
HAL Id: hal-01493213
https://hal.science/hal-01493213

Submitted on 21 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of Safety Analysis Models of
Repairable and Reconfigurable Systems
Elodie Kobeissi, Pierre-Yves Piriou, Jean-Marc Faure

To cite this version:
Elodie Kobeissi, Pierre-Yves Piriou, Jean-Marc Faure. Formal Verification of Safety Analysis Models
of Repairable and Reconfigurable Systems. 20th IFAC World Congress, IFAC, Jul 2017, Toulouse,
France. �hal-01493213�

https://hal.science/hal-01493213
https://hal.archives-ouvertes.fr

Formal Verification of Safety Analysis Models

of Repairable and Reconfigurable Systems

Elodie Kobeissi1, Pierre-Yves Piriou2, Jean-Marc Faure3
1LURPA, ENS Cachan, Univ. Paris-Sud, Université Paris-Saclay, F-94235 Cachan, France (e-mail : elodie.kobeissi@ens-

cachan.fr)
2Electricité de France, R&D, 78400 Chatou, France (e-mail : pierre-yves.piriou@edf.fr)

3LURPA, ENS Cachan, Univ. Paris-Sud, Supmeca, Univ. Paris-Saclay, 94235 Cachan, France (e-mail : jean-marc.faure@ens-

cachan.fr)

Abstract: This paper proposes a method to formally check whether formal properties hold on a dynamic

model which has been designed by experts for Model Based Safety Analysis/Assessment. As repairable

and reconfigurable systems are considered, this model is assumed to be described in the Generalized

Boolean-logic Driven Markov Processes (GBDMP) modelling framework. Translation rules are given to

obtain a formal model that describes correctly the evolution of the initial model with the semantics of the

verification tool. The approach is exemplified on a simple case of standby redundancy.

Keywords: Model Based Safety Analysis/Assessment, Formal verification, Dynamic properties,

Generalized BDMP, Stability, Computation Tree Logic.



1. INTRODUCTION

Model Based Safety Analysis/Assessment (MBSA)

techniques are aiming to compute dependability attributes

(instantaneous and asymptotic reliability and availability,

minimal cut sequences, for instance) by analysing models

which have been previously designed by safety/dependability

experts (Bouissou 2003, Lipaczewski 2015). Accurate and

trustworthy computation results require that the initial models

are flawless; unfortunately, as any model based on expertise,

these models may contain flaws coming from ambiguous or

misunderstood specifications, human errors, etc. The overall

aim of this work is to contribute to tackle out (or at least

limit) this issue by proposing an approach of formal

verification of models that will be used later for MBSA.

The modelling framework which was selected for this work is

GBDMP (Generalized Boolean-Logic Driven Markov

Processes). This framework has been developed for MBSA of

dynamic, repairable, and reconfigurable systems (Piriou and

al, 2017); it particularly enables fine modelling of different

reconfiguration strategies and of the failure of these

strategies. Construction rules of well-formed GBDMP

models have also been defined in the above reference to

ensure syntactic consistency. However, these rules do not

guarantee that a well-formed model satisfies dynamic

properties, i.e. properties that consider evolutions of the

model during time. Verification of such properties require to

translate the model into the language of a verification tool

then to check whether the properties hold or not on the model

(Figure 1). Last, only logical time is considered in this work

because functional correctness must be checked before time

correctness; hence, the properties to check will be stated in

Computation Tree Logic (CTL). Formal verification will be

performed by using the widespread NuSMV model-checker;

therefore, the formal model of the GBDMP will be a

transition system in the language of this tool.

The outline of the paper is the following. A state of the art on

formal verification of models for MBSA is given in the next

section. The GBDMP modelling framework is shortly

presented in section 3 while section 4 focuses on translation

of a GBDMP model into the NuSMV language. Examples of

positive and negative verification of dynamic properties are

detailed in section 5. Finally, concluding remarks and

perspectives for future works are drawn up in the last section.

