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Abstract

Assuming  that  space  and  time  can  only  have  discrete  values,  it  is  shown  how
deformed space and time cause gravitational attraction, whose law in a discrete context is
slightly different from the Newtonian, but to it exactly coincident at large distance. This
difference is directly connected to the existence of black holes, which result to have the
structure of a hollow sphere.

 

1. Introduction
 

Let’s assume, as work hypothesis, the existence of both discrete space and discrete
time, namely spatial and temporal intervals not further divisible; this assumption leads to
some interesting consequences.  Here we find how deformed space and time cause an
attractive force between two material bodies.

So, if we suppose that neither space nor time are continuous, but that instead both are
discrete,  and following the terminology used in  a previous document[1],  we call  l0 the
fundamental length and t0 the fundamental time.

2. Determining the attraction force between two material bodies
 

In a continuous context the acceleration is given by  a(r)=d2r/dt2, but in a discrete
context  it’s  not  correct  to  use  derivatives  or  integrals,  because  we  can  not  handle
infinitesimal quantities nor for space nor for time, whose lower limits,  in presence of
matter, are l0(r) and t0(r) as shown in a previous document[2]. We must then use the finite
differences Δr, Δt, Δ2r, Δt2, being Δr=l0(r) and Δt=t0(r).

For convenience we quote the expressions of  l0(r) and  t0(r) obtained in the above
mentioned document[2].

In case of d<r (see here[2] for the discussion about d) we have:

l0(r )=l0
r−d

r
  (1)

and
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t 0(r )=
l0

c
r−d

r
  (2)

In case of d>r we have:

l0(r )=l0
d−r
r

  (3)

and

t 0(r )=
l0

c
d−r
r

  (4)

In the cited document[2] no assumption has been made about the physical meaning of
d and we cannot exclude at  the moment that it  could be  d>r or  d<r,  so we have to
proceed examining both cases to obtain the correct expression for a(r)= Δ2r/Δt2.

For simplicity, in this discussion we assume that d corresponds exactly to the actual
size of A (for the discussion about this physical system, please see this document[2]).

2.1 Case d<r (B is outside of A)

Fig. 1

In this case, using Eq. (1), we have:

Δ r=l0(r )=l0
r−d
r

  (5)

and
Δ2 r=Δl0 (r )   (6)

Using Eq. (2) we have:

Δ t=t 0(r )=
l0

c
r−d
r

  (7)

and

Δ t 2
=t 0(r )

2
=

l0
2

c2

(r−d )
2

r2   (8)

Again, having made no assumption on this physical system, we can not exclude any
possibilities; so we have to examine two distinct sub-cases, depending on the behavior of
the body B (for the discussion about this physical system, please see this document[2]). 

Sub-case 1: the body B moves away from the origin and from the border of A
In this sub-case Eq. (6) becomes:

Δ2 r=Δl0 (r )=l0(r+l0)−l0 (r )   (9)
Applying Eq. (1) to l0(r+l0) and l0(r) we have:

Δ2 r=l0
2 d
r (r+l0)

  (10)

At this point it is possible to calculate the acceleration a(r) of the body B.
It is:
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a(r)=
Δ2 r
Δ t 2 =c2d

r
(r+ l0)(r−d )

2
  (11)

If the mass of the body B is m, we can obtain the force acting on B:

f (r )=ma(r )=mc2d
r

(r+l0)(r−d)
2

  (12)

Being f(r)>0, the force acting on B in this sub-case is repulsive.

Sub-case 2: the body B moves toward the origin and toward the border of A
In this sub-case Eq. (6) becomes:

Δ2 r=Δl0 (r )=l0(r−l0)−l0(r )   (13)
Applying Eq. (1) to l0(r-l0) and l0(r) we have:

Δ2 r=−l0
2 d
r (r−l0)

  (14)

At this point it is possible to calculate the acceleration a(r) of the body B.
It is:

a(r)=
Δ2 r
Δ t 2 =−c2d

r
(r−l0)(r−d )

2
  (15)

If the mass of the body B is m, we can obtain the force acting on B:

f (r )=ma(r )=−mc2d
r

(r−l0)(r−d)
2

  (16)

Being f(r)<0, the force acting on B in this sub-case is attractive.

2.2 Case d>r (B is inside of A)

Fig. 2

In this case, using Eq. (3), we have:

Δ r=l0(r )=l0
d−r
r

  (17)

and
Δ2 r=Δl0 (r )   (18)

Using Eq. (4) we have:

Δ t=t 0(r )=
l0

c
d−r
r

  (19)

and

Δ t 2
=t 0(r )

2
=

l0
2

c2

(d−r )2

r2   (20)

Again, having made no assumption on this physical system, we can not exclude any
possibilities; so we have to examine two distinct sub-cases, depending on the behavior of
the body B (for the discussion about this physical system, please see this document[2]). 
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Sub-case 1: the body B moves away from the origin and toward the border of A
In this sub-case Eq. (18) becomes:

Δ2 r=Δl0 (r )=l0(r+l0)−l0 (r )   (21)
Applying Eq. (3) to l0(r+l0) and l0(r) we have:

Δ2 r=−l0
2 d
r (r+l0)

  (22)

At this point it is possible to calculate the acceleration a(r) of the body B.
It is:

a(r)=
Δ2 r
Δ t 2 =−c2d

r
(r+l0)(d−r)2

  (23)

If the mass of the body B is m, we can obtain the force acting on B:

f (r )=ma(r )=−mc2d
r

(r+l0)(d−r )2
  (24)

Being f(r)<0, the force acting on B in this sub-case is attractive.

