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Université Côte d’Azur, LJAD, UMR 7351, 06100 Nice, France

E-mail: tperez@unice.fr; cassam@unice.fr

Abstract

We present here generalized versions of the concepts of seniority number and

ionicity. Hermitian operators whose eigenspaces correspond to wave functions

of definite seniority or ionicity values are introduced. The generalized seniority

numbers (GSNs) afford to establish refined hierarchies of configuration interaction

(CI) spaces within those of fixed ordinary seniority. The usefulness of such a

hierarchy is illustrated on the buckminsterfullerene C60 molecule.
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1 Introduction

The concept of seniority originates from the work of Racah on electrons in an atom1.

Since then, it has become very popular in nuclear physics2,3. Its (re-)introduction in

quantum chemistry by Bytautas et al.4 has proved very fruitful and has inspired many

recent works (see8–11 to quote a few). It is closely related to the notion of ionicity that

has been used in valence-bond (VB) theory since the sixties7. Sometimes, it is used in

some algorithms without actually being named5,6.

Seniority affords to partition the n-electron Hilbert space into subspaces spanned by sets

of Slater determinants having a definite number of unpaired orbitals. For closed-shell

systems, it has been observed that the Full Configuration Interaction (FCI) energy is

dominated by the contribution of the seniority-zero part of the wave function, when

delocalized molecular orbitals are used, and that, the higher the seniority number of

the determinants, the less important their contribution on average4. The situation is

reversed in VB calculations9.

However, even if one restricts a CI space to a subspace of a given seniority number, the

size of the CI can be prohibitively large. Therefore, it is of interest to push the seniority

number partitioning strategy a step further , that is to say, to create other such numbers

to further break down the seniority-zero subspace into a hierarchy of smaller subspaces.

The purpose of this paper is to present a method describing the generalized seniority

numbers with an illustration to the π-electron system of the buckminsterfullerene C60

molecule.

Our definition is based on the concepts put forward in Chapter 4 of the Ph. D thesis of

M. Vivier, entitled “Sur quelques théorèmes d’algèbre extérieure” 12, and on their gener-

alization to the case where the shells are not all of the same even dimension. As we shall
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see, the usual seniority numbers appear in the particular case of primitive shells, hence

the term “generalized seniority” we have coined for the general case. Our generalization

is different from that of Talmi in nuclear structure theory13, where the partitioning is still

in terms of pairs of particles, but where the form of the pairing functions goes beyong

the simple Slater determinantal one.

The paper is organized as follows. In the first section, the concepts of generalized senior-

ity number (GSN) and generalized ionicity (GI) are defined and explained. Then, we

highlight interesting mathematical results relevant to this concept. Finally, we clarify

its possible use on the C60 example and conclude.

2 Generalized seniority number and generalized ion-

icity

We consider a one-particle Hilbert space V which is the direct sum (not necessarily or-

thogonal) of n vector subspaces V1, . . . , Vn of respective dimensions 2d1, . . . , 2dn. Each

of these subpaces will be called a “shell”, and the set {V1, . . . , Vn} a “shell partition”.

In quantum chemistry, the Vi’s can be the vector spaces spanned by sets of spin-orbital

pairs corresponding to the same atomic orbital. In such a case, the shells will be termed

tentatively “primitive shells”, as all the di’s are equal to 1. Even with this restriction,

there will be infinitely many possible shell partitions, as soon as n > 1. A natural shell

partition with larger values for some di’s occurs when the system has degenerate orbitals.

If the sets of degenerate orbitals in increasing energy order are d1−, . . . , dn−fold degen-

erate, then, the shells Vi’s can be defined as the 2di-dimensional vector spaces spanned

by the associated degenerate pairs of spin-orbitals.
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We denote by ui the single determinantal function built from a set of 2di normalized

spin-orbitals, (χi,1, ..., χi,2di)i=1,...,n spanning the shell Vi:

∀i ∈ {1, . . . , n}, ui = χi,1 ∧ · · · ∧ χi,2di , (1)

where ∧ is the Grassmann (or exterior) product (which is intrinsically antisymmetri-

cal)14,15. Note that choosing a different set of linearly independent spin-orbitals would

only change ui by a constant factor.

