
HAL Id: hal-01493204
https://hal.science/hal-01493204v1

Submitted on 21 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RINGMesh: A programming library for developing
mesh-based geomodeling applications

Jeanne Pellerin, Arnaud Botella, Antoine Mazuyer, Benjamin Chauvin,
François Bonneau, Guillaume Caumon, Bruno Lévy

To cite this version:
Jeanne Pellerin, Arnaud Botella, Antoine Mazuyer, Benjamin Chauvin, François Bonneau, et al..
RINGMesh: A programming library for developing mesh-based geomodeling applications. Computers
& Geosciences, 2017, �10.1016/j.cageo.2017.03.005�. �hal-01493204�

https://hal.science/hal-01493204v1
https://hal.archives-ouvertes.fr

RINGMesh: A programming library for developing mesh-based
geomodeling applications

Jeanne Pellerina,∗, Arnaud Botellab,c, Antoine Mazuyerb, Benjamin Chauvinb, François
Bonneaub, Guillaume Caumonb, Bruno Lévyc

aWeierstrass Institute - Mohrenstrasse 39 - D-10117 Berlin, Germany
bGeoRessources (UMR 7359), Université de Lorraine-ENSG, TSA 70605, F-54518 Vandoeuvre-lès-Nancy Cedex,

France
cInria - Project Alice, Villers-lès-Nancy, F-54600, France

Abstract

RINGMesh is a C++ open-source programming library for manipulating discretized geological
models. It is designed to ease the development of applications and workflows that use discretized 3D
models. It is neither a geomodeler, nor a meshing software. RINGMesh implements functionalities
to read discretized surface-based or volumetric structural models and to check their validity. The
models can be then exported in various file formats. RINGMesh provides data structures to
represent geological structural models, either defined by their discretized boundary surfaces, and/or
by discretized volumes. A programming interface allows to develop new geomodeling methods,
and to plug in external software. The goal of RINGMesh is to help researchers to focus on the
implementation of their specific method rather than on tedious tasks common to many applications.
The documented code is open-source and distributed under the modified BSD license. It is available
at https://www.ring-team.org/index.php/software/ringmesh.

Keywords: Structural model, Geology, BRep, Unstructured meshes, C++, Open-source

DOI:10.1016/j.cageo.2017.03.005

∗Corresponding author: MEMA, Université Catholique de Louvain - Avenue Georges Lemaitre 4, bte
L4.05.02, 1348 Louvain-la-Neuve, Belgium. Tel.: +32 10472355. Fax: +32 10472999. E-mail address:
Jeanne.Pellerin@uclouvain.be

Email addresses: Arnaud.Botella@univ-lorraine.fr (Arnaud Botella), Antoine.Mazuyer@univ-lorraine.fr
(Antoine Mazuyer), Benjamin.Chauvin@univ-lorraine.fr (Benjamin Chauvin),
Francois.Bonneau@univ-lorraine.fr (François Bonneau), Guillaume.Caumon@univ-lorraine.fr (Guillaume
Caumon), Bruno.Levy@inria.fr (Bruno Lévy)

Preprint submitted to Computers and Geosciences March 9, 2017

https://www.ring-team.org/index.php/software/ringmesh

1. Introduction

Subsurface reservoirs often have a complex spatial organization resulting of sedimentary, di-
agenetic, magmatic, hydrothermal, and tectonic processes. This motivates the development of
flexible geomodeling workflows combining various software and using unstructured grids to com-
pute 3D model queries (e.g. Apel, 2006; Pouliot et al., 2008), simulate contaminant transport (e.g.
Blessent et al., 2009), flow in abandoned mines (e.g. Collon et al., 2015), flow in fractured rocks
(e.g. Paluszny et al., 2007), seismic waves (e.g. Casarotti et al., 2007), joint gravity and seismic
inversion (e.g. Lelievre et al., 2012), transient electromagnetism (e.g. Zehner et al., 2015), model
CO2 storage (e.g. Park et al., 2014), or magmatic intrusion thermal behavior (e.g. Liu et al., 2012).
Four main types of software may be distinguished:

• Geomodelers create 3D subsurface models from the available observations, generally by build-
ing surfaces bounding geological objects (see Caumon et al. (2009)).

• Meshing software create a spatial discretization of modeled objects. They are generally
developed for CAD models without considering geological specificities.

• Numerical solvers solve the partial differential equations governing the subsurface physical
processes.

• Scientific visualization software focus on performance, usability, and perception. They help
geoscientists to interpret and communicate their results.

Whether software choices be motivated by scientific and technological reasons or by more prag-
matic reasons (user proficiency, code availability, time, or budget), geoscientists need to adapt to
each software specific constraints and vocabulary. This is exemplified by the recurrent develop-
ment of file conversion tools, a challenge encountered in all the above cited studies. Beyond this
technical challenges of file conversion, communication between software functionalities should also
be improved to support new scientific and methodological advances such as a better integration of
meshing modules and computational codes (Jackson et al., 2015).

