
HAL Id: hal-01493193
https://hal.science/hal-01493193

Submitted on 30 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time structured texture synthesis and editing using
image-mesh analogies

Jean-Michel Dischler, Florence Zara

To cite this version:
Jean-Michel Dischler, Florence Zara. Real-time structured texture synthesis and editing using image-
mesh analogies. The Visual Computer, 2006, 22 (9), pp.926-935. �10.1007/s00371-006-0077-4�. �hal-
01493193�

https://hal.science/hal-01493193
https://hal.archives-ouvertes.fr

Visual Comput (2006)
DOI 10.1007/s00371-006-0077-4 O R I G I N A L A R T I C L E

Jean-Michel Dischler
Florence Zara

Real-time structured texture synthesis and
editing using image-mesh analogies

© Springer-Verlag 2006

J.-M. Dischler (�)
LSIIT-IGG, UMR CNRS-ULP 7005,
Illkirch, France
dischler@lsiit.u-strasbg.fr

F. Zara
LIRIS, UMR CNRS-UCBL 5205,
Villeurbanne, France
florence.zara@liris.cnrs.fr

Abstract We present a novel texture
synthesis technique designed to
reproduce at real-time frame-rates
example texture images, with a spe-
cial focus on patterns characterized
by structural arrangements. Unlike
current pixel-, patch- or texton-
based schemes, that operate in image
space, our approach is structural. We
propose to assimilate texture images
to corresponding 2D geometric
meshes (called texture meshes). Our
analysis mainly consists in generating
automatically these meshes, while
synthesis is then based on the creation
of new vertex/polygon distributions
matching some arrangement map.
The output texture image is ob-
tained by rasterizing the previously
generated polygons using graphics
hardware capabilities, which guar-
antees high speed performance. By

operating in geometry space instead
of image/pixel space, the proposed
structural approach has a major
advantage over current techniques:
beyond pure texture reproduction,
it allows us to define various tools,
which allow users to further modify
locally or globally and in real-time
structural components of textures.
By controlling the arrangement map,
users can substitute new meshes
in order to completely modify the
structural appearance of input tex-
tures, yet maintaining a certain visual
resemblance with the initial example
image.

Keywords Texture · Synthesis ·
Editing

1 Introduction

Texture synthesis has proved to be a powerful tool for
reproducing automatically and faithfully example texture
images, and has thus been extensively studied during the
past few years. It has now reached an advanced degree
of maturity. Beyond reproduction, new techniques now
attempt to grant users more and more control over the
synthesis process. These methods essentially focus on the
control of feature positions and size, or on techniques to
create consistent transitions among different textures (in-
cluding texture mixing). However, semantic-related struc-
tural texture compositions have not been paid much atten-

tion yet, though this represents an important visual charac-
teristic of many natural or artificial textures.

In this paper, we propose a structural method de-
signed to address this issue. Our motivation is to allow
users a fast, faithful and automatic texture reproduction,
but with an interactive control of structural texture com-
positions: not only shape and position of texture fea-
tures/elements (called textons according to [11]), but also
the way the textons are arranged with respect to each other.
With our approach, users may, for instance, modify the
structural arrangement of an input texture, while main-
taining some visual resemblance with the corresponding
example image, e.g., exchanging brick arrangements, but
not the individual brick patterns. The structural appear-

J.-M. Dischler, F. Zara

ance is controlled using an arrangement map that can be
extracted from images or freely designed by users.

Figure 1 depicts an example showing how well our
method covers structural texture aspects. The top row
shows the input texture (left) and the corresponding tex-
ture mesh (right) extracted using image processing tech-
niques. The second row illustrates synthesis: on the left,
we show the used arrangement map and on the right the
resulting texture synthesis (the synthesis uses the input ex-
ample, the texture mesh and the arrangement map). Since
on the second row the arrangement map matches the initial
arrangement of the example texture, we obtain a straight
reproduction. The last row illustrates structural control.
Another arrangement has been substituted using a differ-
ent arrangement map, thus modifying the structural com-
position of the texture. Although the arrangement is dif-
ferent, we maintain a certain visual resemblance with the
original model.

To be able to provide efficient interaction tools, our
synthesis technique must satisfy a strong constraint: it
must run at interactive frame-rates. Our method guaran-
tees such frame-rates by using graphics cards to acceler-
ate the image generation process. More specifically, our
technique consists in decomposing textures into sets of
connected polygons, which are bounding individual tex-
tons. Once the textures have been expressed as 2D texton
matching meshes, colors can be ignored. The synthesis
operates entirely in geometric space: it consists in repro-
ducing visually similar meshes coarsened by the supplied
arrangement map. Once a new mesh has been synthesized
(requires a few milliseconds), the corresponding texture
image is finally generated in real-time by polygon raster-
ization.