Remark 1: In quantum chemistry, as mentionned above, the even dimension 2di of the

Vi’s would arise from the fact that there are as many basis spin-orbitals of spin +1
2
, as

there are of opposite spin. However, in the following, to alleviate notation, we will not

distinguish the spin of the spin-orbitals. In other words, the spin-orbitals will be labelled

by indices running from 1 to 2di, irrespective of their spin.

The symbol (χ)1 will designate the concatenated bases of the n shells,

(χ)1 := (χ1,1, . . . , χ1,2d1 , χ2,1, . . . , χ2,2d2 , . . . , χn,1, . . . , χn,2dn) , (2)

which is a basis of the one-particle Hilbert space V . We will further denote by (χ)N the

N -particle basis set of Slater determinants induced by (χ)1

(χ)N := (χi1,j1 ∧ . . . ∧ χiN ,jN )(i1,j1)<···<(iN ,jN ) , (3)

where the order on the ordered pairs is the lexicographic order: (i, j) < (k, l) if i < k or

if i = k and j < l. The union of all these basis sets, (χ) :=
⋃
i

(χ)i, including (χ)0 := (1),

is a basis of the first quantization equivalent of the Fock space.

In second quantization, the (χi,1, . . . , χi,2di)’s are created by the operators a†i,1, . . . , a
†
i,2di

,
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respectively, acting on the empty state |0〉:

a†i,j|0〉 = |χi,j〉 , (4)

so that,

a†i,1 · · · a
†
i,2di
|0〉 = |χi,1 ∧ · · · ∧ χi,2di〉 = |ui〉 . (5)

Since the basis (χ) is not orthogonal, the corresponding annihilation operators ai,j’s,

defined by conjugation from Eq (4): 〈0|ai,j = 〈χi,j| are not very convenient, because

〈0|ai,ja†k,l|0〉 = 〈χi,j|χk,l〉 6= δ(i,j),(k,l). In consequence, we introduce the dual basis (χ̃),

that is the unique basis verifying the following property:

∀i, j, k, l, 〈χ̃i,j|χk,l〉 = δ(i,j),(k,l) , (6)

where δ(i,j),(k,l) is the Krönecker symbol for the ordered pair indices (i, j) and (k, l). The

corresponding annihilation operators, denoted by a tilde, that is to say: 〈χ̃i,j| = 〈0|ãi,j,

satisfy the desired relationship:

〈0|ãi,ja†k,l|0〉 = δ(i,j),(k,l) . (7)

It is also convenient to extend the notion of creation and annihilation operators to

arbitrary quantum states. So, we denote the creation operator, a†(f), of a general state,

f =
∑

(i1,j1),...,(ik,jk)

c(i1,j1),...,(ik,jk) χi1,j1 ∧ · · · ∧ χik,jk , c(i1,j1),...,(ik,jk) ∈ C, as follows:

a†(f)|0〉 = |f〉 =
∑

(i1,j1),...,(ik,jk)

c(i1,j1),...,(ik,jk) a
†
i1,j1
· · · a†ik,jk |0〉 . (8)

For example, a†(χi,j) = a†i,j and a†(ui) = a†i,1 · · · a
†
i,2di

.

We define the “dual” annihilation operator of a product state, ã(ui), as the product of
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the dual annihilation operators, ã(χi,j) = ãi,j, in reverse order: ã(ui) = ãi,2di · · · ãi,1, and

more generally, by anti-linearity, the “dual” annihilation operator of a†(f) as

ã(f) =
∑

(i1,j1),...,(ik,jk)

c̄(i1,j1),...,(ik,jk) ãik,jk · · · ãi1,j1 , (9)

where the bar c̄ denotes complex conjugation.

Definition 1: We say that a (2di−k)-particle Slater determinant x is included in ui

if there exists a set {h1, . . . , hk} such that a†(ui) = a†i,h1
· · · a†i,hk

a†(x).

