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Abstract

The concept of seniority number is generalized, as well as that of seniority

number operator. It affords to define new hierarchies of configuration interaction

spaces. The usefulness of such a hierarchy is illustrated on the buckminsterfullerene

system treated at the Hückel level of theory.
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1 Introduction

The concept of seniority introduced in quantum chemistry by Bytautas et al.1 has proved

very fruitful and has inspired many recent works, see2–4 to quote a few. It affords to

partition the n-electron Hilbert space into subspaces spanned by sets of Slater deter-

minants having a definite number of unpaired orbitals. For closed-shell systems, it has

been observed that the Full Configuration Interaction (FCI) energy is dominated by the

contribution of the seniority zero part of the wave function, and that, the higher the

seniority number of the determinants, the less important their contribution on average1.

However, even if one restricts a CI space to the seniority zero subspace, the size of the

CI can be prohibitively large. Therefore, it is of interest to push a step further the

seniority number partitioning strategy, that is to say, to define other such numbers to

further break down the seniority zero subspace into a hierarchy of smaller subspaces.

The purpose of this paper is to present a method to define generalized seniority numbers

with an illustration to the Hückel model of the Buckminsterfullerene C60 molecule.

Our definition is based on the concepts put forward in Chapter 4 of the Ph. D thesis

of M. Vivier entitled ”Sur quelques théorèmes d’algèbre extérieure” 5 generalized to the

case where the shells are not all of the same even dimension. As we shall see, the usual

seniority numbers appear in the particular case of the primitive shells, hence the term

“generalized seniority”, we have coined for the general case.

The paper is organized as follows: In the next section the concept of Generalized Seniority

Number (GSN) is defined and explained. Then, we present interesting mathematical

results relevant to this concept. Finally, we illustrate its possible use on the C60 example

and conclude.
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2 Generalized seniority numbers

We consider a one-particle Hilbert space V which is the direct sum (not necessarily or-

thogonal) of n vector subspaces V1, . . . , Vn of respective dimensions 2d1, . . . , 2dn. Each

of these subpaces will be called a “shell”, and the set {V1, . . . , Vn} a “shell partition”. In

quantum chemistry, the Vi’s can be the vector spaces spanned by sets of spinorbital pairs

corresponding to the same atomic orbital. In such a case, the shells will be termed ten-

tatively “primitive shells”, as all the di’s are equal to 1. Another natural shell partition

with larger values for some di’s occurs when the system has degenerate orbitals. If the

sets of degenerate orbitals in increasing energy order are d1−, . . . , dn−fold degenerate,

then, the shells Vi’s can be defined as the 2di-dimensional vector spaces spanned by the

associated degenerate pairs of spin-orbitals.

We denote by ui the single determinantal function built from a set of 2di normalized

spin-orbitals, (χi,1, ..., χi,2di)i=1,...,n spanning the shell Vi:

∀i ∈ {1, . . . , n}, ui = χi,1 ∧ · · · ∧ χi,2di , (1)

where ∧ is the Grassmann (or exterior) product (which is intrinsically antisymmetri-

cal)6,7.

Remark 1: In quantum chemistry, as mentionned above, the even dimension 2di of the

Vi’s would arise from the fact that there are as many basis spin-orbitals of spin +1
2
, as

there are of opposite spin. However, in the following, to alleviate notation, we will not

distinguish the spin of the spin-orbitals. That is to say, the spin-orbitals will be labelled

by indices running from 1 to 2di, irrespective of their spin.
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The symbol (χ)1 will designate the concatenated bases of the n shells,

(χ)1 := (χ1,1, . . . , χ1,2d1 , χ2,1, . . . , χ2,2d2 , . . . , χn,1, . . . , χn,2dn), (2)

which is a basis of the one-particle Hilbert space V . We will further denote by (χ)N the

N -particle basis set of Slater determinants induced by (χ)1

(χ)N := (χi1,j1 ∧ . . . ∧ χiN ,jN )(i1,j1)<···<(iN ,jN ), (3)

where the order on the ordered pairs is the lexicographic order: (i, j) < (k, l) if i < k or

if i = k and j < l. The union of all these basis sets, (χ) :=
⋃
i

(χ)i, including (χ)0 := (1),

is a basis of the first quantization equivalent of the Fock space.