The paper is organized as follows: the next section
briefly presents some related works. Section 3 then ex-
plains the preprocessing stage: the automatic generation
of texture meshes. Section 4 presents the synthesis of
meshes using an arrangement map to control structural as-

Fig. 1. Our synthesis is
based on mesh extrac-
tion (top right) from
input images (top left),
in combination with ar-
rangement maps (left)
to control structural ar-
rangements of resulting
textures (right). In both
cases, the textures were
synthesized in a few mil-
liseconds. Note how the
second texture keeps
a certain visual resem-
blance with the example
image, though its struc-
tural arrangement is dif-
ferent

pects. We propose a polygon fitting technique. Section 5
describes how to reconstruct texture images from the
previously generated meshes. Finally, before concluding,
we present some results, as well as a comparative study
with existing synthesis techniques. As will be shown,
our method, though not focusing on quality, compares
well to current methods, but at a fraction of the com-
putational requirements. In addition, it considerably in-
creases user control concerning structural composition.
We further show that our technique not only applies to
highly structured textures like brick walls, but also to
random patterns such as lawns. The only condition that
must be met is that individual textons must be well iden-
tified.

2 Related works and motivation

Seminal texture analysis and synthesis methods were
mainly based on histogram analogies using multiscale or
spectral approaches [3, 9]. But such methods are strongly
limited by the fact that they cannot deal with structured
patterns. Alternate techniques, based on Markovian pro-
cesses, have then been proposed. Such techniques gen-
erate patterns pixel by pixel, by selecting at each step
a color that minimizes an error according to a given neigh-
borhood [6]. But the related best pixel match search may
require some noticeable time in spite of proposed hier-
archical data structures [24]. In addition, semantic-related
structures are not addressed well with these methods. An-
other solution therefore consists in using complete texture
pieces [17] instead. These can be randomly repeated and
blended as in [22]. The quality of patch-based techniques
depends on the types of overlap management. Blending,
for instance, introduces some new frequencies (over-
blurring), thus deteriorating visual aspects. Better results
are usually obtained using a clever cutting trajectory along
the overlap, computed according to an error-minimizing
factor [5, 13]. Recent improvements in the field of texture
synthesis focus on recovering even better some feature-
related aspects [26] by using additionally Laplacian filters.
Other techniques focus on synthesis speed by separating
analysis (precomputation step) and synthesis [28] or by
using the GPU [15].

Fast and faithful texture reproduction remained for
a long time a major goal of texture synthesis, but many
recent computer graphics-oriented techniques include, in
addition to random or uncontrolled high quality reproduc-
tion, also the possibility for users to change and constrain
some visual aspects. In [2, 23] different textures can be
mixed. In [1] feature distributions can be controlled using
a user-drawn feature probability map. In [4] feature sizes,
orientations and so forth can be modified. In [19, 29], the
difficult problem of smooth transitions between different
types of textures is addressed. As for texture particles [4],
and the authors of [29] consider elementary texture com-

Structured texture synthesis and editing using image-mesh analogies

ponents (textons) by using texton masks. We therefore call
such techniques texton-based. With [29], users may also
control other feature properties like size and orientation
(using an underlying vector-field). More recently, a com-
plete system has been proposed to design new textures
from example texture databases [20]. In [15], a GPU im-
plementation is proposed to produce controlled textures at
very fast rates, which allows one to drag-and-drop indi-
vidual textons at real-time rates. However, this technique
uses a pixel-based approach thus failing to capture struc-
tural aspects. In [12] an optimization technique is used,
which allows one to control the synthesis by using un-
derlying flow fields. All of these techniques considerably
increase the scope of texture synthesis, especially for com-
puter graphics applications. They provide a wide range of
tools, allowing users to design various effects beyond pure
texture reproduction. However, none of these techniques
ever considered semantic-related structural manipulations.
Therefore, there remains an important limitation with re-
spect to user control and free texture design from example
images.

The motivation for our technique is to fill this gap.
Unlike techniques operating in image space, structural ap-
proaches have yet to be studied in detail, because they are
known to be restrictive and/or technically more complex.
In [14], for instance, the proposed structural method has
been limited to specific types of textures such as brick wall
patterns and woods. Our technique instead performs a full
texture mesh analogy, thus remaining generic. It is only
based on the ability to segment and to identify textons in
texture images. By using an arrangement map, the user
straightforwardly controls the structural aspect of textures
for synthesis.

Two-dimensional meshes have been used before in the
field of texture synthesis, but to our knowledge not for
structural analysis. In [20], for instance, simplicial com-
plexes are used to maintain sharpness along interpolations.
In [18], meshes are used to evaluate the distortions of near-
regular textures. Here, we extend this concept to character-
ize the actual structural composition of any type of texture,
including irregular ones. In our case, we do not start from
rectangular grids, but use image analysis to create 2D tex-
ture matching meshes. These are then coarsened to fit an
arrangement map.