So, for every Slater determinant m ∈ (χ)N of the N -particle induced basis set, we can

write:

a†(m) = a†(ui1) · · · a†(uiω)a†(xj1) · · · a†(xjΩ) , (10)

where the xjk ’s are strictly included in some ujk ’s which are distinct from one another

and from ui1 , . . . , uiω .

Definition 2: We call ω the generalized ionicity of m in the ui’s. It represents the

number of fully occupied shells.

Note that it is called the degree of m in the ui’s in mathematics12. When the shells are

chosen to be a set of primitive shells, ω is the ionicity number of the Slater determinant

m, as defined in7 in the context of VB wave functions.

Definition 3: The integer Ω is called the generalized seniority number of m relative

to the ui’s. It represents the number of non-empty, non-fully occupied shells.

Note that, when the shells are chosen to be a set of primitive shells, Ω is nothing but

the seniority number of the Slater determinant m.

Remark 2: The integer p = 2ω + Ω is called the reduced degree of m. It coincides

with the number of particles of the Slater determinant in the primitive shell case i.e.
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when d1 = . . . = dn = 1 (since, in this case, the ui’s are 2-particle states and the xj’s are

necessarily 1-particle states).

The vector space spanned by all the Slater determinants, m, of the same GSN Ω is

noted M(Ω). It only depends upon the shell partition and not upon the choice of the

shell basis sets. By extension, all wave functions in subspace M(Ω) will be said of GSN

Ω. The subset of M(Ω) containing the wave functions spanned by Slater determinants

m of the same degree q in the ui’s is a subvector space of M(Ω), noted M(ω,Ω) with

ω ∈ {0, . . . , n − Ω}. For a given Ω, M(Ω) is the direct sum of all the M(ω,Ω)’s. The

M(ω,Ω)’s can be further decomposed into their projections onto the N -particle Hilbert

spaces, noted M(N,ω,Ω). In the next section, we will introduce a GSN operator, which

acts diagonally on the M(Ω)’s and whose expectation value on a normalized element of

each M(Ω) is its GSN.

3 Hermitian operators related to the GSN and GI

concepts

Definition 4: For i ∈ {1, . . . , n} and any quantum state F , we consider the decompo-

sition:

a†(F ) = Q̂i(F ) + R̂i(F ) , (11)

where Q̂i(F ) represents the part of the a†(F )’s expansion in the (χ)-basis containing at

least one a†i,j, and R̂i(F ) the part of a†(F ) which does not contain any creation operator of

a basis spin-orbital appearing in ui. We call it the residue or the rest of F relatively

to ui in the basis (χ).
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R̂i(F ) can be expressed as

R̂i(F ) = ã(ui)a
†(ui)a

†(F ) , (12)

and Q̂i(F ) can be further decomposed as

Q̂i(F ) = Q̊i(F ) + a†(ui)ã(ui)a
†(F ) , (13)

where Q̊i(F ) represents the part of the a†(F )’s expansion containing at least one a†i,j but

not a†(ui) entirely.

By combining Eqs. (11), (12) and (13), we obtain,

Q̊i(F ) =
(

1− ã(ui)a
†(ui)− a†(ui)ã(ui)

)
a†(F ). (14)

Remark 3: More generally, we can define Q̊i1,i2,...,ik(F ) = Q̊i1Q̊i2 · · · Q̊ik(F ), (where the

order of the ij’s is indifferent since the Q̊ij ’s commute), which extracts the part of the

a†(F )’s expansion containing at least one a†i1,j1 , one a†i2,j2 , ... and one a†ik,jk , without

containing entirely a†(ui1) nor a†(ui2) nor ... nor a†(uik).