In second quantization, the (χi,1, . . . , χi,2di) are created by the operators a†i,1, . . . , a
†
i,2di

,

respectively, acting on the empty state |0〉:

a†i,j|0〉 = |χi,j〉 , (4)

so that,

a†i,1 · · · a
†
i,2di
|0〉 = |χi,1 ∧ · · · ∧ χi,2di〉 = |ui〉 . (5)

Since the basis (χ) is not orthogonal, the corresponding annihilation operators ai,j’s,

defined by conjugation from Eq (4): 〈0|ai,j = 〈χi,j| are not very convenient, because

〈0|ai,ja†k,l|0〉 = 〈χi,j|χk,l〉 6= δ(i,j),(k,l). So, we introduce the dual basis (χ̃), that is the

unique basis verifying the following property:

∀i, j, k, l, 〈χ̃i,j|χk,l〉 = δ(i,j),(k,l) , (6)

where δ(i,j),(k,l) is the Krönecker symbol for the ordered pair indices (i, j) and (k, l). The
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corresponding annihilation operators, denoted by a tilde, that is to say: 〈χ̃i,j| = 〈0|ãi,j,

satisfy the desired relationship:

〈0|ãi,ja†k,l|0〉 = δ(i,j),(k,l) . (7)

It is also convenient to extend the notion of creation and annihilation operators to

arbitrary quantum states. So, we denote the creation operator, a†(f), of a general state,

f =
∑

(i1,j1),...,(ik,jk)

c(i1,j1),...,(ik,jk) χi1,j1 ∧ · · · ∧ χik,jk , c(i1,j1),...,(ik,jk) ∈ C, as follows:

a†(f)|0〉 = |f〉 =
∑

(i1,j1),...,(ik,jk)

c(i1,j1),...,(ik,jk) a
†
i1,j1
· · · a†ik,jk |0〉 . (8)

For example, a†(χi,j) = a†i,j and a†(ui) = a†i,1 · · · a
†
i,2di

.

We define the “dual” annihilation operator of a product state, ã(ui), as the product of

the dual annihilation operators, ã(χi,j) = ãi,j, in reverse order: ã(ui) = ãi,2di · · · ãi,1, and

more generally, by anti-linearity, the “dual” annihilation operator of a†(f) as

ã(f) =
∑

(i1,j1),...,(ik,jk)

c̄(i1,j1),...,(ik,jk) ãik,jk · · · ãi1,j1 , (9)

where the bar c̄ denotes complex conjugation.

Definition 1: We say that a (2di−k)-particle Slater determinant x is included in ui

if there exists a set {h1, . . . , hk} such that a†(ui) = a†i,h1
· · · a†i,hk

a†(x).

So, for every Slater determinant m ∈ (χ)N of the N -particle induced basis set, we can

write:

a†(m) = a†(ui1) · · · a†(uiq)a†(xj1) · · · a†(xjr) , (10)

where the xjk ’s are strictly included in some ujk ’s which are distinct from one another

and from ui1 , . . . , uiq .
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Definition 2: We call q the degree of m in the ui’s.

Definition 3: The integer r is called the generalized seniority number of m relative

to the ui’s. It represents the number of non-empty, non-fully occupied shells.

Note that, when the shells are chosen to be the primitive shells, r is nothing but the

seniority number of the Slater determinant m.

Remark 2: The integer p = 2q + r is called the reduced degree of m. It coincides

with the number of particles of the Slater determinant in the case of d1 = . . . = dn = 1

(since, in this case, the ui’s are 2-particle states and the xj’s are necessarily 1-particle

states).

The vector space spanned by all the Slater determinants, m, of the same GSN r is noted

M(r). It only depends upon the shell partition and not upon the choice of the shell basis

sets. By extension, all wave functions in subspace M(r) will be said of GSN r. The subset

of M(r) containing the wave functions spanned by Slater determinants m of the same

degree q in the ui’s is a subvector space of M(r), noted M(q, r) with q ∈ {0, . . . , n− r}.

For a given r, M(r) is the direct sum of all the M(q, r). The M(q, r) can be further

decomposed into their projections onto the N -particle Hilbert spaces, noted M(N, q, r).