Our approach mainly extends to the texture particles
and texton masks approaches of [4] and [29], respectively,
by further bounding individual textons with polygons.
Since our polygons may be considered to some extent
as cells, our approach comes also close to cellular tex-
ture synthesis approaches, which have already been used
successfully in the field of pure texture synthesis (that
is, without analysis). For example, they have been used
for generating brick wall patterns [16, 21] or noise func-
tions [25]. Here, we apply this kind of structural classifi-
cation to the field of texture reproduction and design from
example image analysis.

3 Automatic texture mesh generation

Our first objective is to generate automatically a 2D mesh
matching well the structural composition of the input tex-
ture. This mesh represents a kind of geometric dual coun-
terpart to the texture image. By viewing only the mesh,
one should be able to recover the global structural appear-
ance of the corresponding texture. This mesh will be used
later in conjunction with the arrangement map to produce
controlled structural arrangements.

Mesh reconstruction, for example by analyzing edges
in images, is a widely studied area in the field of computer
vision and digital image processing [7]; therefore, we will
not in detail discuss all related topics here. Indeed, mesh
extraction does not represent our core problem. It rather
represents a necessary preprocess.

We note that there exists a huge amount of work con-
cerning more generally the creation of triangular, struc-
tured, unstructured, hexagonal, etc., meshes from image
data (2D or even 3D). We found however that existing
methods do not adapt well to the texture analysis and syn-
thesis problem at hand. Therefore, we nevertheless briefly
present the major aspects of the method we implemented
for generating automatically texture matching meshes. For
the sake of time, we will assume that the reader is familiar
with morphological operators, such as erosion, dilatation,
thinning, and so forth.

As for texton-based techniques [4, 29], the first step
consists of texture segmentation, which means that we
need to identify textons by creating a binary image Is(i, j)
from the input texture image I(i, j). In [29], such an image
is called a texton mask. Figure 2 illustrates our segmen-
tation: (a) represents the input texture I(i, j) and (b) the
segmented image Is(i, j).

Gabor wavelets and windowed Fourier transforms [8,
10] have had wide success in the field of texture segmenta-
tion because they unify frequency and spatial analysis and
have found to matching the human psycho-physical per-
ception mechanism well. In our case, we apply such filters
to the input image, followed by a quantization.

In [29], the segmented images (texton masks) are
straightforwardly used to control arrangements and to
consistently mix couples of textures. In our case, we pro-
pose to use this mask to further build a texture mesh
(set of polygons). Such a mesh can be automatically and
straightforwardly derived from Is(i, j) as described below.
Figure 2c–h illustrate the different steps of the proced-
ure. Firstly, we apply a thinning algorithm to the negative
of Is(i, j), which consequently enlarges the textons, in
such a way that these are separated by no more than
one line of pixels (Fig. 2c). Indeed, thinning is a well-
known morphological operation that reduces components
in binary images to single pixel-wide branches, while pre-
serving some properties [7]: it does not remove endpoints,
it preserves connectedness, and it avoids excessive ero-

J.-M. Dischler, F. Zara

Fig. 2. Texture segmentation and automatic mesh reconstruction
using basic image processing tools

sion of regions. Since segmentation often includes some
noise, the next step consists in cleaning the image result-
ing from thinning by removing pending branches due for
example to concave textons and by joining very close end-
points. This is again done by iteratively applying specific
morphological erosion and dilatation operators. Figure 2d
illustrates the result of our cleaning technique. Using this
result, one can identify individual cells that are match-
ing some texton distributions. This image often (but not
always) needs to be processed again to remove any re-
maining residual feature. Removal is performed by filling
out very small cells, and by reapplying the same pro-
cedure. Figure 2e shows the obtained result: we obtain
a set of texton-matching cells defined by connected pixel
branches. Note that textons on borders (i.e., textons which
are incomplete) have been removed in our implementation
(if necessary one could keep them). This entire process
can be implemented quite easily and we found it to work
very well. In fact, we experienced that the main difficulty

was not cell generation, but rather to provide a good initial
segmentation.

We call the image resulting from thinning and clean-
ing Ic(i, j) because it identifies a set of texton-matching
cells. Using the previously computed image Ic(i, j), it is
now possible to straightforwardly build a corresponding
polygonal mesh. We first pick out branching cross-points,
which represent the primary vertices of the texture mesh.
In Fig. 2f these are represented by green dots. We join
these vertices by straight edges according to the branches
of image Ic(i, j). That is, two vertices are joint only if
the corresponding cross-points are also linked together by
one branch of pixels. Then, we introduce some new ver-
tices by splitting some edges according to the shape of
the corresponding branch. That is, if the straight segment
is too distant according to a user selected threshold, we
subdivide it to better fit the branch’s curvature and shape.
This is performed iteratively by introducing new vertices
at positions that minimize the average distance of the re-
sulting new edges from the corresponding branch. These
new, secondary, vertices are depicted as yellow dots in
Fig. 2g. They mainly appear on the borders of the outer-
most polygons.

