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We present a novel texture synthesis technique designed to reproduce at real-time frame-rates example texture images, with a special focus on patterns characterized by structural arrangements. Unlike current pixel-, patch-or textonbased schemes, that operate in image space, our approach is structural. We propose to assimilate texture images to corresponding 2D geometric meshes (called texture meshes). Our analysis mainly consists in generating automatically these meshes, while synthesis is then based on the creation of new vertex/polygon distributions matching some arrangement map. The output texture image is obtained by rasterizing the previously generated polygons using graphics hardware capabilities, which guarantees high speed performance. By operating in geometry space instead of image/pixel space, the proposed structural approach has a major advantage over current techniques: beyond pure texture reproduction, it allows us to define various tools, which allow users to further modify locally or globally and in real-time structural components of textures. By controlling the arrangement map, users can substitute new meshes in order to completely modify the structural appearance of input textures, yet maintaining a certain visual resemblance with the initial example image.

Introduction

Texture synthesis has proved to be a powerful tool for reproducing automatically and faithfully example texture images, and has thus been extensively studied during the past few years. It has now reached an advanced degree of maturity. Beyond reproduction, new techniques now attempt to grant users more and more control over the synthesis process. These methods essentially focus on the control of feature positions and size, or on techniques to create consistent transitions among different textures (including texture mixing). However, semantic-related structural texture compositions have not been paid much atten-tion yet, though this represents an important visual characteristic of many natural or artificial textures.

In this paper, we propose a structural method designed to address this issue. Our motivation is to allow users a fast, faithful and automatic texture reproduction, but with an interactive control of structural texture compositions: not only shape and position of texture features/elements (called textons according to [START_REF] Julesz | Texton, the elements of texture perception, and their interactions[END_REF]), but also the way the textons are arranged with respect to each other. With our approach, users may, for instance, modify the structural arrangement of an input texture, while maintaining some visual resemblance with the corresponding example image, e.g., exchanging brick arrangements, but not the individual brick patterns. The structural appear-ance is controlled using an arrangement map that can be extracted from images or freely designed by users. Figure 1 depicts an example showing how well our method covers structural texture aspects. The top row shows the input texture (left) and the corresponding texture mesh (right) extracted using image processing techniques. The second row illustrates synthesis: on the left, we show the used arrangement map and on the right the resulting texture synthesis (the synthesis uses the input example, the texture mesh and the arrangement map). Since on the second row the arrangement map matches the initial arrangement of the example texture, we obtain a straight reproduction. The last row illustrates structural control. Another arrangement has been substituted using a different arrangement map, thus modifying the structural composition of the texture. Although the arrangement is different, we maintain a certain visual resemblance with the original model.

To be able to provide efficient interaction tools, our synthesis technique must satisfy a strong constraint: it must run at interactive frame-rates. Our method guarantees such frame-rates by using graphics cards to accelerate the image generation process. More specifically, our technique consists in decomposing textures into sets of connected polygons, which are bounding individual textons. Once the textures have been expressed as 2D texton matching meshes, colors can be ignored. The synthesis operates entirely in geometric space: it consists in reproducing visually similar meshes coarsened by the supplied arrangement map. Once a new mesh has been synthesized (requires a few milliseconds), the corresponding texture image is finally generated in real-time by polygon rasterization.

The paper is organized as follows: the next section briefly presents some related works. Section 3 then explains the preprocessing stage: the automatic generation of texture meshes. Section 4 presents the synthesis of meshes using an arrangement map to control structural as-Fig. 1. Our synthesis is based on mesh extraction (top right) from input images (top left), in combination with arrangement maps (left) to control structural arrangements of resulting textures (right). In both cases, the textures were synthesized in a few milliseconds. Note how the second texture keeps a certain visual resemblance with the example image, though its structural arrangement is different pects. We propose a polygon fitting technique. Section 5 describes how to reconstruct texture images from the previously generated meshes. Finally, before concluding, we present some results, as well as a comparative study with existing synthesis techniques. As will be shown, our method, though not focusing on quality, compares well to current methods, but at a fraction of the computational requirements. In addition, it considerably increases user control concerning structural composition. We further show that our technique not only applies to highly structured textures like brick walls, but also to random patterns such as lawns. The only condition that must be met is that individual textons must be well identified.

