n (Mn=k means that n is in the kth activity 

mode). 

All these variables (state variables and variables associated to 

a node) are interdependent and must be computed from the 

dependency graph that can be built from the extended fault 

tree. Therefore, the state space of a GBDMP model includes 

two kinds of states: stable states and unstable states. A state 

is stable when the state variable of every SMP is consistent 

with the failure and activity statuses of the corresponding leaf 

l (if Fl is True and Ml equal to k for instance, the SMP 

associated to l must be in a failure state of the kth activity 

mode), unstable otherwise. 

A GBDMP model evolves from state to state on occurrence 

of two types of events: spontaneous events and provoked 

events. A spontaneous event occurs only when the current 

state is stable; it corresponds to a failure or repair event or an 

operator request, like a phase change. The spontaneous 

events are associated to the transitions in solid lines in the 

SMP. A provoked event occurs when the state is unstable; it 

is the consequence of a spontaneous event, like the transition 

of the activity mode of a spare component from inactive to 

active. The provoked events are associated to the transitions 

in dashed lines in the SMP. The spontaneous events are 

asynchronous (their occurrence dates are different) whereas 

the provoked events which are consequences of a given 

spontaneous event occur synchronously (at the date of the 

spontaneous event which caused them). 



 

 

     

 

 

Fig. 4. Part of the NuSMV code for the model of figure 3 

4. TRANSLATING GBDMP MODELS IN NUSMV 

LANGUAGE 

NuSMV [Cimatti 2002] is a symbolic verification tool that 

checks properties on a model in the form of a transition 

system in a specific syntax. The aim of this section is to give 

the main translation rules to obtain this model from a well-

formed GBDMP model. A part of the result obtained for the 

GBDMP of figure 3 is given at figure 4. 

Only the variables that define the global state (state variables 

of the Moore machines and SMP) are first defined in the 

VAR section. Translation of the evolutions of these variables 

is straightforward by using the operator ‘next’ that defines the 

next state. The status variables of the nodes are then 

computed and the stability condition is obtained, for every 

leaf of the fault tree, from the values of the state variables and 

the status variables of this leaf, as follows: 

Stable_Xl := ((Ml =0 & Xl in {set of states in mode 0}) | … | 

(Ml =k & Xl  in {set of states in mode k})) & ((Fl & Xl in {set 

of failure states}) | (!Fl & Xl in {set of non-failure states})) 

The global state of the GBDMP model is stable when the 

Boolean variable Stable which is the conjunction of every 

Stable_Xl and Stable_Um variable is True. 

The main issue in this translation is modelling of the 

spontaneous events which are asynchronous in the GBDMP 

framework while NUSMV considers by default that two 

events may occur simultaneously. To avoid incorrect 

evolutions, an event selector must be introduced (Figure 5). 

The role of this automaton is to prevent simultaneous 

failure/repair events, from the SMP associated to the leaves 

of the fault tree, to occur. From the initial state, Choice, when 

the global state of the GBDMP model is stable, only one state 

of the event selector can be activated and then only one 

spontaneous event can occur. When a non-initial state of this 

automaton is active, a variable l_evol where l is the name of 

the corresponding leaf, is then set; this variable means that 

the SMP associated to this leaf can evolve and must be 

introduced as a guard in every transition of the SMP. The 

initial state of the event selector becomes active again once 

the SMP has evolved. To sum up, introducing this automaton 

and these guards in the NUSMV code permits to describe 

correctly the evolutions of the GBDMP model with the 

semantics of the verification tool. 