Finally, this mesh is again processed to better fit the
individual textons of Is(i, j). Indeed, some mesh edges
may cross over the textons, which then results in appar-
ent discontinuities during synthesis (see next sections).
We therefore have to ensure that mesh edges do not cross
over textons, or we must at least minimize such cross-
ings. We apply an iterative procedure that progressively
displaces vertices in order to minimize the amount of
edges that cross over textons. The final resulting texture
mesh is shown in Fig. 2h. It matches the texton distribu-
tion of the input texture image well. We note that resulting
2D meshes are not regular, often also non-conformal and
may contain polygons that have an arbitrary number of
vertices (not necessarily the same number for each poly-
gon).

4 Synthesis using arrangement maps

In the previous section, we described a technique to gen-
erate sets of connected polygons from given input texture
images using segmentation and digital image processing.
These polygons bound individual textons, so we call them
texton-polygons. In this section, we show that meshes can
be randomly reproduced to fit a given arrangement map.
Our core problem is to be able to generate a new mesh
that globally matches (from a visual point of view) this
arrangement map, yet includes some elements of the pre-
viously generated texture mesh.

We propose a method taking into account two statisti-
cal elements: positions and shapes of polygons. We do so
by applying consecutively two iterative procedures.

Structured texture synthesis and editing using image-mesh analogies

Fig. 3. Creating random arrangement maps from input arrangement
maps using an iterative procedure

The first procedure creates a random arrangement map
from a given periodic input arrangement map (Fig. 3), ei-
ther extracted from example images or designed by users.
The arrangement map is, as for the texture mesh, com-
posed of polygons. Each of these map polygons is com-
posed of vertices, which are either conformal or non-
conformal. A non-conformal vertex is a vertex belonging
to an edge of another polygon. Conformal vertices are
exclusively edge extremities. The principle for producing
random arrangement maps is straightforward: we first ran-
domly displace vertices. Non-conformal vertices are only
displaced along the corresponding edge. Then, we apply
an iterative relaxation procedure, aiming at minimizing
angular errors to respect initial angles of the input arrange-
ment map. That is, vertices are again progressively dis-
placed in order to match initial edge angles. The user can
select the magnitude of randomness by providing a given
magnitude coefficient. To keep a perfectly repetitive struc-
ture this coefficient may be set to zero.

Figure 3 (left) shows an input arrangement map (same
as for Fig. 1), and shows a random perturbation (middle).
Note that since all vertices, in this example, are non-
conformal, we displaced them only along the correspond-
ing edges, which explains why we keep a sort of stacked
linear structure. The last image illustrates the result of re-
laxation after 50 iterations.

The second procedure (Fig. 4) consists in fitting the
texton-polygons into the previously generated arrange-
ment map, which is followed by a second iterative pro-
cedure consisting in relaxing the resulting mesh to more
or less respect initial texton-polygon shapes (edge angles).
We do this in two steps. Firstly, we randomly select for
each map-polygon a given texton-polygon. The randomly
selected texton-polygon vertices are placed onto the edges
and vertices of the map-polygon by following a clock-wise
cycle and by optimizing distance ratios with respect to

Fig. 4. Texton-polygon
(top) fitting technique.
Of the two bottom rows,
the left shows a map-
polygon, the middle the
clock-wise vertex place-
ment, and the right the
final result after relax-
ation

the polygon perimeters (ratios with respect to the global
distance around the outside of the polygons). Secondly,
the resulting polygon, which is now totally matching the
map-polygon is relaxed by an iterative procedure to better
fit texton-polygon edge angles. We note that this proced-
ure allows us to make any texton-polygon fit any map-
polygon. Even if the texton-polygon contains less vertices
than the map-polygon it is possible to duplicate some ver-
tices (considering a null distance edge). Shapes can be also
very different. This is illustrated in Fig. 4. The top shows
a texton-polygon (extracted from Fig. 1). The two next
rows then illustrate the fitting procedure for two different
map-polygons (on the left): a rectangle and a triangle. The
final result of fitting is shown on the right after 10 relax-
ation steps.

The same procedure is applied to all map-polygons of
the random arrangement map, thus obtaining a new ar-
rangement matching texture mesh. We call this new final
mesh the synthesis mesh. We now describe how the latter
mesh can be used to create final texture images.

