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Time optimal control for continuous mass displacement

Michel Duprez and Francesco Rossi

Abstract— In this work, we study a minimal time problem for
a Partial Differential Equation of transport type, that arises in
crowd models. The control is a Lipschitz vector field localized
on a fixed control set w.

We provide a complete answer for the minimal time problem.
After considering the discrete case, we show that the minimal
time to steer one initial configuration to another is related to
the condition of having enough mass in w to feed the desired
final configuration.

We also give a numerical method to compute the minimal
time and to build the corresponding control. These results are
illustrated by some numerical simulations.

I. INTRODUCTION

In recent years, the study of systems describing a crowd
of interacting autonomous agents has drawn a great interest
from the control community (see e.g. the Cucker-Smale
model [3]). A better understanding of such interaction phe-
nomena can have a strong impact in several key applications,
such as road traffic and egress problems for pedestrians.
Beside the description of interaction, it is now relevant to
study problems of control of crowds, i.e. of controlling such
systems by acting on few agents, or with a control localized
in a small subset of the configuration space.

Two main classes are widely used to model crowds of
interacting agents. In microscopic models, the position of
each agent is clearly identified; the crowd dynamics is de-
scribed by a large dimensional ordinary differential equation,
in which couplings of terms represent interactions. In macro-
scopic models, instead, the idea is to represent the crowd by
the spatial density of agents; in this setting, the evolution of
the density solves a partial differential equation of transport
type. This is an example of a distributed parameter system.
Nonlocal terms (i.e. of convolution) model the interactions
between the agents. In this article, we focus on this second
approach, i.e. macroscopic models.

To our knowledge, there exist few studies of control of this
family of equations. In [7], the authors provide approximate
alignment of a crowd described by the macroscopic Cucker-
Smale model [3]. The control is the acceleration, and it is
localized in a control region w which moves in time. In a
similar situation, a stabilization strategy has been established
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in [2], by generalizing the Jurdjevic-Quinn method to dis-
tributed parameter systems.

In this article, we consider densities y defined on the space
R?, with d > 1. Let w be a nonempty open connected
subset of R? (d > 1), being the portion of the space on
which the control is allowed to act. We denote by U/ the set
of admissible controls, that are functions u : R? x RT —
R? Lipschitz in space, measurable in time and uniformly
bounded with supp(u) C @. Let v : R? — R? be a vector
field assumed Lipschitz and uniformly bounded. Consider
the following linear transport equation

{ O+ V- ((v+1yu)p) =0 inRYx RT,

p(-0) = p° in RY, o

where u(t) is the time-evolving measure representing the
crowd density, and 1 is the initial data. The control function
u belongs to U. The function v+ 1,,u represents the velocity
field acting on p. System (1) is a first simple approximation
for crowd modeling, since the uncontrolled vector field v is
given, and it does not describe interactions between agents.
Nevertheless, it is necessary to understand controllability
properties for such simple equation as a first step, before
dealing with a non-local term v[u].

The minimal time problem for System (1) consists, for
each initial and final configurations ;¥ and x', in finding the
minimal time 7" such that it exists a control u : R? x [0, 7] —
R? in U steering ;° to p'. For Problem (1), one cannot
reach precisely a general p!, as we proved in [4]. Indeed, if
we impose the classical Caratheodory condition of u being
in U then the flow <I>;’+ﬂ“"' is an homeomorphism (see [1,
Th. 2.1.1]). As a result, one cannot reach any ul, since for
general measures there exists no homeomorphism sending
one to another.

Thus, we relax the minimal time problem by considering
the following problem: for each initial and final configura-
tions 4° and p!, finding the minimal time 7" such that for all
£ it exists a control u : R? x [0,T] — R? in U steering °
to an e-neighbourhood of ;! with respect to the Wasserstein
distance W,,. The definition of the Wasserstein distance is
recalled in Section II.

Even in this relaxed version, one cannot hope to steer
any p° to p', in general. Indeed, from a geometrical point
of view, the uncontrolled vector field v needs to send the
support of 1 to w forward in time and the support of u! to
w backward in time. This idea is formulated in the following
Condition:

Condition 1 (Geometrical condition) Let 1% p! be two
probability measures on R satisfying:



(i) For all 2° € supp(u®), there exists ¢y > 0 such that
Py (2°) € w, where @} is the flow associated to v, i.e.
the solution to the Cauchy problem

{ i(t) = v(z(t)) for ae. t >0,

x(0) = 2V.
(ii) For all z1 € supp(u'), there exists t; > 0 such that
v, (2') € w.