Related works and motivation

Seminal texture analysis and synthesis methods were mainly based on histogram analogies using multiscale or spectral approaches [START_REF] Dischler | Anisotropic solid texture synthesis using orthogonal 2D views[END_REF][START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF]. But such methods are strongly limited by the fact that they cannot deal with structured patterns. Alternate techniques, based on Markovian processes, have then been proposed. Such techniques generate patterns pixel by pixel, by selecting at each step a color that minimizes an error according to a given neighborhood [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF]. But the related best pixel match search may require some noticeable time in spite of proposed hierarchical data structures [START_REF] Wei | Fast texture synthesis using tree-structured vector quantization[END_REF]. In addition, semantic-related structures are not addressed well with these methods. Another solution therefore consists in using complete texture pieces [START_REF] Liang | Real-time texture synthesis by patch-based sampling[END_REF] instead. These can be randomly repeated and blended as in [START_REF] Praun | Lapped textures[END_REF]. The quality of patch-based techniques depends on the types of overlap management. Blending, for instance, introduces some new frequencies (overblurring), thus deteriorating visual aspects. Better results are usually obtained using a clever cutting trajectory along the overlap, computed according to an error-minimizing factor [START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF][START_REF] Kwatra | Graphcut textures: image and video synthesis using graph cuts[END_REF]. Recent improvements in the field of texture synthesis focus on recovering even better some featurerelated aspects [START_REF] Wu | Feature matching and deformation for texture synthesis[END_REF] by using additionally Laplacian filters. Other techniques focus on synthesis speed by separating analysis (precomputation step) and synthesis [START_REF] Zelinka | Jump map-based interactive texture synthesis[END_REF] or by using the GPU [START_REF] Lefebvre | Parallel controllable texture synthesis[END_REF].

Fast and faithful texture reproduction remained for a long time a major goal of texture synthesis, but many recent computer graphics-oriented techniques include, in addition to random or uncontrolled high quality reproduction, also the possibility for users to change and constrain some visual aspects. In [START_REF] Bar-Joseph | Texture mixing and texture movie synthesis using statistical learning[END_REF][START_REF] Wei | Texture synthesis from multiple sources[END_REF] different textures can be mixed. In [START_REF] Ashikhmin | Synthesizing natural textures[END_REF] feature distributions can be controlled using a user-drawn feature probability map. In [START_REF] Dischler | Texture particles[END_REF] feature sizes, orientations and so forth can be modified. In [START_REF] Liu | Pattern-based texture metamorphosis[END_REF][START_REF] Zhang | Synthesis of progressively-variant textures on arbitrary surfaces[END_REF], the difficult problem of smooth transitions between different types of textures is addressed. As for texture particles [START_REF] Dischler | Texture particles[END_REF], and the authors of [START_REF] Zhang | Synthesis of progressively-variant textures on arbitrary surfaces[END_REF] consider elementary texture com-ponents (textons) by using texton masks. We therefore call such techniques texton-based. With [START_REF] Zhang | Synthesis of progressively-variant textures on arbitrary surfaces[END_REF], users may also control other feature properties like size and orientation (using an underlying vector-field). More recently, a complete system has been proposed to design new textures from example texture databases [START_REF] Matusik | Texture design using a simplicial complex of morphable textures[END_REF]. In [START_REF] Lefebvre | Parallel controllable texture synthesis[END_REF], a GPU implementation is proposed to produce controlled textures at very fast rates, which allows one to drag-and-drop individual textons at real-time rates. However, this technique uses a pixel-based approach thus failing to capture structural aspects. In [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF] an optimization technique is used, which allows one to control the synthesis by using underlying flow fields. All of these techniques considerably increase the scope of texture synthesis, especially for computer graphics applications. They provide a wide range of tools, allowing users to design various effects beyond pure texture reproduction. However, none of these techniques ever considered semantic-related structural manipulations. Therefore, there remains an important limitation with respect to user control and free texture design from example images.

The motivation for our technique is to fill this gap. Unlike techniques operating in image space, structural approaches have yet to be studied in detail, because they are known to be restrictive and/or technically more complex. In [START_REF] Lefebvre | Analysis and synthesis of structural textures[END_REF], for instance, the proposed structural method has been limited to specific types of textures such as brick wall patterns and woods. Our technique instead performs a full texture mesh analogy, thus remaining generic. It is only based on the ability to segment and to identify textons in texture images. By using an arrangement map, the user straightforwardly controls the structural aspect of textures for synthesis.