5 Texture image rasterization

The synthesis mesh resulting from the previously de-
scribed fitting technique could be, at first glance, straight-
forwardly used to create texture images. Indeed, the mesh
is composed of polygons, which represent basic graphical
primitives supported by all current graphics cards. Hence,
one may directly associate to each polygon a 2D texture
map with texture coordinates that match the initial in-
put texture image I(i, j), thereby letting the final image
be generated by fragment rasterization. Two-dimensional
texture mapping-based mesh-manipulation tools are com-
monly and broadly used in nearly all interactive painting
and photo-editing systems (e.g., image morphing). How-
ever, such a straightforward mesh rasterization approach
does not apply well to texture synthesis. Indeed, there are
at least two undesirable visual effects resulting from 2D
texture mapping: (1) there are visible seams on the bor-
ders of the polygons since two adjacent polygons in the
synthesis mesh might not have been adjacent in the ori-
ginal texture mesh (thus resulting in discontinuities), and
(2) patterns related to textons appear stretched or shrunk,
which is due to resampling during rasterization.

To avoid these two undesirable effects, we propose
a technique that still consists in using polygonal 2D tex-
ture mapping, as supported by graphics cards, but adapted
to consider both textons and subtextures together. We now
describe what we mean by subtextures and how to define
these.

To generate texture meshes (Sect. 3), we have used
a binary segmentation based on color quantization. How-
ever, it is possible to segment any input texture into more
than just two zones (black/white). Therefore, after filtering

J.-M. Dischler, F. Zara

by Gabor wavelets or Fourier masks, we select a quanti-
zation number nq higher than two. Such a quantization is
equivalent to performing a pixel classification: each pixel
is assigned a class by means of a number (an integer value
between 1 and nq).

We call Iq(i, j), the image resulting from filtering and
quantization. Iq(i, j) is composed of sets of connected
pixel components Cq

k (that is, each class k ∈ [1, nq] corres-
ponds to one or multiple connected pixel sets). Intuitively,
these components are clustering pixels that belong to pat-
terns, which have similar filter responses. In other words,
it represents a partitioning of I into visually similar zones,
that we call subtextures according to [27]. Each texton
may now be composed of one or multiple subtextures.

Figure 5 shows an example of quantization for the
brick wall example of Fig. 1. As visible in this figure, in-
dividual textons may be composed of multiple subtextures
(each color represents another subtexture on this figure).

We can now generate large texture fields visually
matching given subtextures. On Fig. 5, we show an ex-
ample of subtexture field corresponding to the concrete
between the bricks. The arrows show some of the con-
nected components Cq

k that have been used to generate
this subtexture field (Fig. 5 left). The subtexture fields are
synthesized in a preprocess by using any existing texture
synthesis technique. We used a quilting-like approach.
For applying the latter, we straightforwardly use the in-
put image I(i, j) cropped by the corresponding connected
component Cq

k .
Once all fields have been generated (as for mesh gen-

eration, this needs to be done only once in a preprocess for
a given input texture I(i, j)), they can be used in combina-
tion with Iq(i, j) and with the texton map Is(i, j) to avoid
the problems of seams and distortions appearing during
rasterization.

The synthesis mesh allows us to create texton dis-
tributions by using traditional texture mapping. But, in-
stead of mapping straightforwardly the input image I(i, j)
as per usual painting systems, we map the quantized
image Iq(i, j), further cropped by the texton mask Is(i, j).
Figure 6 illustrates the principles of our technique. The
top shows traditional texture mapping on a brick texton
cropped by its texton mask. On the top right, we fur-
ther show the same brick stretched horizontally, thus dis-

Fig. 5. Identifying subtextures (left) and generating corresponding
texture fields (right). Here the subtexture corresponds to the con-
crete between the bricks of the brick wall texture of Fig. 1

Fig. 6. Using multiple subtextures (middle) for individual texture
elements instead of traditional 2D texture mapping (top). We also
show the effect of deforming the polygon and subsequently its tex-
ton (in this case, we stretched the brick horizontally)

torting underlying patterns. The two bottom rows illus-
trate our technique for an increasing amount of subtex-
tures.

The quantized image Iq(i, j) (Fig. 6 left) is used for
indexing the corresponding subtextures (it is used as in-
direction), see middle part of Fig. 6. That is, each poly-
gon is actually rasterized with three 2D texture maps:
the texton mask Is(i, j) used to extract only the pix-
els belonging to textons, the index mask Iq(i, j) and the
corresponding subtexture field. The texton mask and the
index mask produce the shape of the texton (it is re-
sampled according to the shape of the polygon) and the
subtexture field the actual colors (small scale patterns).
The result is given in Fig. 6 (right). Note how global tex-
ton shapes can be deformed, without deforming subtex-
tures.