We introduce RINGMesh, an open-source programming library for manipulating discretized
geological models, to help the community address these challenges. RINGMesh is neither a geo-
modeler, nor a meshing software, nor a solver, nor an extensive visualization software. It is designed
(i) to ease the integration of these software in flexible geomodeling workflows and (ii) to be a base
for the development of new geomodeling, meshing, solver, and visualization software. From this
point of view it is similar to the programming library MLSTK (Garimella, 2004). RINGMesh
provides a data structure for discretized 3D structural models and implementations of functional-
ities to import, check the validity, make topological and geometrical requests, store attributes on
vertices, edges, facets, and cells of the discretization, visualize a model, export the model to solvers
(Fig. 1). Our objective is to share code which we believe will be useful for researchers working with
discretized geological models, preventing the re-implementation of similar codes and gaining time
to work on real research goals.

After detailing RINGMesh specifications (Sec. 2), we provide a description of the geological
model representation used in RINGMesh in Sec. 3. In Section 4, we highlight important features of
the current implementation (version 3.0). Finally, we show how RINGMesh can be used to import
a discretized structural model, check its validity, generate a tetrahedral mesh using Tetgen (Si,
2015), and visualize the resulting mesh (Sec. 5).

2

RINGMesh

Software
 Meshing/Remeshing
 Visualization
 Solvers

Output files
 Geomodelers
 Viewers
 Meshers
 Solvers

Input files
 Geomodelers

 Geological model data structure

Read Write

Interface

Figure 1: RINGMesh 3.0 main features. Supported file formats are listed in Table 1.

2. Specifications

RINGMesh is a C++ open-source programming library that implements classes to manipulate
3D geological models.

Inputs. The inputs of RINGMesh are discretized 3D geological models. The models can either
be defined by their boundary surfaces (polygonal meshes) or be volumetrically meshed (tetrahe-
dra, hexahedra, prisms, and pyramids cells). They can be complete structural models built in a
geological modeling software to which topological and geological information is attached, or raw
discretizations (e.g. .stl). In that case, topological information is recovered by RINGMesh. The
formats supported by RINGMesh 3.0 are given Table 1.

Outputs. RINGMesh 3.0 implements functionalities to check the validity of discretized 3D models,
visualize the models, and export them in various file formats. RINGMesh implements a file format
converter (see Table 1). For example outputs of Skua-Gocad (Paradigm, 2016) can be converted
to Code Aster (EDF, 2016) input file format.

Programming Interface. RINGMesh API is designed to be easy to use with well-documented classes
and functions, easy to integrate in another software, lightweight and efficient. The most part
of the C++ classes, functions, and parameters are documented following the Doxygen standard
(Van Heesch, 2016).

License and code distribution. The documented code is distributed under the modified BSD license1

and is freely available through the web-based service Bitbucket at https://bitbucket.org/ring_
team/ringmesh.

1https://en.wikipedia.org/wiki/University_of_Illinois/NCSA_Open_Source_License

3

https://bitbucket.org/ring_team/ringmesh
https://bitbucket.org/ring_team/ringmesh
https://en.wikipedia.org/wiki/University_of_Illinois/NCSA_Open_Source_License

Table 1: Supported file formats for geological models in RINGMesh (version 3.0). All inputs and outputs are

discretized models.

Extension Software Surface Volume Input Output Reference

gm RINGMesh × × × ×

mesh/meshb LM6 × × × × (Marechal Loic, 2016)

ts Skua-Gocad × × × (Paradigm, 2016)

ml Skua-Gocad × × × (Paradigm, 2016)

so Skua-Gocad × × × × (Paradigm, 2016)

fac CUBIT × × (Casarotti et al., 2007)

vtk VTK × × × (Kitware, 2016)

pvd, vtp Paraview × × (Henderson, 2004)

mail Aster × × × (EDF, 2016)

inp Abaqus × × × (Dassault Systemes, 2016)

asc/dat CSMP++ × × × (Paluszny et al., 2007)

gprs GPRS × × (Cao, 2002)

smesh Tetgen × × (Si, 2015)

node/ele/neigh Tetgen × × (Si, 2015)

msh Gmsh × × × (Geuzaine and Remacle, 2009)

html × ×

obj × × ×

ply × × ×

off × × ×

stl × × ×

Platforms. RINGMesh has been compiled on Linux (GCC 4.4 to 4.8) and Windows (Visual Studio
2010 to 2015), for 64 bits platforms only. We provide configuration files using the cross platform
configuration tool CMake (CMake, 2016).

Dependencies. All dependencies are shipped with RINGMesh. The most important one is the
geometric algorithm library Geogram (Levy, 2016) (see also Sec. 4.1). It provides the mesh im-
plementation used in RINGMesh, mesh repair functions, search structures, support for various
surface and volumetric mesh file formats. We also use zlib (Gailly and Adler, 2016) for in-memory
compression and decompression of the input and output files.

