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Time optimal control for continuous mass displacement

Michel Duprez and Francesco Rossi

Abstract— In this work, we study a minimal time problem for
a Partial Differential Equation of transport type, that arises in
crowd models. The control is a Lipschitz vector field localized
on a fixed control set ω.

We provide a complete answer for the minimal time problem.
After considering the discrete case, we show that the minimal
time to steer one initial configuration to another is related to
the condition of having enough mass in ω to feed the desired
final configuration.

We also give a numerical method to compute the minimal
time and to build the corresponding control. These results are
illustrated by some numerical simulations.

I. INTRODUCTION

In recent years, the study of systems describing a crowd
of interacting autonomous agents has drawn a great interest
from the control community (see e.g. the Cucker-Smale
model [3]). A better understanding of such interaction phe-
nomena can have a strong impact in several key applications,
such as road traffic and egress problems for pedestrians.
Beside the description of interaction, it is now relevant to
study problems of control of crowds, i.e. of controlling such
systems by acting on few agents, or with a control localized
in a small subset of the configuration space.

Two main classes are widely used to model crowds of
interacting agents. In microscopic models, the position of
each agent is clearly identified; the crowd dynamics is de-
scribed by a large dimensional ordinary differential equation,
in which couplings of terms represent interactions. In macro-
scopic models, instead, the idea is to represent the crowd by
the spatial density of agents; in this setting, the evolution of
the density solves a partial differential equation of transport
type. This is an example of a distributed parameter system.
Nonlocal terms (i.e. of convolution) model the interactions
between the agents. In this article, we focus on this second
approach, i.e. macroscopic models.

To our knowledge, there exist few studies of control of this
family of equations. In [7], the authors provide approximate
alignment of a crowd described by the macroscopic Cucker-
Smale model [3]. The control is the acceleration, and it is
localized in a control region ω which moves in time. In a
similar situation, a stabilization strategy has been established
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in [2], by generalizing the Jurdjevic-Quinn method to dis-
tributed parameter systems.

In this article, we consider densities µ defined on the space
Rd, with d ≥ 1. Let ω be a nonempty open connected
subset of Rd (d ≥ 1), being the portion of the space on
which the control is allowed to act. We denote by U the set
of admissible controls, that are functions u : Rd × R+ →
Rd Lipschitz in space, measurable in time and uniformly
bounded with supp(u) ⊂ ω. Let v : Rd → Rd be a vector
field assumed Lipschitz and uniformly bounded. Consider
the following linear transport equation{

∂tµ+∇ · ((v + 1ωu)µ) = 0 in Rd × R+,

µ(·, 0) = µ0 in Rd,
(1)

where µ(t) is the time-evolving measure representing the
crowd density, and µ0 is the initial data. The control function
u belongs to U . The function v+1ωu represents the velocity
field acting on µ. System (1) is a first simple approximation
for crowd modeling, since the uncontrolled vector field v is
given, and it does not describe interactions between agents.
Nevertheless, it is necessary to understand controllability
properties for such simple equation as a first step, before
dealing with a non-local term v[µ].

The minimal time problem for System (1) consists, for
each initial and final configurations µ0 and µ1, in finding the
minimal time T such that it exists a control u : Rd×[0, T ]→
Rd in U steering µ0 to µ1. For Problem (1), one cannot
reach precisely a general µ1, as we proved in [4]. Indeed, if
we impose the classical Caratheodory condition of u being
in U then the flow Φv+1ωu

t is an homeomorphism (see [1,
Th. 2.1.1]). As a result, one cannot reach any µ1, since for
general measures there exists no homeomorphism sending
one to another.

Thus, we relax the minimal time problem by considering
the following problem: for each initial and final configura-
tions µ0 and µ1, finding the minimal time T such that for all
ε it exists a control u : Rd × [0, T ] → Rd in U steering µ0

to an ε-neighbourhood of µ1 with respect to the Wasserstein
distance Wp. The definition of the Wasserstein distance is
recalled in Section II.