In the next section, we will introduce a GSN operator, which acts diagonally on the

M(r)’s and whose expectation value on a normalized element of each M(r) is its GSN.

3 Generalized seniority number operator

Definition 4: For i ∈ {1, . . . , n} and any quantum state F , we consider the decompo-

sition:

a†(F ) = Q̂i(F ) + R̂i(F ) , (11)

where Q̂i(F ), represents the part of the a†(F )’s expansion in the (χ)-basis containing at

least one a†i,j, and R̂i(F ) the part of a†(F ) which does not contain any creation operator
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of a basis spinorbital appearing in ui. We call it the residue or the rest of F relatively

to ui in the basis (χ).

R̂i(F ) can be expressed as

R̂i(F ) = ã(ui)a
†(ui)a

†(F ) , (12)

and Q̂i(F ) can be further decomposed as

Q̂i(F ) = Q̊i(F ) + a†(ui)ã(ui)a
†(F ) , (13)

where Q̊i(F ) represents the part of the a†(F )’s expansion containing at least one a†i,j but

not a†(ui) entirely.

Combining Eqs. (11), (12) and (13), we obtain,

Q̊i(F ) =
(

1− ã(ui)a
†(ui)− a†(ui)ã(ui)

)
a†(F ). (14)

Remark 3: More generally, we can define Q̊i1,i2,...,ik(F ) = Q̊i1Q̊i2 · · · Q̊ik(F ), (where the

order of the ij’s is indifferent since the Q̊ij ’s commute), which extracts the part of the

a†(F )’s expansion containing at least one a†i1,j1 , one a†i2,j2 , ... and one a†ik,jk , without

containing entirely a†(ui1) nor a†(ui2) nor ... nor a†(uik).

Definition 5: The linear operator Ω̂ : G 7−→ Ω̂(G) :=
n∑

i=1

Q̊i(G) is called the general-

ized seniority number operator. It acts diagonally on any element of M(r):

∀G ∈M(r), Ω̂(G) = r a†(G) . (15)

To prove the latter identity, let G ∈M(r). The creation operator a†(G) can be regarded

as a linear combination of a†(m)’s, with m ∈ (χ) the induced basis of Slater determi-
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nants. For all m, we can write a†(m) = a†(ui1) · · · a†(uiq)a†(xj1) · · · a†(xjr) (for some

q-value) with a†(xj1) · · · a†(xjr)|0〉 ∈M(0, r). Applying Ω̂ to m, and using Eq. (14), the

only non zero contributions come from Q̊j1(m) = a†(m), . . . , Q̊jr(m) = a†(m), respec-

tively. So, we find exactly r times a†(m) in Ω̂(m). This being true for all the a†(m)’s

appearing in the expression of a†(G), by linearity of Ω̂, we obtain the identity, Eq. (15).

Similarly, a degree operator can be defined as follows:

Definition 6: The linear operator Ξ̂ : G 7−→ Ξ̂(G) =
n∑

i=1

a†(ui)ã(ui)a
†(G) is called the

degree for the shell partition {V1, . . . , Vn} operator. It does not depend upon a

change of basis of Vi, for any i. It acts diagonally on any element of the M(q, r)’s:

∀G ∈M(q, r), Ξ̂(G) = q a†(G) . (16)

To prove the latter identity, let G ∈M(q, r). Applying Ξ̂ to an m ∈ (χ) in the expansion

of G, whose creation operator is necessarily of the form given in Eq. (10), the only

contributing terms are a†(ui1)ã(ui1)a
†(m) = a†(m), . . . , a†(uiq)ã(uiq)a

†(m) = a†(m) ,

as a†(ui)ã(ui)a
†(m) = 0, for i /∈ {i1, ..., iq}. So, a†(m) appears exactly q times in Ξ̂(m).

This being true for all the a†(m)’s appearing in the expression of a†(G), by linearity of

Ξ̂, we obtain the identity, Eq. (16).