Fig. 1. Principle of the work

2. RELATED WORKS

Several worthwhile results have been obtained in the field of

formal verification of MBSA models since the beginning of

the 2000s. Checking correctness of a fault tree is the

objective of the work presented in (Schäfer 2003); the

semantics of fault trees is expressed in Duration Calculus

with Liveness and phase automata that model the behaviour

of the system components are introduced to model-check.

mailto:pierre-yves.piriou@edf.fr

The objective of (Thums and Schellhorn 2003) is similar, but

the semantics of fault trees is given in CTL and the

components behaviour is modelled with timed automata.

Moreover, two kinds of gates are defined: decomposition

gates with the Boolean semantics and cause consequence

gates, where time may elapse between the causes and the

consequence. A last contribution in this domain that deserves

to be mentioned is the work reported in (Ortmeier and

Schellhorn 2007) where fault trees are described in Interval

Temporal Logic (ITL) and state charts model the behaviour

of the system components.

To allow modelling of failures that depend on the order of

fault events, a modelling framework named State/Event Fault

Trees (SEFTs) is proposed in (Kaiser and al, 2007). This

framework subsumes fault tree, deterministic state machines

and Markov chains. Analysis of models developed in this

frame is performed by translating the component models into

Deterministic and Stochastic Petri Nets (DSPNs). This

framework is implemented in the ESSaRel (Embedded

Systems Safety and Reliability Analyser) tool. Last,

(Bozzano et al. 2015) proposes recently to check properties

of AltaRica OCAS models by using the NuSMV verification

tool while (Sharvia and Papadopoulos 2015) focuses on

verification of HiP-HOPS models with the same tool. Despite

their interest, none of these works has addressed models for

dynamic, repairable, and reconfigurable systems. This study

is aiming at filling this gap.

3. BRIEF REMINDER ON GBDMP

3.1 Overall description

A GBDMP model is a 3-tuple composed of:

• an extended fault tree that describes the physical and

functional structure of the considered critical

process; this fault tree comprises classical gates and

leaves as well as switches to introduce explicitly

reconfigurations of the process.

• a set of Switched Markov Processes (SMP) which

represent the functional and dysfunctional

behaviours of the components of the critical process;

a SMP is associated to every leaf l  L, where L is

the set of leaves of the fault tree.

• a set of Moore machines which model

reconfiguration strategies; a Moore machine is

associated to every switch s  S, where S is the set

of switches of the fault tree.

The three components of this tuple are interconnected.

Hence, syntactic rules to build well-formed GBDMP models

have been stated; the input/output alphabets of a Moore

machine must be consistent with the inputs/outputs of the

associated switch, for instance. It will be assumed in what

follows that the model to formally verify is well-formed. For

space reasons, it is not possible to give a complete syntax of

GBDMP; detailed presentations can be found in (Piriou and

al, 2017) and (Piriou and al, 2016).

3.2 Example

The example of Fig. 2 is composed of two groups of

redundant components {C1a, C1b, C1c} and {C2a, C2b} in a

series. The nature of these components does not matter; the

only assumptions are that each component can be activated

and deactivated and may fail and be repaired when active and

inactive. The configuration of each group is managed by a

controller (D1 for the first group and D2 for the second one)

that performs a reconfiguration strategy:

• for the first group, C1a and C1b are by default active

and C1c inactive. Then, if one of the active

components fails while the other two ones are not

faulty, the failed component is deactivated, and the

inactive component activated.

• for the second group, if C2a is not faulty, C2a and

C2b must be respectively active and inactive,

whatever the dysfunctional state (faultless/faulty) of

C2b; if C2a is faulty, C2a and C2b must be

respectively inactive and active.

Fig. 2. Standby redundancy example

The GBDMP model of this example, with the above

reconfiguration strategies, is shown at Fig. 3. In the fault tree,

the leaves C1a, C1b and C1c are linked by dashed arrows to

the switch S1; this means that the SMP associated to these

leaves send/receive variables to/from the Moore machine.