Remark 1 Condition 1 is the minimal one that we can expect
to steer any initial condition to any targets. Indeed, if the first
item of Condition 1 is not satisfied, there exists a whole sub-
population of the measure 4o that never intersects the control
region. Thus, we cannot act on it, and we cannot steer it to
any desired target.

We proved in [4] that for all p°, ' two probability
measures on R? with compact support, absolutely contin-
uous with respect to the Lebesgue measure and satisfying
Condition 1, there exists 7 > 0 such that we can steer u°
to 1! on the time interval (0,7") with a control u in U.

We aim to study the minimal time problem, i.e. the
minimal time to steer p® to p'. We first introduce the
following definition:

Definition 1 We say that 7" > 0 is an admissible time if it
satisfies:

(@) T* > Ty = sup{t®(2?) : 2° € supp(u°)}, where

t2(z%) := inf{t € R" : ®¥(2?) € w}. (2)
(b) T* > Ty :=sup{t!(z!) : 2* € supp(u')}, where
t(z) = inf{t € RT : ®Y,(2') € w}.

() T* > Ty, where T3 > max{Ty, T} is the infimum
t. : There exists a sequence (uy); of C*°-functions
equal to 0 in w® such that, for all ¢ € (0,75),

. vtug 0 > B v+ug 1
Jm [ @77 T (w) > 1 = lim [0k A ] (w)-
We then have the following main result.

Theorem 1 (Main result) Fix ¢ > 0 and p € (0,00]. Let
10, ' be two probability measures, with compact support,
absolutely continuous with respect to the Lebesgue measure
and satisfying Condition 1. Let Iy be the infimum of the
admissible times T*. Then Ty is the optimal time to steer ,uo
to it ie

(1) For all T =Ty, there exists a control u € U such that

the solution to System (1) satisfies

Wy(p', (1)) <e. 3)
(i) For all T < Ty, there exists a control u € U such that
the solution to System (1) satisfies (3).

We give a proof of Theorem 1 in Section IV.

Remark 2 Condition (a) in Definition 1 means that the
particles of supp(u”) need to enter w if we want to act
on it. Idem for Condition (b). The meaning of Condition (c)
is the following: functions uj are used to store the mass
in w. An example of such functions is given in (10). Thus,
condition (¢) means that at each time ¢ there is more mass

that has entered w that mass that has left w. This is the
minimal condition that we can expect in this setting, since
control can only move masses, without creating them. In this
sense, our result shows that this necessary condition is also
sufficient.

This paper is organized as follows. In Section II, we
recall some properties of the Wasserstein distance and the
continuity equation. In Section III, we consider the discrete
case. Section IV is devoted to prove the main Theorem 1. In
Section V, we propose an algorithm to compute the minimal
time and to build the corresponding localized velocity field
and give some numerical examples.

II. THE WASSERSTEIN DISTANCE AND THE CONTINUITY
EQUATION

In this section, we recall some properties of the continuity
equation (1) and the definition of the Wasserstein distance,
which will be used all along this paper.

We denote by P.(R?) the space of probability measures in
R? with compact support. First of all, we give the definition
of the push-forward of a measure and the definition of the
Wasserstein distance.

Definition 2 Denote by I' the set of the measurable maps
v : R4 — RZ For a v € T, we define the push-forward
~v# 1 of a measure p of R as follows:
(V#u)(E) = u(y~H(E)),
for all Borel sets F.
For i, v € P.(R%), we denote by II(u,v) the set of

transference plans from p to v, i.e. the probability measures
on R? x R? satisfying
dm(x,-) = du(x) and
Rd Rd
Definition 3 Let p € [1,00) and p,v € P.(RY). Define

(] o))

inf{m — esssup|z — y| : w € [I(u,v)}.

dr (-, y) = dv(y).