Two-dimensional meshes have been used before in the field of texture synthesis, but to our knowledge not for structural analysis. In [START_REF] Matusik | Texture design using a simplicial complex of morphable textures[END_REF], for instance, simplicial complexes are used to maintain sharpness along interpolations. In [START_REF] Liu | Near-regular texture analysis and manipulation[END_REF], meshes are used to evaluate the distortions of nearregular textures. Here, we extend this concept to characterize the actual structural composition of any type of texture, including irregular ones. In our case, we do not start from rectangular grids, but use image analysis to create 2D texture matching meshes. These are then coarsened to fit an arrangement map.

Our approach mainly extends to the texture particles and texton masks approaches of [START_REF] Dischler | Texture particles[END_REF] and [START_REF] Zhang | Synthesis of progressively-variant textures on arbitrary surfaces[END_REF], respectively, by further bounding individual textons with polygons. Since our polygons may be considered to some extent as cells, our approach comes also close to cellular texture synthesis approaches, which have already been used successfully in the field of pure texture synthesis (that is, without analysis). For example, they have been used for generating brick wall patterns [START_REF] Legakis | Feature-based cellular texturing for architectural models[END_REF][START_REF] Miyata | A method of generating stone wall patterns[END_REF] or noise functions [START_REF] Worley | A cellular texture basis function[END_REF]. Here, we apply this kind of structural classification to the field of texture reproduction and design from example image analysis.

Automatic texture mesh generation

Our first objective is to generate automatically a 2D mesh matching well the structural composition of the input texture. This mesh represents a kind of geometric dual counterpart to the texture image. By viewing only the mesh, one should be able to recover the global structural appearance of the corresponding texture. This mesh will be used later in conjunction with the arrangement map to produce controlled structural arrangements. Mesh reconstruction, for example by analyzing edges in images, is a widely studied area in the field of computer vision and digital image processing [START_REF] Gonzalez | Digital Image Processing[END_REF]; therefore, we will not in detail discuss all related topics here. Indeed, mesh extraction does not represent our core problem. It rather represents a necessary preprocess.

We note that there exists a huge amount of work concerning more generally the creation of triangular, structured, unstructured, hexagonal, etc., meshes from image data (2D or even 3D). We found however that existing methods do not adapt well to the texture analysis and synthesis problem at hand. Therefore, we nevertheless briefly present the major aspects of the method we implemented for generating automatically texture matching meshes. For the sake of time, we will assume that the reader is familiar with morphological operators, such as erosion, dilatation, thinning, and so forth.

As for texton-based techniques [START_REF] Dischler | Texture particles[END_REF][START_REF] Zhang | Synthesis of progressively-variant textures on arbitrary surfaces[END_REF], the first step consists of texture segmentation, which means that we need to identify textons by creating a binary image I s (i, j) from the input texture image I(i, j). In [START_REF] Zhang | Synthesis of progressively-variant textures on arbitrary surfaces[END_REF], such an image is called a texton mask. Figure 2 illustrates our segmentation: (a) represents the input texture I(i, j) and (b) the segmented image I s (i, j).

Gabor wavelets and windowed Fourier transforms [START_REF] Grigorescu | Comparison of texture features based on Gabor filters[END_REF][START_REF] Idrissa | Texture classification using Gabor filters[END_REF] have had wide success in the field of texture segmentation because they unify frequency and spatial analysis and have found to matching the human psycho-physical perception mechanism well. In our case, we apply such filters to the input image, followed by a quantization.