3. Geological models in RINGMesh

In geomodeling and in computer aided design (CAD), 3D models can be defined using a Bound-
ary Representation (BRep): each volume (or region) is bounded by a set of surfaces, each surface is
bounded by a set of lines, and each line is bounded by two end points. In RINGMesh, we adopted a
simple representation similar to the one used in Gmsh (Geuzaine and Remacle, 2009). A geological
model is built as sets of entities. The base entities define completely the topology and geometry of
the model, while the geological entities define its geological features (Fig. 2). Several alternative
computer representations for such models have been proposed in the literature, see for instance
Caumon et al. (2004) and the references therein.

3.1. Topological entities

Base entities. Four base entities constitute the BRep model: Corner (dimension 0), Line (dimension
1), Surface (dimension 2), and Region (dimension 3). Each base topological entity is restricted to
be a simply connected manifold of arbitrary genus. Simply connected means that the entity has a

4

B
a
se

 E
n

ti
ti

e
s

G
e
o

lo
g

ic
a
l

E
n

ti
ti

e
s

Region Surface Line Corner

Layer Interface Contact

G
e
o

lo
g

ic
a
l

m
o

d
e
l

Figure 2: Representation of geological models in RINGMesh: base entities and geological entities.

unique connected component (any two points of the entity can be connected by a path contained
in the entity), manifold means that the entity does not contain non-manifold point (for example
points at a T intersection). Arbitrary genus means that an entity may have holes and internal
boundaries.

Adjacencies in the model are represented with a bi-directional data structure: each entity stores
a list of upward adjacencies and a list of downward adjacencies. A specific object, the Universe,
stores the extension of the model.

• A Region is bounded by a set of oriented Surfaces.

• A Surface is either closed (no boundary) or bounded by a set of Lines and is incident to one
or two Regions.

• A Line is either closed or bounded by one or two Corners (closed Lines are cut at one of their
vertices), and is incident to at least one Surface.

• A Corner is incident to at least one Line.

The corresponding data model can be represented graphically by:

Corner
1..n

1 or 2
Line

1..n

0..n
S ur f ace

1 or 2

1..n
Region

5

Geological entities. Geological features (faults, horizons, fault-horizon contact, stratigraphic layers,
etc.) are represented by geological entities. Each geological entity is a group of base entities to
which are associated a name and a geological feature recording its role in the model (normal fault,
reverse fault, horizon, unconformity, boundary of the model). In the current implementation of
RINGMesh (version 3.0), three geological entities are represented: Contact, Interface, and Layer.
Each Contact corresponds to a group of Lines, each Interface to a group of Surfaces, and each
Layer to a group of Regions:

Line
0 or 1

1 .. n
Contact

S ur f ace
0 or 1

1 .. n
Inter f ace

Region
0 or 1

1 .. n
Layer

Adjacency relationships between geological entities are not stored. Contrary to the list of base
entities, the number of types of geological entities is not fixed, and new geological entities can be
implemented and added to the model. Note that geological entities are not mandatory to define a
3D model in RINGMesh and that non geological-models, or geological models for which geological
features are not available, can also be manipulated.

3.2. Geometrical representation

In RINGMesh, the geometry of all base entities is represented by a mesh of the same dimension
as the entity. Each Corner corresponds to a 3D position. Each Line is represented by a set of
adjacent segments, and each Surface by a polygonal surface mesh. Regions can either be defined
by their oriented boundary Surfaces, or by a volumetric mesh. To ensure a correct definition of
the model, the geometry of the entities should enforce two conditions: (i) the boundary of each
entity is a union of entities of lower dimension and (ii) the intersection of two entities is a union of
entities of equal or lower dimension. These conditions are the same than those required to have a
Piecewise Linear Complex (PLC), the BRep representation used in Tetgen (Si, 2015).

3.3. Validity

Before any manipulation or processing of a discretized geological model, one must be sure that
this model is internally consistent. Without this verification, problem identification and debugging
of dependent applications is very difficult and cumbersome. Indeed the visual inspection of a 3D
model is generally not sufficient to check its validity. The validity of a model is tightly linked to
the chosen representation, so validity criteria in RINGMesh are close but not identical to other
ones, e.g. Sakkalis et al. (2000).

Base entity validity. Before all, a valid model should be constituted of valid individual entities.
First, we check that all model entity discretizations are valid and conformal meshes, i.e. they are
defined by a set of elements (vertices, edges, facets, and cells) such that (i) the interior of each
element is not empty, and (ii) the intersection of two elements is either empty or is an entity
common to their boundaries (Fig. 3c.&d.) (the reader is referred to Frey and George (2000) for
complete definitions). Empty elements are typically edges, facets, or cells incident twice to the same

6

A

B

C

A
B

C

A
B

C

a. valid triangle b. degenerate triangles

d. intersecting triangle

c. non-conformal triangles

e. non-manifold edge f. non-conformal surfaces

Figure 3: Some mesh invalidity configurations.

point (Fig. 3b.). Second, a base entity should not contain any non-manifold point (Fig. 3e.), and
should have a unique connected component. Finally, Regions defined by their boundary surfaces
are to be tight closed volumes.