Figure 7 illustrates a more complete example for the
brick wall. In this figure, we show, on the top, tradi-
tional texture mapping resulting in visible seams, since

Fig. 7. Using texton masks and index masks to avoid seams. The
top shows traditional 2D texture mapping with seams and subtex-
ture distortions. The bottom shows our result

Structured texture synthesis and editing using image-mesh analogies

we have made polygons adjacent that were not adjacent
in the initial texture mesh. Below, we show the corres-
ponding texton mask (left). And on the right, we finally
show the result obtained by applying our technique com-
bining texton distributions with the corresponding sub-
textures indexed by Iq(i, j). A single rendering pass is
necessary: firstly, we initialize the frame-buffer by copy-
ing the subtexture field corresponding to the background
subtexture (in the case of the brick wall, this is the con-
crete subtexture of Fig. 5). Then, each polygon is raster-
ized with its own index mask (a 2D texture map) used to
access the corresponding subtexture fields as shown for
one single brick in Fig. 6. For practical reasons all sub-
texture fields are fetched into texture memory once in the
form of a 3D texture (the fields are simply stacked). The
index value of the index mask then matches the Z co-
ordinate in this 3D texture. In fact, using a 3D texture
allows us to bind all subtextures at once in texture mem-
ory.

The interesting point addressed by this approach is that
texture distortions (according to the shape of the poly-
gon) are only applied to the index and texton mask Iq(i, j)
and Is(i, j) to modify the shape of the texton accord-
ingly, but not to the subtextures (see the stretched brick
of Fig. 6). The reason is that we use two different tex-
ture coordinates, e.g., one for the masks and another for
the subtexture. This allows for the preservation of sub-
texture frequencies. Note that instead of using a specific
pixel-shader program and 3D texture, it is also possible to
use the simpler multitexturing functionality for rasterizing
the polygons. However, in this case, multiple passes be-
come necessary, especially if one texton is composed of
multiple subtextures (we need one pass for each subtex-
ture).

We note that we generate subtextures only if the size
of the corresponding connected component Cq

k is large
enough (we set a minimal size to 200 pixels). Indeed, we
experienced that if we use too small components, this re-
sults in very noisy subtexture fields, also producing final
noisy results. When no subtexture field has been generated
for a given texton, the previous procedure then simply in-
dexes the original image I(i, j) as traditional 2D texture
mapping (yet still using the texton mask to avoid seams).
Figure 6 (last row) illustrates this. On the left quantized
image, one can actually see at least 5 classes. Hence, there
should be also 5 subtextures. Yet, only 3 were computed
as visible in the middle part of the figure. This is because
the corresponding connected components were found to
be too small.

For smoothly varying or non-stationary texton con-
tents, the use of subtextures can cause incorrect results
(we show this in the results section). In such cases, one
must use a large number of classes, resulting in very small
connected components. This, in turn, causes traditional
texture mapping to be implicitly used (we do not com-
pute subtexture fields if the components are smaller than

a given number of pixels), which might result in visible
pattern distortions.

To generate the final texture image from the previously
generated synthesis mesh, one simply has to rasterize each
polygon using the texture mapping procedure that we just
described. This is usually extremely fast (real-time) since
graphics cards now reach high rasterization performances.
Since the synthesis mesh technique is also very fast (few
iterations are usually sufficient) textures can be synthe-
sized at interactive frame-rates. Users may also interac-
tively edit the synthesis mesh by displacing vertices or
by dragging some specific textons on some specific map-
polygons.

6 Results

In this section, we present some results obtained with the
previously described texture synthesis and editing tech-
nique. The major limitation of our method is illustrated in
Fig. 8.

Figure 9 illustrates an example of the synthesis re-
sult. The top row shows from left to right: the input,
the resulting cells and the corresponding mesh. The sec-
ond row shows the arrangement map and the resulting

Fig. 8. Texture examples that cannot be processed with our tech-
nique, since textons cannot be segmented

Fig. 9. An example of synthesis for different amounts of subtex-
tures

J.-M. Dischler, F. Zara

Fig. 10. Comparison with tex-
ture quilting [5], the feature
matching synthesis technique
of [26], the parallel technique
of [15] and the per-pixel jump
map technique of [28] (middle).
Left is input, right is our result

synthesized mesh as well as the corresponding texton
mask. The last row is the resulting texture for a low
(left) and high (right) amount of classes. Using a high
amount of classes causes connected components to be
very small, which results in nearly no computed subtex-
tures.

Figure 10 illustrates a comparative study. The left col-
umn represents the model, the middle shows existing
techniques (from top to bottom: texture quilting [5], the
feature matching synthesis technique of [26], the paral-
lel technique of [15] and the per-pixel jump map tech-
nique of [28]), the right column shows our result. Our
objective was to compare both quality and speed. There-
fore, we took two high quality techniques and two high
speed techniques. In our case, the synthesis took from
top to bottom 16 ms, 123 ms, 78 ms and 57 ms on a lap-
top with Pentium M processor 2.00 GHz and 1 GB RAM.
The graphics hardware is a NVidia Quadro FX Go 1400.
These times include both the synthesis of the mesh and
the rasterization. In all cases, the preprocessing time (re-
quired only once for a given texture) was below 5 min
(this includes segmentation, texture mesh generation and
subtexture field synthesis). The number of computed sub-
texture fields was kept low (an average of 2 fields per
texton, except for the second row where we used about
5 fields per texton, which also explains the somewhat

increased noise). As demonstrated by this figure, our
technique provides sufficiently good results at times com-
parable to both [15] and [28]. Note that since both of
these methods are based on per-pixel procedures they
fail to greatly capture semantic-related structural aspects.
Our method, on the contrary, is designed to address
structural textures, so it provides better results in these
cases.