In [START_REF] Zhang | Synthesis of progressively-variant textures on arbitrary surfaces[END_REF], the segmented images (texton masks) are straightforwardly used to control arrangements and to consistently mix couples of textures. In our case, we propose to use this mask to further build a texture mesh (set of polygons). Such a mesh can be automatically and straightforwardly derived from I s (i, j) as described below. Figure 2c-h illustrate the different steps of the procedure. Firstly, we apply a thinning algorithm to the negative of I s (i, j), which consequently enlarges the textons, in such a way that these are separated by no more than one line of pixels (Fig. 2c). Indeed, thinning is a wellknown morphological operation that reduces components in binary images to single pixel-wide branches, while preserving some properties [START_REF] Gonzalez | Digital Image Processing[END_REF]: it does not remove endpoints, it preserves connectedness, and it avoids excessive ero-Fig. 2. Texture segmentation and automatic mesh reconstruction using basic image processing tools sion of regions. Since segmentation often includes some noise, the next step consists in cleaning the image resulting from thinning by removing pending branches due for example to concave textons and by joining very close endpoints. This is again done by iteratively applying specific morphological erosion and dilatation operators. Figure 2d illustrates the result of our cleaning technique. Using this result, one can identify individual cells that are matching some texton distributions. This image often (but not always) needs to be processed again to remove any remaining residual feature. Removal is performed by filling out very small cells, and by reapplying the same procedure. Figure 2e shows the obtained result: we obtain a set of texton-matching cells defined by connected pixel branches. Note that textons on borders (i.e., textons which are incomplete) have been removed in our implementation (if necessary one could keep them). This entire process can be implemented quite easily and we found it to work very well. In fact, we experienced that the main difficulty was not cell generation, but rather to provide a good initial segmentation.

We call the image resulting from thinning and cleaning I c (i, j) because it identifies a set of texton-matching cells. Using the previously computed image I c (i, j), it is now possible to straightforwardly build a corresponding polygonal mesh. We first pick out branching cross-points, which represent the primary vertices of the texture mesh. In Fig. 2f these are represented by green dots. We join these vertices by straight edges according to the branches of image I c (i, j). That is, two vertices are joint only if the corresponding cross-points are also linked together by one branch of pixels. Then, we introduce some new vertices by splitting some edges according to the shape of the corresponding branch. That is, if the straight segment is too distant according to a user selected threshold, we subdivide it to better fit the branch's curvature and shape. This is performed iteratively by introducing new vertices at positions that minimize the average distance of the resulting new edges from the corresponding branch. These new, secondary, vertices are depicted as yellow dots in Fig. 2g. They mainly appear on the borders of the outermost polygons.

Finally, this mesh is again processed to better fit the individual textons of I s (i, j). Indeed, some mesh edges may cross over the textons, which then results in apparent discontinuities during synthesis (see next sections). We therefore have to ensure that mesh edges do not cross over textons, or we must at least minimize such crossings. We apply an iterative procedure that progressively displaces vertices in order to minimize the amount of edges that cross over textons. The final resulting texture mesh is shown in Fig. 2h. It matches the texton distribution of the input texture image well. We note that resulting 2D meshes are not regular, often also non-conformal and may contain polygons that have an arbitrary number of vertices (not necessarily the same number for each polygon).

Synthesis using arrangement maps

In the previous section, we described a technique to generate sets of connected polygons from given input texture images using segmentation and digital image processing. These polygons bound individual textons, so we call them texton-polygons. In this section, we show that meshes can be randomly reproduced to fit a given arrangement map. Our core problem is to be able to generate a new mesh that globally matches (from a visual point of view) this arrangement map, yet includes some elements of the previously generated texture mesh.

We propose a method taking into account two statistical elements: positions and shapes of polygons. We do so by applying consecutively two iterative procedures. The first procedure creates a random arrangement map from a given periodic input arrangement map (Fig. 3), either extracted from example images or designed by users. The arrangement map is, as for the texture mesh, composed of polygons. Each of these map polygons is composed of vertices, which are either conformal or nonconformal. A non-conformal vertex is a vertex belonging to an edge of another polygon. Conformal vertices are exclusively edge extremities. The principle for producing random arrangement maps is straightforward: we first randomly displace vertices. Non-conformal vertices are only displaced along the corresponding edge. Then, we apply an iterative relaxation procedure, aiming at minimizing angular errors to respect initial angles of the input arrangement map. That is, vertices are again progressively displaced in order to match initial edge angles. The user can select the magnitude of randomness by providing a given magnitude coefficient. To keep a perfectly repetitive structure this coefficient may be set to zero.

Figure 3 (left) shows an input arrangement map (same as for Fig. 1), and shows a random perturbation (middle). Note that since all vertices, in this example, are nonconformal, we displaced them only along the corresponding edges, which explains why we keep a sort of stacked linear structure. The last image illustrates the result of relaxation after 50 iterations.