Model validity. First, a geological model must have a finite extension, i.e. the region defining the
exterior of the model must be tight and closed. Second, the boundary of a model entity can only
be a set of entities of the model. All the vertices, edges, or facets on the boundary of a Line,
Surface, or Region have to be part of a Corner, Line, or Surface. The third validity condition
ensures the consistency of the stored entity adjacencies with the geometrical representation: two
distinct entities should intersect exclusively along entities of their common boundary. This implies
that there is no intersection between two entities except at points that are on their (geometric)
boundaries and that are part of a (topological) entity in their boundary.

Geological validity. To have a valid geological model (or Sealed Geological Model), Caumon et al.
(2004) propose two additional conditions. The first states that only fault or fracture surfaces might
end in a volumetric region and not on another surface of the model. The second condition states
that two distinct stratigraphic interfaces cannot cross one another.

The above validity checks are implemented in RINGMesh and permit to ensure that a geological
model representation verifies expected properties (see file geo_model_validity.h).

Mesh corrections. Corrective functions are implemented to fix small defects of the mesh and re-
move: duplicated vertices/edges/facets, isolated vertices, degenerate edges/facets. These func-
tions are adapted and modified from Geogram (Levy, 2016) to allow the duplication of nodes,
edges and faces on either sides of geological discontinuities such as fractures and faults (see file
geo_model_repair.h). The identification of colocated points involves an epsilon tolerance, while
the removal of topological entities is purely combinatorial. Note that in RINGMesh 3.0, there is
no complete correction of the BREP representation. The implemented corrections are a subset of
those proposed by Alleaume (2009) for CAD models.

7

0 0 0.5 0.2 1.1 0.110.240.560.980.55

Vertex coordinates (2 values per vertex)

Facet corners (vertex indices)

0
1 2

43

3 1 0 1 3 4 2

0 3 7
Facets (begin and end of each facet)

0
1 0 1 2 3 4

0 1

Figure 4: 2D example of storage of an unstructured polygonal mesh in 3 arrays.

4. Current implementation highlights

In this section, we shortly describe the core C++ classes of RINGMesh, version 3.0. The
code documentation2 provides additional details on all algorithms and classes to the interested
developers.

4.1. Geogram

To minimize maintenance and capitalize on existing advanced capabilities, RINGMesh uses the
mesh data structure implemented in the programming library Geogram (Levy, 2016), distributed
under the modified BSD license3.

Geogram, and therefore RINGMesh, supports polygonal surface meshes and mixed-cell vol-
umetric meshes (tetrahedron, hexahedron, triangular prism, and square pyramid). Meshes are
represented with an element-node data structure, which is implemented as sets of arrays contigu-
ous in memory. Array means the C++ STL std::vector<> class. Each Mesh has an array of
vertices whose coordinates are stored contiguously in memory as an array of double. Polygonal
surface facets are encoded by two arrays of indices. The first stores contiguously the indices of
vertices of all facets, the second gives the indices of the first and last vertex of each facet in the
first array (Fig. 4). Cell encoding is similar to facet encoding: a first array stores the indices of the
vertices of all cells, and a second array stores the indices of the first and last corner of each cell.

Using arrays has clear advantages: the code is easy to understand and to maintain, memory
usage is minimal, parallelization is easier, objects can be copied using the low level memory copy
function memcpy(), they can be loaded (saved) using fread() (fwrite()), and displayed efficiently
with a small number of OpenGL instructions. Finally, attributes on the mesh vertices, edges, facets,
or cells are simply additional arrays. However as shown by Garimella (2002), the cost of basic mesh
modification operations with such a representation is high. In Geogram, to efficiently modify the
mesh, these operations are considered at the mesh level and not at the element level, and are
applied to a collection of elements and use in place permutation.

4.2. Geological model implementation

In this section, we briefly introduce the C++ classes implementing the geological model repre-
sentation in the version 3.0 of RINGMesh (see Sec. 3).

2http://www.ring-team.org/ring_dl/public/software/ringmesh/doc/
3Several libraries bundled in Geogram have more restrictive licenses: http://alice.loria.fr/software/

geogram/doc/html/geogram_license.html

8

http://www.ring-team.org/ring_dl/public/software/ringmesh/doc/
http://alice.loria.fr/software/geogram/doc/html/geogram_license.html
http://alice.loria.fr/software/geogram/doc/html/geogram_license.html

To each geological model corresponds an instance of the class GeoModel. A GeoModel stores
and manages an array of its constitutive entities. All the entities of the model are instance of the
GeoModelEntity class, which store basic identification information and a geological feature. The
base entities are implemented as classes (Corners, Lines, Surfaces, Regions) derived from the
abstract class GeoModelMeshEntity and store their geometrical (mesh) and topological information
(adjacencies and incidences). The abstract base class GeoModelGeologicalEntity is derived to
implement the concrete geological entity classes (Contact, Interface, Layer).