Wp(uv v) = we%&i

and

Weo(p,v) =
Then, for p € [1,00], W, is a distance on P.(R%), called the
Wasserstein distance. Moreover, the Wasserstein distance
can be extended to all pairs of measures y, v € P.(RY) with
the same total mass p(R?) = v(R%), by the formula

woov
Wy(u,v) = |l *W, PR

We denote by P2¢(R?) the subset of P.(R?) of measures
which are absolutely continuous with respect to the Lebesgue
measure. On P2¢(R?), the Wasserstein distance can be
reformulated as follows:

Proposition 1 Let p € [1,00) and p,v € P(R?). It holds

W0, ) = min { (RCE z|pdu)l/p s = }



and
Wi (1) = min{sup (@) — 2l : yu = }
V€L |\ zeRrd
In the rest of the paper, the following properties of the
Wasserstein distance will be helpful.

Property 1 ([6]) Let w : R x R — R? be a vector field
uniformly bounded, Lipschitz in space and measurable in
time with a Lipschitz constant equal to L. For each t € R
and p € R, it holds

WE (D #p, O #v) < e@TDEIHL () ) 4)

and for each p1, p2 € R with p1 < po, it holds
{ Wpl (/”'a V) g sz(:u7 V)7
1—21
W, (1, v) < [supp(p, v)| 72 Wy, (1, v).

Thus, it is equivalent to steer a initial data u° to a W,-
neighbourhood (p > 0) or a Wj-neighbourhood of the target

1
W
We now recall a standard result for the continuity equation:
Theorem 2 ([8]) Let T € R*, u® € ch(Rd) and w be

a vector field uniformly bounded, Lipschitz in space and
measurable in time. Then the system

O+ V- (wp) =0 in RY x Rt
p(-0) = p’ in R

admits a unique solution' y in C°([0,T]; P4¢(R?)). More-
over, it holds (-, t) = ®Y#u° for all t € R, where the flow
O (20) is the unique solution at time t to

&(t) = w(t,z(t)) for a.e. t 20,

2(0) = 2°.

III. OPTIMAL TIME IN THE DISCRETE CASE

In this section, we aim to prove Theorem 1 in the discrete
case. We want to send n particles (starting from different
positions) to n other particles thanks to the system

{ i(t) = (v + Lou)(t, z(t)) for ae. t >0,

2(0) = zV. ©)

Thus we consider here the initial data ;° and the target '
as being sums of Dirac masses.

Proposition 2 Let

n 1 n 1
0 1
= E -4, d = E —0.1 6
7 2 0 and [ 2 ! (6)

be two measures of probability satisfying Condition 1 and
zk £ ac§ Sor all k € {0,1} and i # j. We define

t9 .= inf{t € RT : ®¥(2?) € w}, 7
tl = inf{t € RT : 2, (a}) € w}.
Then the minimal time of System (1) is given by:
T, = mi 9+l 8
1= i e 1 | ®)

ie.

'Here, P2¢(R?) is equipped with the weak topology, that coincides with
the topology induced by the Wasserstein distance Wy, see [8, Thm 7.12].

(1) For all T > T4, there exists a control u € U such that
the solution to System (1) satisfies (3).

(ii) For all T < Ty, there exists a control uw € U such that
the solution to System (1) satisfies (3).

Remark 3 In definition (6) of u® and p', we assume that
the points of the family {z9,....,20} and {x1,...,2.} are
disjoint. Indeed, if this is not the case, the control vector field
u cannot separate points, due to uniqueness of the solution
of the ODE. Thus, if z{ = 7, the corresponding trajectory
of (5) satisfies x;(t) = x,(¢). For more details, we refer to
[4].

Remark 4 Condition (7) can be interpreted as follows: Each
particle at point z¥ needs to be sent on a target point :Jc},(i).
T is larger than the minimal time for the particle at z{ to
enter in w plus the minimal time for this particle to go from
w to x},( 2 (We assume that the particle travels with a quasi
infinite velocity in w).

Proof: Let T := Ty + 6 with § > 0. Consider o the
optimal permutation in the definition of 7j. Consider the
sequences {t{ }icq1,... .} and {t} };eq1, .. n) given in (7) and
define, for all i € {1,...,n},

Y == o (2)) and y; = @Y, (z;).
The proof is divided into two steps:

(1) In a first step, we build a permutation oy and a flow
on w sending y} to y; ) foralli € {1,...,n} with no
intersection of these trajectories.