 

Fig. 5. Event selector for the model of figure 3   

5.  FORMAL VERIFICATION OF DYNAMIC 

PROPERTIES 

5.1  Notations 

Seven properties that must be satisfied by the GBDMP model 

will be given hereafter. They concern the behaviour of the 

components, redundant components of the critical process 

and controllers where the reconfiguration strategies are 



 

 

     

 

implemented, which are modelled by SMP, the 

reconfiguration strategies themselves, modelled with Moore 

machines, and the top event of the extended fault tree. These 

properties will be exemplified on the example of figure 3 by 

using CTL expressions. Hence, the notations of the state and 

path quantifiers in this logic must be reminded: 

• X represents the next state of the current state, 

• F means “for at least one state (there exists in the 

Future) of a path”,  

• G means “for every state (Globally) of a path”, 

• A means “along All paths” from the current state, 

• E means “along at least one (there Exists) path” 

from the current state. 

With these notations, EF , where is a logic expression, 

means “there exists a path where there exists at least one state 

where  is verified” and AG “for every path and for every 

state of the path,  is verified”, for instance. 

5.2  Properties presentation 

5.2.1 Properties on the behaviour of the components  

The first property concerns the behaviour of a redundant 

component (C1a, C1b, C1c, C2a, C2b in the example); the 

three following properties the behaviour of a controller where 

a reconfiguration strategy is implemented. 

Property 1: A redundant component can be activated (1a) 

and deactivated (1b); it can also fail (1c) and be repaired (1d).  

This property can be formalized by the four CTL formulas 

below, where EF ( & AX!) means that there exists in the 

future a state where  is true and for all immediate next 

possible states,  is false:  

EF (Ml=0 & AX Ml>0)   (1a) 

EF (Ml >0 & AX Ml =0)   (1b) 

EF (!Fl & AX Fl)    (1c) 

EF (Fl & AX!Fl)    (1d) 

where Ml represents the activity status of the leaf l associated 

to the component and Fl the failure status of this component; 

it is assumed that Ml=0 means that the component is inactive. 

Property 2: A controller may fail in two ways (two failure 

modes) (2a) and be repaired when failed (2b). 

For the component associated to the leaf D1 for instance, this 

property is formalized by the following two expressions:  

EF (!FD1 & AX ((FD1 & (XD1=2 | (XD1=1)));        (2a)  

EF ((FD1 & (XD1=2 | (XD1=1)) & AX (!FD1));      (2b) 

where XD1=1(2) means that the failure mode is bad contact 

(frozen).  

Property 3: When the failure mode is bad contact, every 

component of the group of redundant components controlled 

by the controller is inactive. 

For the example of figure 2, this property is formalized by 

two CTL expressions (one for each group of components). 

AG ((XD1=1 & Stable) → (MC1a=0 & MC1b=0 & MC1c=0));

        (3-1) 

AG ((XD2=1 & Stable) → (MC2a=0 & MC2b=0));   (3-2) 

It must be noted that the variable Stable is introduced in these 

statements because the property holds only in the stable states 

of the model. This remark can be made for the other 

following properties.  

Property 4: When the failure mode is frozen, every 

component of the group of redundant components which is 

controlled by the controller remains in its current state. 

AG (XD1=2 → (Stable_XC1a & Stable_ XC1b & Stable_ XC1c));

       (4-1) 

AG (XD2=2 → (Stable_ XC2a & Stable_ XC2b));   (4-2) 

5.2.2 Properties on the reconfiguration strategies 

To check whether the two reconfiguration strategies which 

have been defined at 3.2 have been correctly modelled in the 

GBDMP, the properties 5 and 6 are to be verified. Property 5 

will be expressed in an event-oriented form whereas property 

6 will be given in a state-oriented form to show that informal 

specifications can be formalised in these two forms. In the 

expression of property 5, the construction “A [! Stable U p]” 

is used to specify the assertion “p will be True in the next 

stable state”. 

Property 5: If the controller D1 is faultless, by default (no 

component is faulty), C1a and C1b are arbitrarily activated 

(5a). Then, if one of the active components fails while the 

other two are faultless, disable the failed component and 

activate the inactive component ((5b-1) to (5b-3)).  