Even in this relaxed version, one cannot hope to steer
any µ0 to µ1, in general. Indeed, from a geometrical point
of view, the uncontrolled vector field v needs to send the
support of µ0 to ω forward in time and the support of µ1 to
ω backward in time. This idea is formulated in the following
Condition:

Condition 1 (Geometrical condition) Let µ0, µ1 be two
probability measures on Rd satisfying:



(i) For all x0 ∈ supp(µ0), there exists t0 > 0 such that
Φvt0(x0) ∈ ω, where Φvt is the flow associated to v, i.e.
the solution to the Cauchy problem{

ẋ(t) = v(x(t)) for a.e. t > 0,

x(0) = x0.

(ii) For all x1 ∈ supp(µ1), there exists t1 > 0 such that
Φv−t1(x1) ∈ ω.

Remark 1 Condition 1 is the minimal one that we can expect
to steer any initial condition to any targets. Indeed, if the first
item of Condition 1 is not satisfied, there exists a whole sub-
population of the measure µ0 that never intersects the control
region. Thus, we cannot act on it, and we cannot steer it to
any desired target.

We proved in [4] that for all µ0, µ1 two probability
measures on Rd with compact support, absolutely contin-
uous with respect to the Lebesgue measure and satisfying
Condition 1, there exists T > 0 such that we can steer µ0

to µ1 on the time interval (0, T ) with a control u in U .
We aim to study the minimal time problem, i.e. the

minimal time to steer µ0 to µ1. We first introduce the
following definition:

Definition 1 We say that T ∗ > 0 is an admissible time if it
satisfies:

(a) T ∗ > T ∗0 := sup{t0(x0) : x0 ∈ supp(µ0)}, where

t0(x0) := inf{t ∈ R+ : Φvt (x
0) ∈ ω}. (2)

(b) T ∗ > T ∗1 := sup{t1(x1) : x1 ∈ supp(µ1)}, where

t1(x1) := inf{t ∈ R+ : Φv−t(x
1) ∈ ω}.

(c) T ∗ > T ∗2 , where T ∗2 > max{T ∗0 , T ∗1 } is the infimum
s.t. : There exists a sequence (uk)k of C∞-functions
equal to 0 in ωc such that, for all t ∈ (0, T ∗2 ),

lim
k→∞

[Φv+uk
t #µ0](ω) > 1− lim

k→∞
[Φv+uk
t−T∗2

#µ1](ω).

We then have the following main result.

Theorem 1 (Main result) Fix ε > 0 and p ∈ (0,∞]. Let
µ0, µ1 be two probability measures, with compact support,
absolutely continuous with respect to the Lebesgue measure
and satisfying Condition 1. Let T0 be the infimum of the
admissible times T ∗. Then T0 is the optimal time to steer µ0

to µ1, i.e.
(i) For all T > T0, there exists a control u ∈ U such that

the solution to System (1) satisfies

Wp(µ
1, µ(T )) 6 ε. (3)

(ii) For all T < T0, there exists a control u ∈ U such that
the solution to System (1) satisfies (3).

We give a proof of Theorem 1 in Section IV.

Remark 2 Condition (a) in Definition 1 means that the
particles of supp(µ0) need to enter ω if we want to act
on it. Idem for Condition (b). The meaning of Condition (c)
is the following: functions uk are used to store the mass
in ω. An example of such functions is given in (10). Thus,
condition (c) means that at each time t there is more mass

that has entered ω that mass that has left ω. This is the
minimal condition that we can expect in this setting, since
control can only move masses, without creating them. In this
sense, our result shows that this necessary condition is also
sufficient.

This paper is organized as follows. In Section II, we
recall some properties of the Wasserstein distance and the
continuity equation. In Section III, we consider the discrete
case. Section IV is devoted to prove the main Theorem 1. In
Section V, we propose an algorithm to compute the minimal
time and to build the corresponding localized velocity field
and give some numerical examples.

II. THE WASSERSTEIN DISTANCE AND THE CONTINUITY
EQUATION

In this section, we recall some properties of the continuity
equation (1) and the definition of the Wasserstein distance,
which will be used all along this paper.

We denote by Pc(Rd) the space of probability measures in
Rd with compact support. First of all, we give the definition
of the push-forward of a measure and the definition of the
Wasserstein distance.

Definition 2 Denote by Γ the set of the measurable maps
γ : Rd → Rd. For a γ ∈ Γ, we define the push-forward
γ#µ of a measure µ of Rd as follows:

(γ#µ)(E) := µ(γ−1(E)),

for all Borel sets E.