Sub-case 2: the body B moves toward the origin and away from the border of A
In this sub-case Eq. (18) becomes:

Δ2 r=Δl0 (r )=l0(r−l0)−l0(r )   (25)
Applying Eq. (3) to l0(r-l0) and l0(r) we have:

Δ2 r=l0
2 d
r (r−l0)

  (26)

At this point it is possible to calculate the acceleration a(r) of the body B.
It is:

a(r)=
Δ2 r
Δ t 2 =c2d

r
(r−l0)(d−r )2

  (27)

If the mass of the body B is m, we can obtain the force acting on B:

f (r )=ma(r )=mc2d
r

(r−l0)(d−r)2
  (28)

Being f(r)>0, the force acting on B in this sub-case is repulsive.

3. Summary
 

The force acting between A and B is gravitational, so it is always attractive: we must
consider only the attractive forces among the ones we obtained.

Resuming:

Case d<r
The gravitational force that A exerts on B is:

f (r )=−mc2 r
(r−l0)

d

(r−d)
2

  (29)

Case d>r
The gravitational force that A exerts on B is:

f (r )=−mc2 r
(r+l0)

d

(d−r )2
  (30)

It  should  be  noted  that  when  d<r (the  body  B  is  external to  the  body  A),  the
gravitational force pushes the body B towards the origin and therefore also toward the
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edge of A, in analogy with what occurs in a continuous context. However when d>r (the
body B is internal to the body A), the gravitational force pushes the body B toward the
edge of A, but away from the origin, in contrast with what is expected in a continuous
context.

This means that in both cases the body B is pushed toward the edge of the body A,
which then becomes the point of attraction for the body B.

4. Modification to the law of gravitation
 

Eq. (29) and Eq. (30) represent the expression of the law of gravitation in a discrete
context. The main problem is that they do not depend exactly on the inverse square of the
distance, as stated by the Newtonian theory. However, if we consider very large distances,
that is when r»d (and by consequence also r»l0), Eq. (29) becomes:

f (r )=−mc2 d

r2
  (31)

Assuming  that  the  body  A has  mass  M,  Eq.  (31)  coincides  with  the  Newtonian
expression f(r)=-GmM/r2 if 

d=
GM

c2
  (32)

If the body A is the Earth, we have d~5·10-3 m. Already on the surface of the Earth
we can consider completely lawful the approximation r»d.

From what has been achieved, it is clear that d has no relation with the actual size of
the body A, which in the case of the Earth is about 109 times greater than d.

In a discrete context Eq. (29) then becomes the new expression of the gravitational
attraction between two bodies, which flows into the Newtonian one at sufficiently large
distances if compared to the quantity d indicated by Eq. (32).

5. What is d?
 

The expression GM/c2 is widely[3][4][5] indicated as the gravitational radius of a black
hole.  There  are  other  definitions[6] for  the  radius  of  the  black  hole  depending  on  its
characteristics (static, spinning, charged and so on). For instance the radius of a black
hole, as determined by Schwarzschild[5][7], is  Rs=2GM/c2, the double of the gravitational
radius.

In this discrete context Eq. (29) gives an infinite value for the gravitational force
exerted by A on B when r=d, at the boundary of the black hole. This means that there is
no way to move away B from this position. So, in this discrete context, Eq. (32) is the
expression of the actual radius of a black hole having mass M.

We can also obtain information about the internal structure of a black hole. In fact,
the attractive force tends to become larger as the body gets closer to the surface of the
black hole, at a distance d from its center; and it becomes infinite when r=d. But we can
note from Eq. (29) and Eq. (30) that this is true whether the body approaches  d from
outside, whether the body approaches d from inside; if a body could penetrate inside the
black hole, it would be inevitably attracted toward the edge. The black hole, then, tends to
have the structure of a hollow sphere, of a shell.

In a previous document[2] we supposed that the actual size of A could not be less than
d, even without knowing anything about d; now we know that d is the radius of the black
hole, so the above statement means that the actual size of a body can not be minor than
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the radius of the black hole with the same mass. For a given mass, the black hole is the
most compact object. This is reasonable, and strengthens the correctness of the chosen
model[2].

6. Conclusion
 

Assuming that space and time can only have discrete values, it has been shown how
deformed space and time cause gravitational attraction. The law obtained in this discrete
context is slightly different from the Newtonian, but they are exactly coincident at large
distance, where r»d. This difference is directly connected to the existence of black holes,
having radius equal to  GM/c2. Also, black holes result to have the structure of a hollow
sphere. 
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