AG ((!FD1 & Stable & !FC1a & !FC1b & !FC1c) → (MC1a=1 & 

MC1b=1 & MC1c=0));                  (5a) 

AG ((!FC1a & AX FC1a) & (MC1a=1 & !FC1b & !FC1c & !FD1)→ 

AX (A [!Stable U (MC1a=0 & MC1b=1 & MC1c=1)])); (5b-1)  

AG ((!FC1b & AX FC1b) & (MC1b=1 & !FC1a & !FC1c & !FD1)→ 

AX (A [!Stable U (MC1a=1 & MC1b=0 & MC1c=1)])); (5b-2)  

AG ((!FC1c & AX FC1c) & (MC1c=1 & !FC1a & !FC1c & !FD1)→ 

AX (A [!Stable U (MC1a=1 & MC1b=1 & MC1c=0)])); (5b-3) 

Property 6: If the controller D2 is faultless and the model 

stable, whatever the dysfunctional state of C2b, if C2a is not 

faulty, then C2a and C2b are respectively active and inactive 

(6a); if C2a is faulty, C2a and C2b are respectively inactive 

and active (6b). 

AG ((!FD2 & Stable & !FC2a) → (MC2a=1 & MC2b=0)); (6a)  

AG ((!FD2 & Stable & FC2a) → (MC2a=0 & MC2b=1)); (6b)  

5.2.3 Property on the top event 

The top event of the extended fault tree is False when the 

critical system of figure 2 performs correctly its function, 

True otherwise. The following property can then be stated. 



 

 

     

 

Property 7: If every controller is faultless, the global 

function is performed if at least two components among 

{C1a, C1b, C1c} are faultless and at least one component 

among {C2a, C2b} is also faultless. 

This property can be formalized as follows by introducing a 

Boolean variable TE (Top Event); this variable is merely the 

complement of the failure status of the top gate of the fault 

tree. 

AG ((!FD1 & !FD2 & Stable ) → (count (!FC1a, !FC1b, !FC1c) ≥ 2 

& count (!FC2a, !FC2b) ≥ 1) ↔ !TE );                                     (7) 

where count is a function which counts the number of 

variables that are True in a set of Boolean variables. 

5.3  Detection of errors in the GBDMP model 

As the model of figure 3 is correct, every property which has 

been defined at the previous section holds on this model. To 

check whether errors during modelling can be detected by the 

verification tool, two modifications have been brought 

separately: 

• The top gate (OR in the correct model) has been 

replaced by a AND gate, which is obviously a basic 

error. 

• The label of the transition from q3 to q1 in the 

Moore machine M1 has been changed. 

The first error is detected because Property 7 does not hold 

anymore; a counterexample that shows that it is possible in 

this case to have a False TE while two components in the 

group {C1a, C1b, C1c} are faulty (Figure 6) is provided by 

the model checker. Such a counterexample surely eases 

analysis of the GBDMP model and detection of the 

modelling error. 

 

Fig.6. Counter example for the first modelling error. 

When only the second error is introduced, both properties 5a 

and 7 are not satisfied. A counterexample shows that the 

three components of the group remain inactive after the 

controller D1 has been repaired. Analysis of the Moore 

machine that describes the strategy implemented in this 

controller permits to detect the erroneous label.  

In figure 7, the states in solid lines correspond to stable states 

of the system, while the dotted ones correspond to unstable 

states. 

 

Fig.7. Counter example for the second modelling error. 

6. CONCLUSIONS 

This paper has shown that modelling errors in a model 

developed for MBSA of repairable and reconfigurable 

systems can be detected by using formal verification 

techniques. Solutions to translate this model in the language 

of the selected verification tool while keeping the initial 

semantics have been proposed and some examples of errors 

that can be detected have been given. The experiments show 

that the approach scales well. Future work is aiming at 

facilitating verification by non-experts in temporal logic; 

development of libraries of CTL formulas which are built 

automatically from the knowledge of the structure of the 

critical process and the reconfiguration strategies is under 

investigation. 
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