This latter is associated to this switch to model the first

strategy where the activation status (active/inactive) of the

components C1a, C1b and C1c depends on the failure

statuses of these components. A similar explanation can be

given for the leaves C2a and C2b and the switch S2. It must

be noted nevertheless that no variable is sent to S2 from the

leaf C2b because the activation status of C2a does not depend

on the failure status of C2b, for the second strategy.

Moreover, the success of a reconfiguration strategy is not

guaranteed because the component where it is implemented, a

Programmable Logic Controller for instance, may fail. Two

failure modes of this controller will be considered hereafter:

• Frozen: no more switching is possible, i.e. the

configuration of the process remains the same;

• Bad contact: there is no connection between D1

(D2) and the group {C1a, C1b, C1c} ({C2a, C2b}).

Fig. 3. GBDMP model of the system of Figure 2, a) Extended Fault Tree; b) Moore Machine associated to switch S1; c) Moore

Machine associated to switch S2; d) SMP associated to leaf De; e) SMP associated to leaf SF

This possible issue is modelled by the link between the leaf

D1 (D2) and the switch S1 (S2). The activation status of a

component of the groups {C1a, C1b, C1c} and {C2a, C2b}

depends on the failure status of the reconfiguration controller.

3.3 Evolutions of a GBDMP model

A GBDMP model describes a stochastic system whose

components may fail and be repaired. However, when focus

is put on formal verification of functional (and not

quantitative) dynamic properties of this model, the random

transitions of its SMP must be replaced by deterministic

transitions labelled by the appropriate event. Hence, the

transitions that model failures (repairs) will be labelled with

failure (repair) events, and not failure (repair) rates, in what

follows. With this modelling, the global state of a GBDMP

model is completely defined by two sets of variables:

• The set of state variables of the Moore machines.

The state variable of the Moore machine associated

to the switch s ∈ S will be noted Us.

• The set of state variables of the Switched Markov

Processes. The state variable of the SMP associated

to the leaf l ∈ L will be noted Xl.

Moreover, for each node (leaf or gate) n of the fault tree,

three other variables can be computed from these two sets of

state variables, as detailed in (Piriou, 2017):

• Fn: Boolean variable that represents the failure status

of the node n (Fn=True/False means that n is

faulty/faultless).

• Rn: Boolean variable that represents the requirement

status of the node n (Rn=True/False means that n is

required/not required to perform the process

function).

• Mn: Integer that represents the activity status of the

node n (Mn=k means that n is in the kth activity

mode).

All these variables (state variables and variables associated to

a node) are interdependent and must be computed from the

dependency graph that can be built from the extended fault

tree. Therefore, the state space of a GBDMP model includes

two kinds of states: stable states and unstable states. A state

is stable when the state variable of every SMP is consistent

with the failure and activity statuses of the corresponding leaf

l (if Fl is True and Ml equal to k for instance, the SMP

associated to l must be in a failure state of the kth activity

mode), unstable otherwise.

A GBDMP model evolves from state to state on occurrence

of two types of events: spontaneous events and provoked

events. A spontaneous event occurs only when the current

state is stable; it corresponds to a failure or repair event or an

operator request, like a phase change. The spontaneous

events are associated to the transitions in solid lines in the

SMP. A provoked event occurs when the state is unstable; it

is the consequence of a spontaneous event, like the transition

of the activity mode of a spare component from inactive to

active. The provoked events are associated to the transitions

in dashed lines in the SMP. The spontaneous events are

asynchronous (their occurrence dates are different) whereas

the provoked events which are consequences of a given

spontaneous event occur synchronously (at the date of the

spontaneous event which caused them).

Fig. 4. Part of the NuSMV code for the model of figure 3

4. TRANSLATING GBDMP MODELS IN NUSMV

LANGUAGE

NuSMV [Cimatti 2002] is a symbolic verification tool that

checks properties on a model in the form of a transition

system in a specific syntax. The aim of this section is to give

the main translation rules to obtain this model from a well-

formed GBDMP model. A part of the result obtained for the

GBDMP of figure 3 is given at figure 4.