For µ, ν ∈ Pc(Rd), we denote by Π(µ, ν) the set of
transference plans from µ to ν, i.e. the probability measures
on Rd × Rd satisfying∫

Rd
dπ(x, ·) = dµ(x) and

∫
Rd
dπ(·, y) = dν(y).

Definition 3 Let p ∈ [1,∞) and µ, ν ∈ Pc(Rd). Define

Wp(µ, ν) = inf
π∈Π(µ,ν)

{(∫∫
Rd×Rd

|x− y|pdπ
)1/p

}
and

W∞(µ, ν) := inf{π − esssup|x− y| : π ∈ Π(µ, ν)}.
Then, for p ∈ [1,∞], Wp is a distance on Pc(Rd), called the
Wasserstein distance. Moreover, the Wasserstein distance
can be extended to all pairs of measures µ, ν ∈ Pc(Rd) with
the same total mass µ(Rd) = ν(Rd), by the formula

Wp(µ, ν) = |µ|1/pWp

(
µ

|µ|
,
ν

|ν|

)
.

We denote by Pacc (Rd) the subset of Pc(Rd) of measures
which are absolutely continuous with respect to the Lebesgue
measure. On Pacc (Rd), the Wasserstein distance can be
reformulated as follows:

Proposition 1 Let p ∈ [1,∞) and µ, ν ∈ Pacc (Rd). It holds

Wp(µ, ν) = min
γ∈Γ

{(∫
Rd
|γ(x)− x|pdµ

)1/p

: γ#µ = ν

}



and

W∞(µ, ν) = min
γ∈Γ

{
sup
x∈Rd

|γ(x)− x| : γ#µ = ν

}
.

In the rest of the paper, the following properties of the
Wasserstein distance will be helpful.

Property 1 ([6]) Let w : Rd × R → Rd be a vector field
uniformly bounded, Lipschitz in space and measurable in
time with a Lipschitz constant equal to L. For each t ∈ R
and p ∈ R, it holds

W p
p (Φwt #µ,Φwt #ν) 6 e(p+1)L|t|W p

p (µ, ν) (4)

and for each p1, p2 ∈ R with p1 6 p2, it holds{
Wp1(µ, ν) 6Wp2(µ, ν),

Wp2(µ, ν) 6 |supp(µ, ν)|1−
p1
p2Wp1(µ, ν).

Thus, it is equivalent to steer a initial data µ0 to a Wp-
neighbourhood (p > 0) or a W1-neighbourhood of the target
µ1.

We now recall a standard result for the continuity equation:

Theorem 2 ([8]) Let T ∈ R+, µ0 ∈ Pacc (Rd) and w be
a vector field uniformly bounded, Lipschitz in space and
measurable in time. Then the system{

∂tµ+∇ · (wµ) = 0 in Rd × R+,

µ(·, 0) = µ0 in Rd

admits a unique solution1 µ in C0([0, T ];Pacc (Rd)). More-
over, it holds µ(·, t) = Φwt #µ0 for all t ∈ R, where the flow
Φwt (x0) is the unique solution at time t to{

ẋ(t) = w(t, x(t)) for a.e. t > 0,

x(0) = x0.

III. OPTIMAL TIME IN THE DISCRETE CASE

In this section, we aim to prove Theorem 1 in the discrete
case. We want to send n particles (starting from different
positions) to n other particles thanks to the system{

ẋ(t) = (v + 1ωu)(t, x(t)) for a.e. t > 0,

x(0) = x0.
(5)

Thus we consider here the initial data µ0 and the target µ1

as being sums of Dirac masses.

Proposition 2 Let

µ0 :=

n∑
i=1

1

n
δx0
i

and µ1 :=

n∑
i=1

1

n
δx1
i

(6)

be two measures of probability satisfying Condition 1 and
xki 6= xkj for all k ∈ {0, 1} and i 6= j. We define{

t0i := inf{t ∈ R+ : Φvt (x
0
i ) ∈ ω},

t1i := inf{t ∈ R+ : Φv−t(x
1
i ) ∈ ω}.

(7)

Then the minimal time of System (1) is given by:

T1 = min
σ∈Sn

max
i∈{1,...,n}

|t0i + t1σ(i)|. (8)

i.e.

1Here, Pac
c (Rd) is equipped with the weak topology, that coincides with

the topology induced by the Wasserstein distance Wp, see [8, Thm 7.12].