Remark 4: A third identity follows from the previous two Eqs. (15) and (16),

∀G ∈M(q, r), (n− q − r) a†(G) =
n∑

i=1

R̂i(G) . (17)

Indeed, let G ∈ M(q, r). By using Eqs. (11) and (13), we can decompose a†(G) in n

different manners as follows:

∀i ∈ {1, ..., n}, a†(G) = Q̊i(G) + a†(ui)ã(ui)a
†(G) + R̂i(G) . (18)
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Summing these n equalities and, using Eqs. (15) and (16), we obtain:

n a†(G) = r a†(G) + q a†(G) +
n∑

i=1

R̂i(G) , (19)

hence the result, Eq. (17).

The operator Ω̂ can be used to decompose the creation operator of an arbitrary quantum

state F onto the vector spaces of definite GSN, M(r)’s. This can be achieved by using

Löwdin projectors8, for example. Let a†(F ) =
n∑

r=0

a†(Gr) where Gr ∈ M(r). From Eq.

(15), we deduce,

Ω̂(F ) =
n∑

r=0

r a†(Gr) . (20)

For all r 6= 0, we can extract the r a†(Gr) component of this decomposition by projection,

r a†(Gr) =
∏

0≤j≤n
j 6=r

Ω̂(F )− j a†(F )

r − j
. (21)

Then, the generalized seniority zero part of a†(F ) can be obtained by difference,

a†(G0) = a†(F )−
∑
r 6=0

a†(Gr) = a†(F )−
∑
r 6=0

1

r

∏
0≤j≤n
j 6=r

Ω̂(F )− j a†(F )

r − j
. (22)

4 Application to C60 Hückel energy levels

The primitive shells partition used to define seniority numbers in quantum chemistry,

stems from the fact that spinorbitals of the same spin are degenerate by spin symmetry

for the spin-free Hamiltonian usually considered. It is therefore a natural idea to take also

into account spatial symmetry, that is to say, to partition the one-particle Hilbert space

into subspaces closed with respect to both spin and spatial symmetry operation. The

highest known spatial symmetry in molecular system is the icosahedral symmetry. So, we
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will illustrate our generalization of the seniority number concept on buckminsterfullerene.

It is our take that generalized seniority numbers based on spatial symmetry, can be

relevant parameters to limit CI expansions, as already observed for seniority number.

This hypothesis relies on known phenomena, where a correlation has been established

between the complete filling of a shell of a certain type and an unusual stability property.

We have in mind the octet rule, the 18-electron rule or aromaticity, for example. So,

we are going to investigate the convergence of CI calculations with respect to fine-tuned

variational space hierarchies based on such GSNs.

Since our goal is just to establish a proof-of-principle, and not to aim at high accuracy

prediction, we will perform our study at the Hückel level of theory. As shown in Fig.

1, the one-particle Hilbert space is spanned by 60 orbitals, so dimV = 120. If it is

partitionned into the corresponding 60 primitive shells, we obtain the usual seniority

numbers. However, even if one limits the CI space to seniority 0 Slater determinants,

the latter will be of dimension
(
60
30

)
≈ 1.18 × 1017, which is clearly untractable. So, to

further decompose the seniority 0 space, we are going to use GSNs associated to the

shells corresponding to the degenerate orbitals displayed in Fig. 1.

More precisely, the shell partition will consists of 15 shells, V1, V2, V3, · · · , V14, V15 of

dimensions 2, 6, 8, · · · , 8, 6, respectively. The largest shell V6 is of dimension 18. The

dimension of the GSN r = 0-subspace of the seniority 0 space is 1464. For r ≤ 1 there

are an additional 601594 Slater determinants to include, and for r ≤ 2, another 53141130

Slater determinant set. All of these restricted CI subspaces are amenable to quantum

chemistry computations in contrast with the full seniority 0 space. It remains to verify

that the r-based hierarchy is physically meaninful.
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5 conclusion

A generalized concept of GSN has been introduced with its associated GSN operator. It

is based on a partition of the one-particle Hilbert space into shells. A new GSN-based

hierarchy of CI-spaces has been proposed.

The usefulness of the hierarchy has been illustrated on a spatial plus spin degeneracy-

based partition of the spinorbital basis set. The associated GSN affords to split the

seniority 0 space of C60 for a basis set of 60 Hückel molecular orbitals, into CI-subspaces

of reduced dimensions, lending themselves to numerical computations for low values of

the GSN.
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FIGURES

Figure 1: Energy diagram of C60 Hückel molecular orbitals with electron occupation in
the ground state reference configuration.
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