Only the variables that define the global state (state variables

of the Moore machines and SMP) are first defined in the

VAR section. Translation of the evolutions of these variables

is straightforward by using the operator ‘next’ that defines the

next state. The status variables of the nodes are then

computed and the stability condition is obtained, for every

leaf of the fault tree, from the values of the state variables and

the status variables of this leaf, as follows:

Stable_Xl := ((Ml =0 & Xl in {set of states in mode 0}) | … |

(Ml =k & Xl in {set of states in mode k})) & ((Fl & Xl in {set

of failure states}) | (!Fl & Xl in {set of non-failure states}))

The global state of the GBDMP model is stable when the

Boolean variable Stable which is the conjunction of every

Stable_Xl and Stable_Um variable is True.

The main issue in this translation is modelling of the

spontaneous events which are asynchronous in the GBDMP

framework while NUSMV considers by default that two

events may occur simultaneously. To avoid incorrect

evolutions, an event selector must be introduced (Figure 5).

The role of this automaton is to prevent simultaneous

failure/repair events, from the SMP associated to the leaves

of the fault tree, to occur. From the initial state, Choice, when

the global state of the GBDMP model is stable, only one state

of the event selector can be activated and then only one

spontaneous event can occur. When a non-initial state of this

automaton is active, a variable l_evol where l is the name of

the corresponding leaf, is then set; this variable means that

the SMP associated to this leaf can evolve and must be

introduced as a guard in every transition of the SMP. The

initial state of the event selector becomes active again once

the SMP has evolved. To sum up, introducing this automaton

and these guards in the NUSMV code permits to describe

correctly the evolutions of the GBDMP model with the

semantics of the verification tool.

Fig. 5. Event selector for the model of figure 3

5. FORMAL VERIFICATION OF DYNAMIC

PROPERTIES

5.1 Notations

Seven properties that must be satisfied by the GBDMP model

will be given hereafter. They concern the behaviour of the

components, redundant components of the critical process

and controllers where the reconfiguration strategies are

implemented, which are modelled by SMP, the

reconfiguration strategies themselves, modelled with Moore

machines, and the top event of the extended fault tree. These

properties will be exemplified on the example of figure 3 by

using CTL expressions. Hence, the notations of the state and

path quantifiers in this logic must be reminded:

• X represents the next state of the current state,

• F means “for at least one state (there exists in the

Future) of a path”,

• G means “for every state (Globally) of a path”,

• A means “along All paths” from the current state,

• E means “along at least one (there Exists) path”

from the current state.

With these notations, EF , where is a logic expression,

means “there exists a path where there exists at least one state

where  is verified” and AG “for every path and for every

state of the path,  is verified”, for instance.

5.2 Properties presentation

5.2.1 Properties on the behaviour of the components

The first property concerns the behaviour of a redundant

component (C1a, C1b, C1c, C2a, C2b in the example); the

three following properties the behaviour of a controller where

a reconfiguration strategy is implemented.

Property 1: A redundant component can be activated (1a)

and deactivated (1b); it can also fail (1c) and be repaired (1d).

This property can be formalized by the four CTL formulas

below, where EF ( & AX!) means that there exists in the

future a state where  is true and for all immediate next

possible states,  is false:

EF (Ml=0 & AX Ml>0) (1a)

EF (Ml >0 & AX Ml =0) (1b)

EF (!Fl & AX Fl) (1c)

EF (Fl & AX!Fl) (1d)

where Ml represents the activity status of the leaf l associated

to the component and Fl the failure status of this component;

it is assumed that Ml=0 means that the component is inactive.

Property 2: A controller may fail in two ways (two failure

modes) (2a) and be repaired when failed (2b).

For the component associated to the leaf D1 for instance, this

property is formalized by the following two expressions:

EF (!FD1 & AX ((FD1 & (XD1=2 | (XD1=1))); (2a)

EF ((FD1 & (XD1=2 | (XD1=1)) & AX (!FD1)); (2b)

where XD1=1(2) means that the failure mode is bad contact

(frozen).