The second procedure (Fig. 4) consists in fitting the texton-polygons into the previously generated arrangement map, which is followed by a second iterative procedure consisting in relaxing the resulting mesh to more or less respect initial texton-polygon shapes (edge angles). We do this in two steps. Firstly, we randomly select for each map-polygon a given texton-polygon. The randomly selected texton-polygon vertices are placed onto the edges and vertices of the map-polygon by following a clock-wise cycle and by optimizing distance ratios with respect to the polygon perimeters (ratios with respect to the global distance around the outside of the polygons). Secondly, the resulting polygon, which is now totally matching the map-polygon is relaxed by an iterative procedure to better fit texton-polygon edge angles. We note that this procedure allows us to make any texton-polygon fit any mappolygon. Even if the texton-polygon contains less vertices than the map-polygon it is possible to duplicate some vertices (considering a null distance edge). Shapes can be also very different. This is illustrated in Fig. 4. The top shows a texton-polygon (extracted from Fig. 1). The two next rows then illustrate the fitting procedure for two different map-polygons (on the left): a rectangle and a triangle. The final result of fitting is shown on the right after 10 relaxation steps.

The same procedure is applied to all map-polygons of the random arrangement map, thus obtaining a new arrangement matching texture mesh. We call this new final mesh the synthesis mesh. We now describe how the latter mesh can be used to create final texture images.

Texture image rasterization

The synthesis mesh resulting from the previously described fitting technique could be, at first glance, straightforwardly used to create texture images. Indeed, the mesh is composed of polygons, which represent basic graphical primitives supported by all current graphics cards. Hence, one may directly associate to each polygon a 2D texture map with texture coordinates that match the initial input texture image I(i, j), thereby letting the final image be generated by fragment rasterization. Two-dimensional texture mapping-based mesh-manipulation tools are commonly and broadly used in nearly all interactive painting and photo-editing systems (e.g., image morphing). However, such a straightforward mesh rasterization approach does not apply well to texture synthesis. Indeed, there are at least two undesirable visual effects resulting from 2D texture mapping: (1) there are visible seams on the borders of the polygons since two adjacent polygons in the synthesis mesh might not have been adjacent in the original texture mesh (thus resulting in discontinuities), and (2) patterns related to textons appear stretched or shrunk, which is due to resampling during rasterization.

To avoid these two undesirable effects, we propose a technique that still consists in using polygonal 2D texture mapping, as supported by graphics cards, but adapted to consider both textons and subtextures together. We now describe what we mean by subtextures and how to define these.

To generate texture meshes (Sect. 3), we have used a binary segmentation based on color quantization. However, it is possible to segment any input texture into more than just two zones (black/white). Therefore, after filtering by Gabor wavelets or Fourier masks, we select a quantization number n q higher than two. Such a quantization is equivalent to performing a pixel classification: each pixel is assigned a class by means of a number (an integer value between 1 and n q ). We call I q (i, j), the image resulting from filtering and quantization. I q (i, j) is composed of sets of connected pixel components C q k (that is, each class k ∈ [1, n q ] corresponds to one or multiple connected pixel sets). Intuitively, these components are clustering pixels that belong to patterns, which have similar filter responses. In other words, it represents a partitioning of I into visually similar zones, that we call subtextures according to [START_REF] Zalesny | Composite texture synthesis[END_REF]. Each texton may now be composed of one or multiple subtextures. Figure 5 shows an example of quantization for the brick wall example of Fig. 1. As visible in this figure, individual textons may be composed of multiple subtextures (each color represents another subtexture on this figure).

We can now generate large texture fields visually matching given subtextures. On Fig. 5, we show an example of subtexture field corresponding to the concrete between the bricks. The arrows show some of the connected components C q k that have been used to generate this subtexture field (Fig. 5 left). The subtexture fields are synthesized in a preprocess by using any existing texture synthesis technique. We used a quilting-like approach. For applying the latter, we straightforwardly use the input image I(i, j) cropped by the corresponding connected component C q k . Once all fields have been generated (as for mesh generation, this needs to be done only once in a preprocess for a given input texture I(i, j)), they can be used in combination with I q (i, j) and with the texton map I s (i, j) to avoid the problems of seams and distortions appearing during rasterization.