Input and outputs are handled by the GeoModelIOHandler. Several classes are implemented
to modify and/or create GeoModels: the GeoModelEditor and the GeoModelBuilder, which is
derived for the different types of supported inputs. A specific one is dedicated to model repairing,
GeoModelRepair.

All base entities (Corner, Line, Surface, Region) of the GeoModel are discretized. Their geometry
is defined by an unstructured mesh that is stored as a Mesh object. The Mesh class is a wrapper
of the class Mesh of Geogram on which the most part of the Geogram functionalities can be used.
We also use a global Mesh instance of the whole model which is shared by all entities. This
representation is very useful for validity checks, exports to exotic formats, and the recovery of the
topology of a set of disconnected conformal surfaces. These operations depend on a consistent
global indexing of colocated vertices, edges, and facets of the model (see the implementation of
GeoModelBuilderSurface and of is_geomodel_valid()).

4.3. Indexing of mesh elements

As we have seen in Section 4.1, meshes in RINGMesh are represented using an element based
strategy that uses arrays of integers to represent the edges, facets, and cells of a mesh. Con-
sequently, manipulating meshes, importing discretized geological models from files, representing
meshed geological models, and exporting them means dealing with a lot of indexes. Indeed, re-
quirements on stored information vary a lot between file formats. For example, to export a model
to the solver CSMP++ (Paluszny et al., 2007), a numbering is required for each type of cell (tetra-
hedron, prisms, hexahedron, etc) and in each region of the model. To handle this requirement,
the elements of the global Mesh of the whole model are reordered and permuted in-place. Cells are
sorted region by region, and type by type in each region.

5. Using RINGMesh

With RINGMesh 3.0 it is possible for various input file formats (see Table 1) to:

• visualize the model and its discretization (Fig. 5 and 6),

• export the model to another file format (Table 1),

• recover the volumetric regions of a surface model,

• check the validity of a model and repair small discretization defects (Section 5.1),

• call an external software to tetrahedralize the model (Sec. 5.2)

All these operations are performed in a matter of seconds (Table 2).

9

Table 2: Execution timings in seconds for typical tasks performed by RINGMesh 3.0 on a laptop with a 4,00Go

RAM, and an Intel i5-4200U processor (2 cores, 1.60GHz). They depend mainly on the total size of the surface and

volumetric meshes. The geological models are part of the RINGMesh test dataset and are freely available.

Action Dataset File formats Mesh size Load Validity Facet Int. Action Save

In Out # facets/cells (s) check (s) check (s) (s) (s)

Repair annot .ml .ml 130,417 1.33 0.41 4.67 0.79 1.83

Tetgen corbi .ml .gm 277,113 2.36 0.72 4.39 50.42 14.00

Construct modelA6 .mesh .gm 55,426 0.42 0.21 1.46 0.15 1.00

Convert modelA4 .so .gm 34,540 1.24 0.29 0.32 0 1.42

a. b.

Figure 5: Unstructured surface and volumetric meshes of the Corbieres geological model visualized with RINGMesh
light viewer. a. Surface model (from Caumon et al. (2009)). b. Tetrahedral mesh generated in RINGMesh using
Tetgen (Si, 2015).

Tetrahedra

Pyramids

Hexahedra

Prisms

Figure 6: Mixed element volumetric mesh in RINGMesh. The mesh was generated in an application developed on
top of RINGMesh by Botella et al. (2016). The model is courtesy of Total.

10

5.1. Model validity checking

For most geological models, checking by hand the validity of the 3D model topological and
geometrical entities is impossible. For example, the model of the Annot sandstones built by Salles
et al. (2011) in Skua-Gocad (Fig. 7a.) contains 1,261 base entities and 125 geological entities. The
model is visually consistent but a few local mesh issues break its validity (in the sense discussed in
Section 3.3). Using RINGMesh we detect:

• 5 colocated vertices associated to 1 duplicated facet and 8 degenerate facets on Surface #2,
resulting in the invalidity of that surface and of the two adjacent regions.

• 2 degenerate Lines (#346 and #397) containing a unique degenerate edge, (2 pairs of colo-
cated vertices) resulting in the invalidity of 2 Surfaces (#44 and #50) each containing a
degenerate facet built on this edge.

These degenerate Lines, colocated vertices, degenerate and duplicated facets (Fig. 7c.) can be
automatically removed, resulting in a valid model.

Listing 1: Example of C++ source code to load the Corbieres geological model in RINGMesh, mesh it with TetGen,
and export the resulting mesh.