Definition 5: The linear operator Ω̂ : G 7−→ Ω̂(G) :=
n∑

i=1

Q̊i(G) is called the general-

ized seniority number operator. It acts diagonally on any element of M(Ω):

∀G ∈M(Ω), Ω̂(G) = Ω a†(G) . (15)

To prove the latter identity, let G ∈ M(Ω). The creation operator a†(G) can be re-

garded as a linear combination of a†(m)’s, with m ∈ (χ) the induced basis of Slater

determinants. For all m, we can write a†(m) = a†(ui1) · · · a†(uiω)a†(xj1) · · · a†(xjΩ) (for

some ω-value) with a†(xj1) · · · a†(xjΩ)|0〉 ∈ M(0,Ω). Applying Ω̂ to m and using Eq.
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(14), the only non zero contributions come from Q̊j1(m) = a†(m), . . . , Q̊jΩ(m) = a†(m),

respectively. So, we find exactly Ω times a†(m) in Ω̂(m). This being true for all the

a†(m)’s appearing in the expression of a†(G), by linearity of Ω̂, we obtain the identity,

Eq. (15).

Similarly, a generalized ionicity operator can be defined as follows:

Definition 6: The linear operator ω̂ : G 7−→ ω̂(G) =
n∑

i=1

a†(ui)ã(ui)a
†(G) is called the

generalized ionicity operator for the shell partition {V1, . . . , Vn}. It does not

depend upon a change of basis of Vi, for any i. It acts diagonally on any element of the

M(ω,Ω)’s:

∀G ∈M(ω,Ω), ω̂(G) = ω a†(G) . (16)

To prove the latter identity, let G ∈M(ω,Ω). Applying ω̂ to an m ∈ (χ) in the expansion

of G, whose creation operator can necessarily be cast in the form given in Eq. (10), the

only contributing terms are a†(ui1)ã(ui1)a†(m) = a†(m), . . . , a†(uiω)ã(uiω)a†(m) = a†(m),

as a†(ui)ã(ui)a
†(m) = 0, for all i /∈ {i1, ..., iω}. So, a†(m) appears exactly ω times in

ω̂(m). This being true for all the a†(m)’s appearing in the expression of a†(G), by lin-

earity of ω̂, we obtain the identity, Eq. (16).

Remark 4: A third identity follows from the previous two Eqs. (15) and (16),

∀G ∈M(ω,Ω), (n− ω − Ω) a†(G) =
n∑

i=1

R̂i(G) , (17)

where the integer (n− ω − Ω) is the number of empty shells in G.

Indeed, let G ∈ M(ω,Ω). By using Eqs. (11) and (13), we can decompose a†(G) in n

different manners as follows:

∀i ∈ {1, ..., n}, a†(G) = Q̊i(G) + a†(ui)ã(ui)a
†(G) + R̂i(G) . (18)
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By summing these n equalities and using Eqs. (15) and (16), we obtain:

n a†(G) = Ω a†(G) + ω a†(G) +
n∑

i=1

R̂i(G) , (19)

hence the result, Eq. (17).

The operator Ω̂ can be used to decompose the creation operator of an arbitrary quantum

state F onto the vector spaces of definite GSN, the M(Ω)’s. This can be achieved by

using Löwdin projectors16, for example. Let a†(F ) =
n∑

Ω=0

a†(GΩ), where GΩ ∈ M(Ω).

From Eq. (15), we deduce,

Ω̂(F ) =
n∑

Ω=0

Ω a†(GΩ) . (20)

For all Ω 6= 0, we can extract the Ω a†(GΩ) component of this decomposition by projec-

tion,

Ω a†(GΩ) =
∏

0≤j≤n
j 6=Ω

Ω̂(F )− j a†(F )

Ω− j
. (21)

Then, the generalized seniority-zero part of a†(F ) can be obtained by difference,

a†(G0) = a†(F )−
∑
Ω6=0

a†(GΩ) = a†(F )−
∑
Ω6=0

1

Ω

∏
0≤j≤n
j 6=Ω

Ω̂(F )− j a†(F )

Ω− j
. (22)

4 Application to the C60 Hückel energy levels

The primitive shell partition used to define seniority numbers in quantum chemistry

stems from the fact that spin-orbitals of the same spin are degenerate with respect

to spin symmetry for the spin-free Hamiltonian usually considered. It is therefore a
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natural idea to take also into account spatial symmetry, that is to say, to partition the

one-particle Hilbert space into subspaces closed with respect to both spin and spatial

symmetry operation. The highest known finite group spatial symmetry in molecular

system is the icosahedral symmetry. So, our generalization of the seniority number

concept is well-illustrated by the study of the buckminsterfullerene C60 molecule.