The synthesis mesh allows us to create texton distributions by using traditional texture mapping. But, instead of mapping straightforwardly the input image I(i, j) as per usual painting systems, we map the quantized image I q (i, j), further cropped by the texton mask I s (i, j). Figure 6 illustrates the principles of our technique. The top shows traditional texture mapping on a brick texton cropped by its texton mask. On the top right, we further show the same brick stretched horizontally, thus dis-Fig. 5. Identifying subtextures (left) and generating corresponding texture fields (right). Here the subtexture corresponds to the concrete between the bricks of the brick wall texture of Fig. 1 Fig. 6. Using multiple subtextures (middle) for individual texture elements instead of traditional 2D texture mapping (top). We also show the effect of deforming the polygon and subsequently its texton (in this case, we stretched the brick horizontally) torting underlying patterns. The two bottom rows illustrate our technique for an increasing amount of subtextures.

The quantized image I q (i, j) (Fig. 6 left) is used for indexing the corresponding subtextures (it is used as indirection), see middle part of Fig. 6. That is, each polygon is actually rasterized with three 2D texture maps: the texton mask I s (i, j) used to extract only the pixels belonging to textons, the index mask I q (i, j) and the corresponding subtexture field. The texton mask and the index mask produce the shape of the texton (it is resampled according to the shape of the polygon) and the subtexture field the actual colors (small scale patterns). The result is given in Fig. 6 (right). Note how global texton shapes can be deformed, without deforming subtextures.

Figure 7 illustrates a more complete example for the brick wall. In this figure, we show, on the top, traditional texture mapping resulting in visible seams, since Fig. 7. Using texton masks and index masks to avoid seams. The top shows traditional 2D texture mapping with seams and subtexture distortions. The bottom shows our result we have made polygons adjacent that were not adjacent in the initial texture mesh. Below, we show the corresponding texton mask (left). And on the right, we finally show the result obtained by applying our technique combining texton distributions with the corresponding subtextures indexed by I q (i, j). A single rendering pass is necessary: firstly, we initialize the frame-buffer by copying the subtexture field corresponding to the background subtexture (in the case of the brick wall, this is the concrete subtexture of Fig. 5). Then, each polygon is rasterized with its own index mask (a 2D texture map) used to access the corresponding subtexture fields as shown for one single brick in Fig. 6. For practical reasons all subtexture fields are fetched into texture memory once in the form of a 3D texture (the fields are simply stacked). The index value of the index mask then matches the Z coordinate in this 3D texture. In fact, using a 3D texture allows us to bind all subtextures at once in texture memory.

The interesting point addressed by this approach is that texture distortions (according to the shape of the polygon) are only applied to the index and texton mask I q (i, j) and I s (i, j) to modify the shape of the texton accordingly, but not to the subtextures (see the stretched brick of Fig. 6). The reason is that we use two different texture coordinates, e.g., one for the masks and another for the subtexture. This allows for the preservation of subtexture frequencies. Note that instead of using a specific pixel-shader program and 3D texture, it is also possible to use the simpler multitexturing functionality for rasterizing the polygons. However, in this case, multiple passes become necessary, especially if one texton is composed of multiple subtextures (we need one pass for each subtexture).

We note that we generate subtextures only if the size of the corresponding connected component C q k is large enough (we set a minimal size to 200 pixels). Indeed, we experienced that if we use too small components, this results in very noisy subtexture fields, also producing final noisy results. When no subtexture field has been generated for a given texton, the previous procedure then simply indexes the original image I(i, j) as traditional 2D texture mapping (yet still using the texton mask to avoid seams). Figure 6 (last row) illustrates this. On the left quantized image, one can actually see at least 5 classes. Hence, there should be also 5 subtextures. Yet, only 3 were computed as visible in the middle part of the figure. This is because the corresponding connected components were found to be too small.

For smoothly varying or non-stationary texton contents, the use of subtextures can cause incorrect results (we show this in the results section). In such cases, one must use a large number of classes, resulting in very small connected components. This, in turn, causes traditional texture mapping to be implicitly used (we do not compute subtexture fields if the components are smaller than a given number of pixels), which might result in visible pattern distortions.

To generate the final texture image from the previously generated synthesis mesh, one simply has to rasterize each polygon using the texture mapping procedure that we just described. This is usually extremely fast (real-time) since graphics cards now reach high rasterization performances. Since the synthesis mesh technique is also very fast (few iterations are usually sufficient) textures can be synthesized at interactive frame-rates. Users may also interactively edit the synthesis mesh by displacing vertices or by dragging some specific textons on some specific mappolygons.