(i) For all T > T1, there exists a control u ∈ U such that
the solution to System (1) satisfies (3).

(ii) For all T < T1, there exists a control u ∈ U such that
the solution to System (1) satisfies (3).

Remark 3 In definition (6) of µ0 and µ1, we assume that
the points of the family {x0

1, ..., x
0
n} and {x1

1, ..., x
1
n} are

disjoint. Indeed, if this is not the case, the control vector field
u cannot separate points, due to uniqueness of the solution
of the ODE. Thus, if x0

i = x0
j , the corresponding trajectory

of (5) satisfies xi(t) = xj(t). For more details, we refer to
[4].

Remark 4 Condition (7) can be interpreted as follows: Each
particle at point x0

i needs to be sent on a target point x1
σ(i).

T1 is larger than the minimal time for the particle at x0
i to

enter in ω plus the minimal time for this particle to go from
ω to x1

σ(i) (We assume that the particle travels with a quasi
infinite velocity in ω).

Proof: Let T := T1 + δ with δ > 0. Consider σ the
optimal permutation in the definition of T1. Consider the
sequences {t0i }i∈{1,...,n} and {t1i }i∈{1,...,n} given in (7) and
define, for all i ∈ {1, ..., n},

y0
i := Φvt0i

(x0
i ) and y1

i := Φv−t1i
(x1
i ).

The proof is divided into two steps:
(i) In a first step, we build a permutation σ0 and a flow

on ω sending y0
i to y1

σ0(i) for all i ∈ {1, ..., n} with no
intersection of these trajectories.

(ii) In a second step, we deduce a flow sending 1
nδx0

i
to

1
nδx0

σ0(i)
for all i ∈ {1, ..., n}.

Step 1: For all i, j ∈ {1, ..., n}, we define the cost

Kij :=

{
‖(y0

i , t
0
i )− (y1

j , t
1
j )‖Rd+1 if t0i < t1j ,

∞ otherwise.

Consider the minimisation problem:

inf
πij∈Rn2

 1

n

n∑
i,j=1

Kijπij : πij ∈ Bn

 , (9)

where Bn is the set of the bistochastic n × n matrices, i.e.
the matrices satisfying, for all i, j ∈ {1, ..., n},

n∑
i=1

πij = 1,

n∑
j=1

πij = 1, πij > 0.

Using the definition of T1, the infimum is finite. It is a
linear minimisation problem on the convex set Bn. By Krein-
Milman’s theorem (see [5]) the minima are the permutations
matrices. Let σ0 be a permutation which associated matrix
minimizes (9). Consider the linear applications equal to y0

i

at time t0i and to y1
σ(i) at time T − t1σ0(i) defined by

yi(t) :=
T − t1σ0(i) − t
T − t1σ0(i) − t

0
i

y0
i +

t− t0i
T − t1σ0(i) − t

0
i

y1
σ(i).

We can prove by contradiction that these trajectories have
no intersection: Assume that there are i and j such that the
trajectories yi(t) and yj(t) intersect.



(y0
i , t

0
i )

(y0
j , t

0
j )

(y1
σ0(j), t

1
σ0(j))

(y1
σ0(i), t

1
σ0(i))

Fig. 1. Optimal permutation

Using some geometrical considerations (see Figure 1), we
obtain{
‖(y0

i , t
0
i )− (y1

σ0(j), t
1
σ0(j))‖ < ‖(y

0
i , t

0
i )− (y1

σ0(i), t
1
σ0(i))‖,

‖(y0
j , t

0
j )− (y1

σ0(i), t
1
σ0(i))‖ < ‖(y

0
j , t

0
j )− (y1

σ0(j), t
1
σ0(j))‖.

This is in contradiction with the fact that σ0 minimizes (9).
Step 2: We construct the flow as follows:

zi(t) :=


Φvt (x

0
i ) for all t ∈ (0, t0i ),

yi(t) for all t ∈ (t0i , T − t1σ(i)),

Φv
t−T+t1

σ(i)

(y0
i ) for all t ∈ (T − t1σ(i), T ).

The applications zi have no intersection. If ω is convex, then,
using the definition of the application yi, the points yi(t)
belongs to ω for all t ∈ (t0i , T − t1σ0(i)). If ω is not convex,
there exists an homeomorphism ϕ such that ϕ(yi(t)) ∈ ω
for all t ∈ (t0i , t

1
σ(i)).