Property 3: When the failure mode is bad contact, every

component of the group of redundant components controlled

by the controller is inactive.

For the example of figure 2, this property is formalized by

two CTL expressions (one for each group of components).

AG ((XD1=1 & Stable) → (MC1a=0 & MC1b=0 & MC1c=0));

 (3-1)

AG ((XD2=1 & Stable) → (MC2a=0 & MC2b=0)); (3-2)

It must be noted that the variable Stable is introduced in these

statements because the property holds only in the stable states

of the model. This remark can be made for the other

following properties.

Property 4: When the failure mode is frozen, every

component of the group of redundant components which is

controlled by the controller remains in its current state.

AG (XD1=2 → (Stable_XC1a & Stable_ XC1b & Stable_ XC1c));

 (4-1)

AG (XD2=2 → (Stable_ XC2a & Stable_ XC2b)); (4-2)

5.2.2 Properties on the reconfiguration strategies

To check whether the two reconfiguration strategies which

have been defined at 3.2 have been correctly modelled in the

GBDMP, the properties 5 and 6 are to be verified. Property 5

will be expressed in an event-oriented form whereas property

6 will be given in a state-oriented form to show that informal

specifications can be formalised in these two forms. In the

expression of property 5, the construction “A [! Stable U p]”

is used to specify the assertion “p will be True in the next

stable state”.

Property 5: If the controller D1 is faultless, by default (no

component is faulty), C1a and C1b are arbitrarily activated

(5a). Then, if one of the active components fails while the

other two are faultless, disable the failed component and

activate the inactive component ((5b-1) to (5b-3)).

AG ((!FD1 & Stable & !FC1a & !FC1b & !FC1c) → (MC1a=1 &

MC1b=1 & MC1c=0)); (5a)

AG ((!FC1a & AX FC1a) & (MC1a=1 & !FC1b & !FC1c & !FD1)→

AX (A [!Stable U (MC1a=0 & MC1b=1 & MC1c=1)])); (5b-1)

AG ((!FC1b & AX FC1b) & (MC1b=1 & !FC1a & !FC1c & !FD1)→

AX (A [!Stable U (MC1a=1 & MC1b=0 & MC1c=1)])); (5b-2)

AG ((!FC1c & AX FC1c) & (MC1c=1 & !FC1a & !FC1c & !FD1)→

AX (A [!Stable U (MC1a=1 & MC1b=1 & MC1c=0)])); (5b-3)

Property 6: If the controller D2 is faultless and the model

stable, whatever the dysfunctional state of C2b, if C2a is not

faulty, then C2a and C2b are respectively active and inactive

(6a); if C2a is faulty, C2a and C2b are respectively inactive

and active (6b).

AG ((!FD2 & Stable & !FC2a) → (MC2a=1 & MC2b=0)); (6a)

AG ((!FD2 & Stable & FC2a) → (MC2a=0 & MC2b=1)); (6b)

5.2.3 Property on the top event

The top event of the extended fault tree is False when the

critical system of figure 2 performs correctly its function,

True otherwise. The following property can then be stated.

Property 7: If every controller is faultless, the global

function is performed if at least two components among

{C1a, C1b, C1c} are faultless and at least one component

among {C2a, C2b} is also faultless.

This property can be formalized as follows by introducing a

Boolean variable TE (Top Event); this variable is merely the

complement of the failure status of the top gate of the fault

tree.

AG ((!FD1 & !FD2 & Stable) → (count (!FC1a, !FC1b, !FC1c) ≥ 2

& count (!FC2a, !FC2b) ≥ 1) ↔ !TE); (7)

where count is a function which counts the number of

variables that are True in a set of Boolean variables.

5.3 Detection of errors in the GBDMP model

As the model of figure 3 is correct, every property which has

been defined at the previous section holds on this model. To

check whether errors during modelling can be detected by the

verification tool, two modifications have been brought

separately:

• The top gate (OR in the correct model) has been

replaced by a AND gate, which is obviously a basic

error.