Figure 11 illustrates the effect of different arrangement
maps on two different textures. The first row shows the in-
put, the second one the reconstructed texture meshes and
the third one reproduction. The last two rows illustrate the
influence of arrangement maps (depicted in the far left).
Note that arrangement maps can contain arbitrary poly-
gons that do not necessarily need to be connected. For the
three arrangements, the synthesis time for the lawn was
between 16 and 47 ms, and for the panther texture between
14 and 45 ms.

Figure 12 shows some more examples. The right col-
umn shows the input, the second one reproduction, and
finally a new user-designed arrangement.

The major limitation of our method is illustrated in
Fig. 8. This figure shows textures that cannot be seg-
mented into individual textons. In such cases, we cannot
build texture meshes and so the method simply cannot be
used.

Structured texture synthesis and editing using image-mesh analogies

Fig. 11. Controlling arrangements using the arrangement map (far
left)

7 Conclusions and future work

We have presented a new structural approach for texture
synthesis and editing. The method is based on a texture

Fig. 12. More examples of synthesis and controlled arrangements

mesh analogy, by associating textures to sets of poly-
gons bounding individual textons. It is adapted to tex-
tures that are characterized by strong structural com-
ponents such as brick walls, tiles or lawns with indi-
vidual flowers. The approach increases the manipulation
possibilities while maintaining a certain visual consis-
tency with the original texture. The technique further-
more processes textures at real-time rates as it uses stan-
dard polygon rasterization. We have shown examples of
synthesis that compare in quality with other recent ap-
proaches.

Currently, the approach is not suitable for textures
that are not characterized by an underlying texton-related
structure. In future works, we aim to address this issue.
We believe that texture reproduction has now reached an
advanced degree of maturity, and that efforts should be
focused on increasing user manipulations, including the
design of new structural aspects. We also intend to extend
this method, in order to edit and manipulate textures at
interactive rates directly on arbitrary surfaces.

References
1. Ashikhmin, M.: Synthesizing natural

textures. In: SI3D ’01: Proceedings of the
2001 Symposium on Interactive 3D
Graphics, pp. 217–226. ACM, Boston
(2001)

2. Bar-Joseph, Z., El-Yaniv, R., Lischinski,
D., Werman, M.: Texture mixing and
texture movie synthesis using statistical
learning. IEEE Trans. Visual. Comput.
Graph. 7(2), 120–135 (2001)

3. Dischler, J.M., Ghazanfarpour, D., Freydier,
R.: Anisotropic solid texture synthesis
using orthogonal 2D views. Comput.
Graph. Forum 17(3), 87–96 (1998)

4. Dischler, J.M., Maritaud, K., Levy, B.,
Ghazanfarpour, D.: Texture particles. In:

Eurographics 2002, Saarbrücken, Germany,
pp. 401–410 (2002)

5. Efros, A.A., Freeman, W.T.: Image
quilting for texture synthesis and transfer.
In: SIGGRAPH ’01: Proceedings of the
28th Annual Conference on Computer
Graphics and Interactive Techniques,
pp. 341–346. ACM, Boston
(2001)

6. Efros, A.A., Leung, T.K.: Texture synthesis
by non-parametric sampling.
In: ICCV ’99: Proceedings of the
International Conference on Computer
Vision, vol. 2, pp. 1033–1038. IEEE
Computer Society, Washington, DC
(1999)

7. Gonzalez, R.C., Woods, R.E.: Digital
Image Processing. Addison-Wesley, Boston
(1992)

8. Grigorescu, S., Petkov, N., Kruizinga, P.:
Comparison of texture features based on
Gabor filters. IEEE Trans. Image Process.
11(10), 1160–1167 (2002)

9. Heeger, D.J., Bergen, J.R.: Pyramid-based
texture analysis/synthesis. In: SIGGRAPH,
pp. 229–238 (1995)

10. Idrissa, M., Acheroy, M.: Texture
classification using Gabor filters. Patt.
Recogn. Lett. 23(9), 1095–1102 (2002)

11. Julesz, B.: Texton, the elements of texture
perception, and their interactions. Nature
290(5802), 91–97 (1981)

J.-M. Dischler, F. Zara

12. Kwatra, V., Essa, I., Bobick, A., Kwatra,
N.: Texture optimization for example-based
synthesis. ACM Trans. Graph.
(SIGGRAPH ’05) 24(3), 795–802
(2005)