The corresponding control can be chosen equal to

u(x, t) :=
y1
σ0(i) − y

0
i

T − t1σ0(i) − t
0
i

on a neighbourhood of each trajectory yi.
Let now T < T1. Then for all permutation σ there exists

i ∈ {1, ..., n} such that t0i + t1σ(i) > T . In other words, for
each strategy steering µ0 to µ1 there exists a particle which
has not enough time to travel from the initial position to the
final position. Thus it is not possible to steer µ0 to µ1.

We now deduce Theorem 1 in the discrete case:

Corollary 1 Let µ0 and µ1 be the measures given in (6) and
satisfying Condition 1. Then the minimal time T1 given in
(8) is equal to T0 given in Theorem 1.

Proof: Let K be large enough such that

[Φv+uK
t #µ0](ω) > 1− [Φv+uK

t−T∗ #µ1](ω).

This means that there are more particles which have entered
in ω than particles which have left ω at each time t. Then,
there exists σ such that T0 > max(t1σ(i)+t0i ). Thus T0 ≥ T1.

Conversely, let σ be the optimal permutation in the defi-
nition of T1. Consider the sequence

uk := θkv, (10)

where θk are some cutoff functions in C∞ on ω defined by 0 6 θk 6 1,
θk = 0 in ωc,
θk = 1 in ωk,

with ωk := {x0 ∈ Rd : d(x0, ωc) > 1/k}. Let δ > 0. For K
large enough

inf{t ∈ R+ : Φv+θKv
s (x0

i ) ∈ ω ∀s > t}

is smaller that

T1 + δ − inf{t ∈ R+ : Φv+θkv
−s (x1

i ) ∈ ω ∀s > t}.

For more details, we refer to Proposition 2 in [4]. Thus T1 ≥
T0.

Formula (8) for the minimal time can be simplified, since
one can easily find a permutation σ minimizing the cost:

Corollary 2 Let µ0 and µ1 be the measures given in (6)
satisfy Condition 1. Assume that the sequences {t0i }i∈{1,...,n}
and {t1i }i∈{1,...,n} defined in Proposition 2 are, respectively,
increasingly and decreasingly ordered. Then the minimal
time (8) is given by:

T2 := max
i∈{1,...,n}

{t0i + t1i }. (11)

Proof: Consider T1 given in (8). We assume that
{t0i }i∈{1,...,n} is increasingly ordered. Let σ0 be a minimis-
ing permutation in definition (8). We build recursively a
sequence {σ1, ..., σn} as follows:
• Let k1 be such that t1σ0(k1) is one of the maximisers

of {t1
σ1
0(1)

, ..., t1σ0(n)}. We denote by σ1 := T1,k1 ◦ σ0

where, for all i, j ∈ {1, ..., n}, Ti,j is the transposition
between the first ith and jth elements. As illustrated in
Figure 2, we clearly have

t0k1 + t1σ0(k1) > t
0
1 + t1σ0(1),

t0k1 + t1σ0(k1) > t
0
1 + t1σ0(k0),

t0k1 + t1σ0(k1) > t
0
k1

+ t1σ0(1).

Thus σ1 minimizes also (8).

max
i∈{1,...,n}

{t0i + t1σ0(i)} > max
i∈{1,...,n}

{t0i + t1σ1(i)}.

...

...

...

...

t01
t02

t0k1
t0k1+1

t1σ0(1)

t1σ0(2)

t1σ0(k1)

t1σ0(k1+1)

T1,k1

Fig. 2. Computation of the minimal time

• Assume that σj is built. Let kj+1 be such that t1σj(kj+1)

is a maximizers of {t1σj(j+1), ..., t
1
σj(1)}. We denote by

σj+1 := Tj+1,kj+1
◦ σj . Again, we clearly have

t0kj+1
+ t1σ(kj+1) > t

0
j+1 + t1σ(j+1),

t0kj+1
+ t1σ(kj+1) > t

0
j+1 + t1σ(kj+1),

t0kj+1
+ t1σ(kj+1) > t

0
kj+1

+ t1σ(j+1).

Thus σj+1 minimizes also (8).

max
i∈{1,...,n}

{t0i + t1σj(i)} > max
i∈{1,...,n}

{t0i + t1σj+1(i)}.