Results

In this section, we present some results obtained with the previously described texture synthesis and editing technique. The major limitation of our method is illustrated in Fig. 8. Figure 9 illustrates an example of the synthesis result. The top row shows from left to right: the input, the resulting cells and the corresponding mesh. The second row shows the arrangement map and the resulting Fig. 8. Texture examples that cannot be processed with our technique, since textons cannot be segmented Fig. 9. An example of synthesis for different amounts of subtextures Fig. 10. Comparison with texture quilting [START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF], the feature matching synthesis technique of [START_REF] Wu | Feature matching and deformation for texture synthesis[END_REF], the parallel technique of [START_REF] Lefebvre | Parallel controllable texture synthesis[END_REF] and the per-pixel jump map technique of [START_REF] Zelinka | Jump map-based interactive texture synthesis[END_REF] (middle). Left is input, right is our result synthesized mesh as well as the corresponding texton mask. The last row is the resulting texture for a low (left) and high (right) amount of classes. Using a high amount of classes causes connected components to be very small, which results in nearly no computed subtextures.

Figure 10 illustrates a comparative study. The left column represents the model, the middle shows existing techniques (from top to bottom: texture quilting [START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF], the feature matching synthesis technique of [START_REF] Wu | Feature matching and deformation for texture synthesis[END_REF], the parallel technique of [START_REF] Lefebvre | Parallel controllable texture synthesis[END_REF] and the per-pixel jump map technique of [START_REF] Zelinka | Jump map-based interactive texture synthesis[END_REF]), the right column shows our result. Our objective was to compare both quality and speed. Therefore, we took two high quality techniques and two high speed techniques. In our case, the synthesis took from top to bottom 16 ms, 123 ms, 78 ms and 57 ms on a laptop with Pentium M processor 2.00 GHz and 1 GB RAM. The graphics hardware is a NVidia Quadro FX Go 1400. These times include both the synthesis of the mesh and the rasterization. In all cases, the preprocessing time (required only once for a given texture) was below 5 min (this includes segmentation, texture mesh generation and subtexture field synthesis). The number of computed subtexture fields was kept low (an average of 2 fields per texton, except for the second row where we used about 5 fields per texton, which also explains the somewhat increased noise). As demonstrated by this figure, our technique provides sufficiently good results at times comparable to both [START_REF] Lefebvre | Parallel controllable texture synthesis[END_REF] and [START_REF] Zelinka | Jump map-based interactive texture synthesis[END_REF]. Note that since both of these methods are based on per-pixel procedures they fail to greatly capture semantic-related structural aspects. Our method, on the contrary, is designed to address structural textures, so it provides better results in these cases.

Figure 11 illustrates the effect of different arrangement maps on two different textures. The first row shows the input, the second one the reconstructed texture meshes and the third one reproduction. The last two rows illustrate the influence of arrangement maps (depicted in the far left). Note that arrangement maps can contain arbitrary polygons that do not necessarily need to be connected. For the three arrangements, the synthesis time for the lawn was between 16 and 47 ms, and for the panther texture between 14 and 45 ms.

Figure 12 shows some more examples. The right column shows the input, the second one reproduction, and finally a new user-designed arrangement.

The major limitation of our method is illustrated in Fig. 8. This figure shows textures that cannot be segmented into individual textons. In such cases, we cannot build texture meshes and so the method simply cannot be used. 

Conclusions and future work

We have presented a new structural approach for texture synthesis and editing. The method is based on a texture Currently, the approach is not suitable for textures that are not characterized by an underlying texton-related structure. In future works, we aim to address this issue. We believe that texture reproduction has now reached an advanced degree of maturity, and that efforts should be focused on increasing user manipulations, including the design of new structural aspects. We also intend to extend this method, in order to edit and manipulate textures at interactive rates directly on arbitrary surfaces.
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 3 Fig. 3. Creating random arrangement maps from input arrangement maps using an iterative procedure
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 4 Fig. 4. Texton-polygon (top) fitting technique. Of the two bottom rows, the left shows a mappolygon, the middle the clock-wise vertex placement, and the right the final result after relaxation
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 12 Fig. 12. More examples of synthesis and controlled arrangements