13. Kwatra, V., Schödl, A., Essa, I., Turk, G.,
Bobick, A.: Graphcut textures: image and
video synthesis using graph cuts. ACM
Trans. Graph. 22(3), 277–286 (2003)

14. Lefebvre, L., Poulin, P.: Analysis and
synthesis of structural textures. In:
Graphics Interface, pp. 77–86 (2000)

15. Lefebvre, S., Hoppe, H.: Parallel
controllable texture synthesis. ACM Trans.
Graph. 24(3), 777–786 (2005)

16. Legakis, J., Dorsey, J., Gortler, S.:
Feature-based cellular texturing for
architectural models. In: SIGGRAPH ’01:
Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive
Techniques, pp. 309–316. ACM, Boston
(2001)

17. Liang, L., Liu, C., Xu, Y.Q., Guo, B.,
Shum, H.Y.: Real-time texture synthesis by
patch-based sampling. ACM Trans. Graph.
20(3), 127–150 (2001)

18. Liu, Y., Lin, W.C., Hays, J.: Near-regular
texture analysis and manipulation. ACM
Trans. Graph. 23(3), 368–376 (2004)

19. Liu, Z., Liu, C., Shum, H.Y., Yu, Y.:
Pattern-based texture metamorphosis. In:
10th Pacific Conference on Computer
Graphics and Applications (PG 2002), pp.
184–193. IEEE Computer Society,
Washington, DC (2002)

20. Matusik, W., Zwicker, M., Durand, F.:
Texture design using a simplicial complex
of morphable textures. ACM Trans. Graph.
24(3), 787–794 (2005)

21. Miyata, K.: A method of generating stone
wall patterns. In: SIGGRAPH ’90:
Proceedings of the 17th Annual Conference
on Computer Graphics and Interactive
Techniques, pp. 387–394. ACM, Boston
(1990)

22. Praun, E., Finkelstein, A., Hoppe, H.:
Lapped textures. In: SIGGRAPH ’00:
Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive
Techniques, pp. 465–470. ACM
Press/Addison-Wesley, Boston (2000)

23. Wei, L.Y.: Texture synthesis from multiple
sources. In: GRAPH ’03: Proceedings of
the SIGGRAPH 2003 Conference on
Sketches and Applications, p. 1. ACM,
Boston (2003)

24. Wei, L.Y., Levoy, M.: Fast texture synthesis
using tree-structured vector quantization.

In: SIGGRAPH ’00: Proceedings of the
27th Annual Conference on Computer
Graphics and Interactive Techniques, pp.
479–488. ACM Press/Addison-Wesley,
Boston (2000)

25. Worley, S.: A cellular texture basis
function. In: SIGGRAPH ’96: Proceedings
of the 23rd Annual Conference on
Computer Graphics and Interactive
Techniques, pp. 291–294. ACM, Boston
(1996)

26. Wu, Q., Yu, Y.: Feature matching and
deformation for texture synthesis. ACM
Trans. Graph. 23(3), 364–367 (2004)

27. Zalesny, A., Ferrari, V., Caenen, G., Gool,
L.V.: Composite texture synthesis. Int. J.
Comput. Vis. 62(1,2), 161–176 (2004)

28. Zelinka, S., Garland, M.: Jump map-based
interactive texture synthesis. ACM Trans.
Graph. 23(4), 930–962 (2004)

29. Zhang, J., Zhou, K., Velho, L., Guo, B.,
Shum, H.Y.: Synthesis of
progressively-variant textures on arbitrary
surfaces. ACM Trans. Graph. 22(3),
295–302 (2003)

J.-M. DISCHLER has been an associate profes-
sor at the University Louis Pasteur, Strasbourg
(France) since 2001. He belongs to the 3D
Computer Graphics Group, IGG (http://lsiit.u-
strasbg.fr/sites/igg/), where he is supervising
the realistic rendering, simulation and scientific
visualization research activities. He is also
a member of the recently created INRIA project
CALVI (http://math.u-strasbg.fr/calvi/). His
research interests include texturing, texture syn-
thesis, natural phenomena, real-time rendering
and volume rendering.

F. ZARA has been an assistant professor in the
Computer Science Department at the University
Claude Bernard, Lyon (France) since 2005.
She received her Ph.D. in computer science
in 2003 at the Grenoble National Institute of
Polytechnic (INPG). In 2005, she joined the 3D
Computer Graphics Group of the LIRIS Lab
(http://liris.cnrs.fr/). Her research interests lie in
parallel physically-based animation of complex
scenes on cluster with medical applications
like hadrontherapy and learning simulators for
medical gesture.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