We remark that the sequence {t1σn(1), ..., t
1
σn(n)} is de-

creasing and σn is a minimising permutation. We deduce
that T1 = T2.

IV. OPTIMAL TIME FOR CONTINUOUS MASSES

In this section, we prove Theorem 1 about minimal time
for continuous masses. To achieve controllability in this
setting, one needs to store the mass coming from µ0 in ω
and to send it out with a rate adapted to approximate µ1.

Proof of Theorem 1: We first prove item (i):
(i) Fix ε > 0 and s > 0. Let T0 be the infimum satisfying
Condition (a)-(c) in Definition 1. Let K be large enough such
that

[Φv+uK
t #µ0](ω) > 1− [Φv+uK

t−T0
#µ1](ω)− ε,

for all t ∈ (0, T0). We prove that we can steer µ0 to a Wp-
neighbourhood of µ1 on the time interval (0, T0 + s). The
proof is divided into two steps:
• In a first step, we discretize the supports of µ0 and µ1.

We use first a coarse uniform mesh, then on each cell
we discretize µ0 and µ1 with respect to the mass.

• In a second step, we explain how to connect the
different masses of µ0 and µ1.

Step 1:
Let a, b be such that supp(µ0) ⊂ (a, a + b)d. Consider the
sequence of uniform meshes (Tk)k∈N∗ where, for all k ∈ N∗,
Tk is defined by

d∏
j=1

(a+
ij
2k
b, a+

ij + 1

2k
b) : (i1, ..., id) ∈ {0, ..., 2k − 1}d

 .

Let x0 ∈ supp(µ0). Let t0(x0) as defined in (2). There exists
t∗(x0) ∈ (t0(x0), t0(x0) + s) and a cell S(x0) of a mesh
Tk(x0) such that

Φv+uK
t∗(x0)(S(x0)) ⊂ ω.

By compactness of supp(µ0), there exists {x0
1, ..., x

0
n} such

that {S(x0
k)}k is a finite subcover of supp(µ0). Without loss

of generality, we can assume that {S(x0
k)}k belong to a

mesh TK . We discretize the support of µ1 with the same
process. We denote by {x0

k}k and {x1
k}k the middlepoints

of the cell and by {t0k}k and {t1k}k the times at which these
squares are included in ω. System (1) is conservative, i.e. if
we denote by µ the solution to System (1) the application
t 7→

∫
Rd µ(t) is constant. Hence, to send a measure to

another, these measures need to have the same total mass.
Thus we discretize measure µ0×1S(x0

k) and µ0×1S(x1
k) in

some measures with the same total mass. We use a strategy
defined in [4]. Fix k ∈ {1, ..., n} and let µ0

k := µ0×1S(x0
k).

To simplify the presentation, assume that d := 2 and
supp(µ0) ⊂ (0, 1)2. We denote by

α := µ0(S(x0
k)).

Fix n ∈ N∗. Define a0 the abscissa of the left side of S(x0).
and the points ai for all i ∈ {1, ..., bαnc} by induction as
follows: suppose that for i ∈ {0, ..., bαnc − 1} the points ai
are given, then ai+1 is the smallest value satisfying∫

(ai,ai+1)×R dµ
0
k = bαnc

n2 .

Let αi := µ0([(ai, ai+1) × R] ∩ S(x0
k)). Again, for all i ∈

{0, ..., bαnc−1}, we define ai,0 the lowest ordinate of S(x0
k)

and supposing that for a j ∈ {0, ..., bαnc−1} the points ai,j
are already defined, ai,j+1 is the smallest values such that∫

Akij
dµ0 = bαnc

n3 ,

where Akij := (ai, ai+1)× (aij , ai(j+1)). We give in Figure
3 an example of such decomposition.

x2

x1a0 a1

a01

a02

...
...

a0(n−2)

a0(n−1)

a0n

a2

a11

a12

...

bαnc
n2

· · ·

· · ·

ai

ai1

...

aij

ai(j+1)

...

bαnc/n3

ai(n−1)

ai+1 · · ·

· · ·

an−2

...

an−1

...

an

Fig. 3. Example of a decomposition of µ0.