It is our take that generalized seniority numbers based on spatial symmetry can be

relevant parameters to limit CI expansions, as already observed for seniority number.

This hypothesis relies on known phenomena, where a correlation has been established

between the complete filling of a shell of a certain type and an unusual stability property.

We have in mind the octet rule, the 18-electron rule or aromaticity, for example. So,

we are going to investigate the convergence of CI calculations with respect to fine-tuned

variational space hierarchies based on such GSNs.

Since our goal is just to establish a proof-of-principle, and not to aim at high accuracy

prediction, we begin our study at the Hückel level of theory. As shown in Fig. 1, the one-

particle Hilbert space is spanned by 60 orbitals, so dimV = 120. If it is partitionned into

the corresponding 60 primitive shells, we obtain the usual seniority numbers. However,

even if one limits the CI space to seniority-zero Slater determinants, the latter will be of

dimension
(

60
30

)
≈ 1.18× 1017, which is clearly untractable. So, to further decompose the

seniority-zero space, we are going to use GSNs associated to the shells corresponding to

the degenerate orbitals displayed in Fig. 1.

More precisely, the shell partition consists of 15 shells, V1, V2, V3, · · · , V14, V15 of dimen-

sions 2, 6, 8, · · · , 8, 6, respectively. The largest shell V6 is of dimension 18. The dimension

of the GSN (Ω = 0)-subspace of the seniority-zero space is 1464. For Ω ≤ 1, there are

601594 additional Slater determinants to include, and for Ω ≤ 2, another 53141130 Slater

determinant set. All of these restricted CI subspaces are amenable to quantum chemistry

computations in contrast with the full seniority-zero space. It remains to be verified that

the Ω-based hierarchy is physically meaningful.
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In order to assess convergence in a non-trivial case example, we need to add a two-

electron term to the one-electron Hückel Hamiltonian used to obtain the eigenvectors

corresponding to the levels of Fig. 1. We choose to add a term of the form given in the

general seniority-zero Hamiltonian10,11. Our total Hamiltonian can be expressed as:

Ĥ =
60∑
p=1

(2hpp + Vpppp) S
†
pSp +

∑
1≤p<q≤60

(4Vppqq − 2Vpqpq) S
†
pSpS

†
qSq +

∑
1≤p 6=q≤60

Vpqpq S
†
pSq ,

(23)

where hpp is the pth-eigenvalue of the Hückel matrix and where the quantity Vpqrs is an

interelectronic repulsion integral:

Vpqrs =
∑
i,j,k,l

cpicqjcrkcsl

∫
R3×R3

pzi (~r1)pzj(~r1)pzk(~r2)pzl (~r2)

||~r1 − ~r2||
d~r1d~r2 . (24)

The cij’s are the coefficients of the Hückel eigenvector matrix and pzi is the STO-3G17

pz-orbital centered on the i-th carbon atom.

5 Conclusion

The concepts of GSN and GI, generalizing those of seniority number and ionicity, have

been introduced with their associated operators. The generalization is based on the

partitionning of the one-particle Hilbert space into shells. From the mathematical point

of view, the choice of the partition can be arbitrary. However, in practice, the partition

should be chosen on physical ground.

In this paper, a partition of the spin-orbital basis functions according to their spatial and

spin degeneracy has been considered. A hierarchy of CI-spaces based on the correspond-

ing GSN has been proposed. The usefulness of this new hierarchy has been illustrated

on C60. The associated GSN affords to split the seniority-zero space of C60 for a basis

set of 60 Hückel molecular orbitals into CI-subspaces of reduced dimensions, lending
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themselves to numerical computations for low values of the GSN.
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Löwdin, Ed., (Academic, New York, 1966).

(17) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51, 2657, 1969.

14



Figures

Figure 1: Energy diagram of C60 Hückel molecular orbitals with electron occupation in
the ground state reference configuration.
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