#inc lude <ringmesh /geomodel/ geo model . h>
#inc lude <ringmesh /geomodel/ geo model api . h>
#inc lude <ringmesh /geomodel/ geomode l va l i d i ty . h>
#inc lude <ringmesh / i o / i o . h>
int main () {

using namespace RINGMesh ;
GeoModel model ;
geomodel load (” c o r b i e r e s . ml ” , model) ;
i f (i s g e o m o d e l v a l i d (model)) {

t e t r a h e d r a l i z e (model , ”TetGen ”) ;
geomodel save (model , ” c o r b i e r e s t e t g e n . meshb ”) ;

} else {
Logger : : out (”Error ”)<< ”The loaded model i s i n v a l i d ” ;

}
return 0 ;

}

5.2. Interface to external meshing software

To ease the generation of unstructured meshes of geological models, RINGMesh interfaces
external meshing software such as TetGen (Si, 2015) and MG-Tetra4 (George et al., 1991) The
meshes are constrained, meaning that the facets of the triangulated surfaces are a subset of the
generated tetrahedron facets. When well paths are associated to the structural model, the generated
meshes can also be conformal to their edges. The main function running the example of Figure 5
is written in Listing 1. The generated volumetric meshes can be exported to various file formats
(Table 1). They can also be visualized in the standalone light-weight viewer that is shipped with
RINGMesh. The implementation of the viewer relies on the fast graphics provided by Geogram
(Sec. 4.1), as displaying a GeoModel means displaying a set of meshes (Fig. 5).

4http://www.meshgems.com/volume-meshing-meshgems-tetra.html

11

http://www.meshgems.com/volume-meshing-meshgems-tetra.html

a.

b.

Loaded elements

40 Regions
332 Surfaces
591 Lines
298 Corners

106 Contacts
19 Interfaces

Invalid elements

2 Regions
 #4 and #5
3 Surfaces
 #2, #44, #50
2 Lines
 #346 and #297

c.

Figure 7: Invalid mesh elements and invalid entities detection on the Annot model. a. The Annot geological model
(from Salles et al. (2011)) loaded in RINGMesh. b. Three surfaces of the model are invalid: Surface #2 contains 8
degenerate facets, Surface #44 and #50 contain 1 degenerate facets. c. Surface #2 mesh seems to be correct but
contains 8 invisible degenerate facets in this area.

12

6. Conclusion

RINGMesh is a joint effort to factorize in a common library a simple and efficient data model
and to ease the tedious tasks of reading and writing files describing geological models in various
formats. Since the very first version that loaded the surface models of Skua-Gocad (Paradigm,
2016), and computed complexity measures (Pellerin et al., 2015), the code has been evolving
toward an increasingly flexible library. The current version is designed for researchers who develop
new geomodeling methods and implement their own software. It is easy to integrate in another
code and provides a set of fundamental operations on discretized geological models.

RINGMesh has been used for the development of meshing methods dedicated to geological
models (Pellerin et al., 2014a,b; Botella et al., 2016) and was integrated in several workflows to:
find appropriate boundary conditions in 3D geomechanical restoration (Chauvin et al., 2016), to
perform homogenization for seismic wave propagation (Cupillard et al., 2015), and to determine
far-field stress conditions from several borehole observations (Mazuyer et al., 2016). In these
applications, RINGMesh met its initial objectives. Namely, it provided a geological data structure
suitable for the development of research codes for tetrahedral and hex-dominant meshing (Fig. 6)
and finite element computations. It also served to quickly exchange data between geomodeling
software, meshing software, and computational codes.

RINGMesh is still a rather young programming library and its functionalities and data struc-
tures are still being improved and extended. The main limitation of the version 3.0 of RINGMesh
is that the data structures have not been been designed to support modifications of the geologi-
cal models. This makes the implementation of model modification functionalities complicated. A
second limitation is the early stage of development of some functionalities such as exports of some
formats and validity checks. These tools are very useful in their present form but improvements and
more thorough tests are necessary. Some basic tests are already performed using the continuous
integration platform Jenkins5. It is however very challenging to check the validity of all exported
files.

There are of course many remaining possibilities to extend and improve RINGMesh in order to
increase communication between geomodeling software, meshing software, solvers, and visualization
software developed or not for geological application. The main directions for future developments
of RINGMesh are:

• to support in input and output all widely used file formats in geological modeling, including
the open, non-proprietary data exchange format RESQML (Energistics, 2016),

• to check modes against different sets of validity conditions,

• to support model modifications, both topological (e.g. removal/addition of a layer, a fault)
and on the meshes (e.g. remesh locally a region),

• to repair invalid models.

RINGMesh is open-source and all participations to the project are very welcome. New developments
(import/export functions, bug fixes) can be submitted and easily integrated through the project
Bitbucket public repository6.

5https://jenkins-ci.org
6https://bitbucket.org/ring_team/ringmesh

13

https://jenkins-ci.org
https://bitbucket.org/ring_team/ringmesh

Acknowledgments

This work has been funded by the RING Consortium7 (A. Botella, A. Mazuyer, F. Bonneau,
B. Chauvin), Total S.A. (J. Pellerin, A. Mazuyer), and Chevron (B. Chauvin). The models used
in this paper were built with SKUA-GOCAD distributed by Paradigm, which is acknowledged for
providing licenses.