We discretize similarly the measure µ1
k := µ1×1S(x1

k) on
some sets Bkij . To act locally on the sets Akij and Bk′i′j′ ,
we define sets Ckij ⊂ Akij and Dk′i′j′ ⊂ Bk′i′j′ . We then
send the mass of µ0 from each Ckij to each Dk′i′j′ , while
we do not control the mass in Akij\Ckij . More precisely, we
define, as in Figure 4, a−i , a

+
i , a

−
ij , a

+
ij the smallest values

such that∫
(ai,a

−
i )×(aij ,ai(j+1))

dµ0 =
∫

(a+i ,ai+1)×(aij ,ai(j+1))
dµ0

= bαnc
n4 ,

and∫
(a−i ,a

+
i )×(aij ,a

−
ij)
dµ0 =

∫
(a−i ,a

+
i )×(a+ij ,ai(j+1))

dµ0

= 1
n ×

(
bαnc
n3 − 2bαnc

n4

)
.

1
n ×

(
bαnc
n3 − 2bαnc

n4

)
bαnc
n4

ai a−i a+
i

ai+1

aij

a−ij

a+
ij

ai(j+1)

Fig. 4. Example of cell

We define similarly b+i , b
−
i , b

+
ij , b

−
ij . We finally define

Ckij := [a−i , a
+
i )×[a−ij , a

+
ij) and Dkij := [b−i , b

+
i )×[b−ij , b

+
ij).

Step 2:
We explain now how to send approximately the measures
µ0 × 1Ckij to the measures µ1 × 1Dk′i′j′ . Let us first recall
the following result:

Proposition 3 (see [4]) Let µ0 ∈ Pacc (Rd) satisfying
supp(µ0) ⊂⊂ ω. Define S a square strictly included in ω and



choose δ > 0. Then there exists a space-dependent velocity
field u, Lipschitz and uniformly bounded with supp(u) ⊂ ω,
such that the corresponding solution to System (1) satisfies

supp(µ(δ)) ⊂⊂ S.

Using Proposition 3, it is possible to concentrate the
measures Φv+uK

t0k
#(µ0×1Ckij ) and Φv+uK

−t1
k′

#(µ1×1Dk′i′j′ )
in some squares Eijk ⊂⊂ Cijk and Fi′j′k′ ⊂⊂ Di′j′k′ (as
small as we want). Up to a adaptation of Corollary 1 to the
case of arbitrary concentrated masses, if these squares are
small enough, then there exists a control u Lipschitz in space,
measurable in time and uniformly bounded with supp(u) ⊂
ω such that the support of Φvs#Φv+uK

t0k
#(µ0 × 1Ckij ) is

included in the support of Φv+uK
−t1
k′

#(µ1 × 1Dk′i′j′ ).
Using Step 2 in the proof of Proposition 1 in [4], the

refinement of the grid provides convergence to the target µ1,
i.e.

W1(µ1, µ(T )) −→
n→∞

0.

If T = T0, then we control at time T + ε and we conclude
using property (4) of the Wasserstein distance.

(ii) We now prove the second item of Theorem 1. Let T0

be the infimum satisfying condition (a)-(c) of Theorem 1.
If T < T ∗0 or T < T ∗1 , then it is clear that System is not
controllable at time T , since we cannot act an each particle.
For all T ∈ (0, T ∗2 ) and sequence {uk}k, there exists s ∈
(0, T ) such that

lim
k→∞

[Φv+uk
s #µ0](ω) > 1− lim

k→∞
[Φv+uk
s−T #µ1](ω).

(if it is not the case, then T ∗2 is not optimal) We can take for
example the sequence {uk}k defined in (10). Hence, at time
s, there is less mass which has entered ω than mass which
have left ω. Thus we obtain a contradiction.

�
We have also the following result on the continuity of the

minimal time with respect to the initial condition:

Theorem 3 The application µ0 7→ T0(µ0, µ1) is continuous
with respect to the Wasserstein distance W∞.

The definition of W∞ is recalled in Section II. Theorem
3 will be useful for the approximation of the initial data.
As it will be explained in Remark 5, the application µ0 7→
T0(µ0, µ1) is instead not continuous with respect to the L1-
norm or the other Wasserstein distance Wp with 1 6 p <∞.