• The label of the transition from q3 to q1 in the

Moore machine M1 has been changed.

The first error is detected because Property 7 does not hold

anymore; a counterexample that shows that it is possible in

this case to have a False TE while two components in the

group {C1a, C1b, C1c} are faulty (Figure 6) is provided by

the model checker. Such a counterexample surely eases

analysis of the GBDMP model and detection of the

modelling error.

Fig.6. Counter example for the first modelling error.

When only the second error is introduced, both properties 5a

and 7 are not satisfied. A counterexample shows that the

three components of the group remain inactive after the

controller D1 has been repaired. Analysis of the Moore

machine that describes the strategy implemented in this

controller permits to detect the erroneous label.

In figure 7, the states in solid lines correspond to stable states

of the system, while the dotted ones correspond to unstable

states.

Fig.7. Counter example for the second modelling error.

6. CONCLUSIONS

This paper has shown that modelling errors in a model

developed for MBSA of repairable and reconfigurable

systems can be detected by using formal verification

techniques. Solutions to translate this model in the language

of the selected verification tool while keeping the initial

semantics have been proposed and some examples of errors

that can be detected have been given. The experiments show

that the approach scales well. Future work is aiming at

facilitating verification by non-experts in temporal logic;

development of libraries of CTL formulas which are built

automatically from the knowledge of the structure of the

critical process and the reconfiguration strategies is under

investigation.

REFERENCES

Bouissou, M., Bon, J.-L. (2003). A new formalism that

combines advantages of fault trees and Markov models:

Boolean logic Driven Markov Processes. Reliability

Engineering & System Safety, 82 (2), 149–163.

Bozzano, M, Cimatti, A., Lisagor, O., Mattarei, C., Mover,

 S., Roveri, M., and Tonetta, S. (2015). Safety assessment

of AltaRica models via symbolic model-checking.

Science of Computer Programming, 98, 464–83.

Cimatti, A., E. Clarke, E. Giunchiglia, F. Giunchiglia,

M. Pistore, M. Roveri, R. Sebastiani, & A. Tacchella

(2002). Nusmv 2: An opensource tool for symbolic

model checking. Computer Aided Verification, 359–364.

Kaiser, B., Gramlish, C., and Förster, M. (2007). State/event

 fault trees — a safety analysis model for software

controlled systems. Reliability Engineering & System

Safety, 92 (11), 1521–37.

Lipaczewski, M., Ortmeier, F., Prosvirnova, T., Rauzy, A.,

Struck, S. (2015). Comparison of modeling formalisms

for safety analyses: SAML and AltaRica. Reliability

Engineering & System Safety, 140, 191–199.

Ortmeier, F., and Schellhorn, G. (2007). Formal fault tree

 analysis - Practical experiences. Electronic Notes in

Theoretical Computer Science, 185, 139–51.

 Piriou, P-Y., Faure, J-M., Lesage, J-J. (2017). Generalized

Boolean logic Driven Markov Processes: A powerful

modelling framework for Model-Based Safety Analysis

of dynamic repairable and reconfigurable systems,

Reliability Engineering & System Safety, Volume 163,

Pages 57-68.

Piriou, P-Y., Faure, J-M., Lesage, J-J. (2016). From safety

analysis of reconfigurable systems to design of fault-

tolerant control strategies. 3rd Int. Conf. on Control and

Fault-Tolerant Systems, SysTol’16, 609-614.

Schäfer, A. (2003). Combining real-time model-checking and

fault tree analysis. FME 2003: Formal Methods, 522–41.

Sharvia, S. and Papadopoulos Y. (2015). Integrating model

checking with HiP-HOPS in model-based safety

analysis. Reliability Engineering & System Safety, 135,

64–80

Thums, A., and Schellhorn, G. (2003). Model-checking FTA.

FME 2003: Formal Methods, 739–57.

https://hal.archives-ouvertes.fr/hal-01357680
https://hal.archives-ouvertes.fr/hal-01357680
https://hal.archives-ouvertes.fr/hal-01357680