References

Alleaume, A., 2009. Automatic non-manifold topology recovery and geometry noise removal. In: Clark, B. W. (Ed.),
Proceedings of the 18th International Meshing Roundtable. Springer, pp. 267–279.

Apel, M., Mar. 2006. From 3d geomodelling systems towards 3d geoscience information systems: Data model, query
functionality, and data management. Computers & Geosciences 32 (2), 222–229.

Blessent, D., Therrien, R., MacQuarrie, K., Sep. 2009. Coupling geological and numerical models to simulate ground-
water flow and contaminant transport in fractured media. Computers & Geosciences 35 (9), 1897–1906.

Botella, A., Lévy, B., Caumon, G., Apr. 2016. Indirect unstructured hex-dominant mesh generation using tetrahedra
recombination. Computational Geosciences 20 (3), 437–451.

Cao, H., 2002. Development of techniques for general purpose simulators. Ph.D. thesis, Stanford University, 202 pp.
Casarotti, E., Stupazzini, M., Lee, S. J., Komatitsch, D., Piersanti, A., Tromp, J., 2007. CUBIT and Seismic

Wave Propagation Based Upon the Spectral-Element Method: An Advanced Unstructured Mesher for Complex
3D Geological Media. In: Brewer, M. L., Marcum, D. (Eds.), Proceedings of the 16th International Meshing
Roundtable. Springer, Berlin, Heidelberg, pp. 579–597.

Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Sausse, J., Viseur, S., 2009. Surface-based 3D modeling
of geological structures. Mathematical Geosciences 41 (9), 927–945.

Caumon, G., Lepage, F., Sword, C., Mallet, J.-L., 2004. Building and Editing a Sealed Geological Model. Mathe-
matical Geology 36 (4), 405–424.

Chauvin, B., Stockmeyer, J., Shaw, J. H., Plesch, A., Herbert, J., Lovely, P. J., Guzofski, C. A., Caumon, G., June
2016. Defining proper boundary conditions in 3-d structural restoration: A case study restoring a 3-d forward
model of suprasalt extensional structures. In: AAPG Annual Convention and Exhibition. AAPG.

CMake, 2016. CMake. Last date of access 2016-10-12.
URL https://cmake.org/

Collon, P., Steckiewicz-Laurent, W., Pellerin, J., Laurent, G., Caumon, G., Reichart, G., Vaute, L., Apr. 2015. 3D
geomodelling combining implicit surfaces and Voronoi-based remeshing: A case study in the Lorraine Coal Basin
(France). Computers & Geosciences 77, 29–43.

Cupillard, P., Botella, A., Capdeville, Y., 2015. Homogenization of 3d geological models for seismic wave propagation.
In: SEG Technical Program Expanded Abstracts. pp. pp. 3656–3660.

Dassault Systemes, 2016. ABAQUS. Last date of access 2016-10-18.
URL http://www.3ds.com/products-services/simulia/products/abaqus/

EDF, 2016. Code Aster. Last date of access 2016-10-18.
URL http://www.code-aster.org/V2/spip.php?rubrique2

Energistics, 2016. RESQML. Last date of access 2019-10-18.
URL http://www.energistics.org/reservoir/resqml-standards

Frey, P. J., George, P. L., 2000. Mesh generation: application to finite elements. Hermes Science, Oxford.
Gailly, J.-L., Adler, M., 2016. Zlib. Last date of access 2016-10-12.

URL http://www.zlib.net/

Garimella, R. V., Oct. 2002. Mesh data structure selection for mesh generation and FEA applications. International
Journal for Numerical Methods in Engineering 55 (4), 451–478.

Garimella, R. V., 2004. MSTK: A Flexible infrastructure library for developing mesh-based applications. In: Pro-
ceedings of the 13th International Meshing Roundtable, Williamsburg, VA. pp. 203–212.

George, P. L., Hecht, F., Saltel, E., 1991. Automatic mesh generator with specified boundary. Computer methods in
applied mechanics and engineering 92 (3), 269–288.

7https://www.ring-team.org/index.php/consortium

14

https://cmake.org/
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.code-aster.org/V2/spip.php?rubrique2
http://www.energistics.org/reservoir/resqml-standards
http://www.zlib.net/
https://www.ring-team.org/index.php/consortium

Geuzaine, C., Remacle, J.-F., 2009. Gmsh: A 3D finite element mesh generator with built-in pre-and post-processing
facilities. International Journal for Numerical Methods in Engineering 79 (11), 1309–1331, last date of access
2016-10-18.
URL http://gmsh.info/

Henderson, A., 2004. The ParaView Guide: A Parallel Visualization Application. Kitware, Clifton Park, NY, last
date of access 2016-10-12.
URL http://www.paraview.org/

Jackson, M., Percival, J., Mostaghimi, P., Tollit, B., Pavlidis, D., Pain, C., Gomes, J., Elsheikh, A. H., Salinas,
P., Muggeridge, A., Blunt, M., May 2015. Reservoir Modeling for Flow Simulation by Use of Surfaces, Adaptive
Unstructured Meshes, and an Overlapping-Control-Volume Finite-Element Method. SPE Reservoir Evaluation &
Engineering 18 (02), 115–132.