Proof of Theorem 3: Consider µ0, µ1 ∈ Pacc (Rd) and
a sequence {µ0

n}n∈N∗ ⊂ Pacc (Rd) satisfying Condition 1
and W∞(µ0, µ0

n) 6 1/n. Let T0 = max{T ∗0 , T ∗1 , T ∗2 } and
T0,n = max{T ∗0,n, T ∗1 , T ∗2,n} be the corresponding minimal
time associated to µ0 and µ0

n. In a first step, we prove that
T0,n converge to T ∗0 and in a second step that T ∗2,n converges
to T ∗2 :

(i) Fix ε > 0. We aim to prove that for n large enough
|T0,n − T0| 6 ε. For all n ∈ N∗, there exists a measurable
map Sn : Rd → Rd such that µ0

n = Sn#µ0. We have
|Sn(x0) − x0| 6 1/n. For all x0 ∈ supp(µ0) there exists
r(x0) such that

|x0 − x̃0| 6 r(x0)⇒ |t0(x0)− t0(x̃0)| 6 ε.

By compactness, for a family {x0
1, ..., x

0
M} ⊂ supp(µ0) we

have supp(µ0) ⊂ ∪iB(x0
i , r(x

0
i )). Thus for n such that

1/n < infi(r(x
0
i )), we obtain |t0(x0)− t0(Sn(x0))| 6 ε.

(ii) Let T = T ∗2 + s with s > 0 and {uk}k the
corresponding sequence to µ0. With the same argument of
compactness as above, for n large enough:

lim
k→∞

[Φv+uk
t #µ0

n](ω) > 1− lim
k→∞

[Φv+uk
t−T #µ1](ω),

for all t ∈ (s, T ). Thus limT ∗2,n 6 T
∗
2 .

Let now T < T ∗2 . For all sequence {uk}k, there exists
s ∈ (0, T ) and δ > 0 such that

lim
k→∞

[Φv+uk
s #µ0](ω) < 1− lim

k→∞
[Φv+uk
s−T #µ1](ω)− δ.

It implies that for n large enough

lim
k→∞

[Φv+uk
s #µ0

n](ω) < 1− lim
k→∞

[Φv+uk
s−T #µ1](ω)− δ/2.

Hence T ∗2,n > T . Thus lim
n→∞

T ∗2,n > T
∗
2 . �

Remark 5 The application µ0 7→ T0(µ0, µ1) is not continu-
ous with respect to the L1-norm or the Wasserstein distance
Wp. Indeed, consider µ0 = µ1 := 1(0,1) ∈ Pacc (Rd),
ω := (0, 1) and v := 2. The minimal time to send µ0 to
µ1 is clearly equal to 0. For each n ∈ N∗, we define the
measure

µ0
n :=

 1− 1/n if x ∈ (0, 1),
1/n if x ∈ (−2,−1),
0 otherwise.

We remark that W1(µ0
n, µ

0) → 0, ‖µ0
n − µ0‖L1 → 0 and

T0(µ0
n, µ

1) = 1. Thus the application µ0 7→ T0(µ0
n, µ

1) is
not continuous with respect to the Wasserstein distance or
the L1-norm.

V. NUMERICAL SIMULATIONS

In this section, we give a numerical illustration of the
algorithm developed in the proof of Theorem 1 to compute
the minimal time. We highlight that some concentration of
the mass in the control region ω can appear. We first recall
this algorithm:

Algorithm 1:

Step 1 : Discretisation of µ0 and µ1

(i) Construction of the uniform mesh
(ii) Computation of the cell Aij following the mass

Step 2: Computation of the minimal time using
Expression (11)
Step 3: Association of the masses of µ0 and µ1

minimising Expression (9)
Step 4: Concentration of the masses (if necessary)
Step 5: Final computation

Consider the initial data µ0 and the target µ1 defined by

µ0 :=

{
0.5 if x ∈ (0, 2),
0 otherwise

and
µ1 :=

{
0.5 if x ∈ (7, 8) ∪ (10, 11),
0 otherwise.



We fix the velocity field v := 1 and the control region ω :=
(5, 6). Following Algorithm 1, we approximate the minimal
time T0 and a control u such that the corresponding solution
µ to System (1) satisfies W (µ(T0 + δ), µ1) 6 ε. We use a
Lagrangian scheme for simulation (see [6] for more details).
Some approximations at some times are given in Figure 5.
It is interesting to see that we observe the apparition of a
concentration of the mass in the control region ω.
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Fig. 5. Solution at time t = 0, t = 4.6, t = 7.6 and t = T = 9.006.