Kitware, 2016. Visualization Toolkit. Last date of access 2016-10-12.
URL http://www.vtk.org/

Lelievre, P. G., Farquharson, C. G., Hurich, C. A., Feb. 2012. Joint inversion of seismic traveltimes and gravity data
on unstructured grids with application to mineral exploration. Geophysics 77 (1), K1–K15.

Levy, B., 2016. Geogram. Last date of access 2016-10-18.
URL http://alice.loria.fr/software/geogram

Liu, L., Zhao, Y., Sun, T., Mar. 2012. 3D computational shape- and cooling process-modeling of magmatic intrusion
and its implication for genesis and exploration of intrusion-related ore deposits: An example from the Yueshan
intrusion in Anqing, China. Tectonophysics 526–529 (0), 110–123.

Marechal Loic, 2016. LibMesh. Last date of access 2016-10-18.
URL https://github.com/LoicMarechal/libMeshb

Mazuyer, A., Giot, R., Cupillard, P., Conin, M., Thore, P., 2016. Stress estimation in reservoirs by a stochastic inverse
approach. In: 7th International Symposium on In-Situ Rock Stress. International Society for Rock Mechanics, pp.
362–368.

Paluszny, A., Matthai, S. K., Hohmeyer, M., May 2007. Hybrid finite element-finite volume discretization of complex
geologic structures and a new simulation workflow demonstrated on fractured rocks. Geofluids 7 (2), 186–208.

Paradigm, 2016. SKUA-GOCAD. Last date of access 2016-10-18.
URL http://www.pdgm.com/products/skua-gocad/

Park, C.-H., Shinn, Y., Park, Y.-C., Huh, D.-G., Lee, S., Jan. 2014. PET2ogs: Algorithms to link the static model
of Petrel with the dynamic model of OpenGeoSys. Computers & Geosciences 62, 95–102.

Pellerin, J., Caumon, G., Julio, C., Mejia-Herrera, P., Botella, A., 2015. Elements for measuring the complexity of
3D structural models: Connectivity and geometry. Computers & Geosciences 76 (0), 130 – 140.

Pellerin, J., Lévy, B., Caumon, G., 2014a. Toward Mixed-element Meshing based on Restricted Voronoi Diagrams.
Procedia Engineering 82 (0), 279 – 290, 23rd International Meshing Roundtable (IMR23).

Pellerin, J., Lévy, B., Caumon, G., Botella, A., 2014b. Automatic surface remeshing of 3D structural models at
specified resolution: A method based on Voronoi diagrams. Computers & Geosciences 62 (0), 103 – 116.

Pouliot, J., Bédard, K., Kirkwood, D., Lachance, B., May 2008. Reasoning about geological space: Coupling 3D
GeoModels and topological queries as an aid to spatial data selection. Computers & Geosciences 34 (5), 529–541.

Sakkalis, T., Shen, G., Patrikalakis, N., Oct. 2000. Representational validity of boundary representation models.
Computer-Aided Design 32 (12), 719–726.

Salles, L., Ford, M., Joseph, P., De Veslud, C., Le Solleuz, A., 2011. Migration of a synclinal depocentre from turbidite
growth strata: the Annot syncline, SE France. Bulletin de la Sociéte Géologique de France 182 (3), 199–220.

Si, H., Feb. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Transactions on Mathe-
matical Software 41 (2), 1–36, last date of access 2016-10-12.
URL http://wias-berlin.de/software/tetgen/

Van Heesch, D., 2016. Doxygen. Last date of access 2016-10-12.
URL http://www.doxygen.org

Zehner, B., Börner, J. H., Görz, I., Spitzer, K., Jun. 2015. Workflows for generating tetrahedral meshes for finite
element simulations on complex geological structures. Computers & Geosciences 79, 105–117.

15

http://gmsh.info/
http://www.paraview.org/
http://www.vtk.org/
http://alice.loria.fr/software/geogram
https://github.com/LoicMarechal/libMeshb
http://www.pdgm.com/products/skua-gocad/
http://wias-berlin.de/software/tetgen/
http://www.doxygen.org

	Introduction
	Specifications
	Geological models in RINGMesh
	Topological entities
	Geometrical representation
	Validity

	Current implementation highlights
	Geogram
	Geological model implementation
	Indexing of mesh elements

	Using RINGMesh
	Model validity checking
	Interface to external meshing software

	Conclusion