(i1) In a second step, we deduce a flow sending %51,0 to
%63”30@) for all ¢ € {1,...,n}.

Step 1: For all ¢,5 € {1,...,n}, we define the cost

Consider the minimisation problem:
1 &
mfﬁﬂin2 ~ D Kimij i mij € By o ©)

ij=1

where B3,, is the set of the bistochastic n x n matrices, i.e.
the matrices satisfying, for all 7,5 € {1,...,n},

n n
E 5 = ]., E Tij = ]., T 2 0.
i=1 j=1

Using the definition of 73, the infimum is finite. It is a
linear minimisation problem on the convex set 3,,. By Krein-
Milman’s theorem (see [5]) the minima are the permutations
matrices. Let oy be a permutation which associated matrix
minimizes (9). Consider the linear applications equal to y?
at time ¢ and to y] ;) at time T — ¢} ) defined by

o(i
Tt . —t
o0(4) 0
yi(t) = 1 oY T T 0 Yo (i)
T=top =t Tt~k
We can prove by contradiction that these trajectories have
no intersection: Assume that there are ¢ and j such that the

trajectories y;(t) and y;(t) intersect.

t—t9 L




1 1
X Woo)2to0(5)

1 1
Yoo i) Loo (i)

(¥9,19)
Fig. 1.

Optimal permutation

Using some geometrical considerations (see Figure 1), we
obtain

{(y?,tg’)—(y;o() ool < 10625 80) = (o T >:

162, 82) = (2 st )| < N0t = s thsy)

This is in contradiction with the fact that oy minimizes (9).
Step 2: We construct the flow as follows:

oY (29) for all t € (0,t?),
zi(t) = yi(t) for all t € (t?,T t(lj(z))
(I);LT+t};(i) (y?) for all ¢ € (T'— U(Z)’T)

The applications z; have no intersection. If w is convex, then,
using the definition of the application y;, the points y;(t)
belongs to w for all t € (¢, T — t(ljo »)- If w is not convex,
there exists an homeomorphism ¢ such that ¢(y;(t)) € w
for all t € (t9,¢L ).

i 7o (i)
The corresponding control can be chosen equal to

yl @~ yd
u(z,t) := 001—10
T ooy — ti
on a neighbourhood of each trajectory y;.
Let now 7' < T7. Then for all permutation o there exists
i € {1,...,n} such that ¢ + ¢ > T. In other words, for
each strategy steering p° to p! there exists a particle which
has not enough time to travel from the initial position to the
final position. Thus it is not possible to steer p° to px!. M
We now deduce Theorem 1 in the discrete case:

Corollary 1 Let 1i° and pu' be the measures given in (6) and
satisfying Condition 1. Then the minimal time Ty given in
(8) is equal to T,y given in Theorem 1.

Proof: Let K be large enough such that
(@7 < #uC (W) = 1 = [@Y17E F#u | (w).

This means that there are more particles which have entered
in w than particles which have left w at each time ¢. Then,
there exists ¢ such that T > max(t:;( 9 +t9). Thus Ty > Ty.

Conversely, let o be the optimal permutation in the defi-
nition of 77. Consider the sequence

uy, = 00, (10)

where 6, are some cutoff functions in C* on w defined by
0 < Hkl < 17
0k- =0in wc,
Gk =1in Wi,

with wy, := {20 € R?: d(20,w°) >
large enough

inf{t € RY : ®UH0xv(29) € w Vs > t}

1/k}. Let 6 > 0. For K

is smaller that

Ty +6 —inf{t € RT : d"T%(z}) € w Vs > t}.

For more details, we refer to Proposition 2 in [4]. Thus 77 >

To. [ |
Formula (8) for the minimal time can be simplified, since

one can easily find a permutation ¢ minimizing the cost:

Corollary 2 Let 1° and p' be the measures given in (6)
satisfy Condition 1. Assume that the sequences {t?}i€{17.__7n}
and {t}}ie{l _____ n} defined in Proposition 2 are, respectively,
increasingly and decreasingly ordered. Then the minimal
time (8) is given by:

(11)

Proof: Consider T; given in (8). We assume that
{t?}ie{l,...,n} is increasingly ordered. Let oy be a minimis-
ing permutation in definition (8). We build recursively a
sequence {01, ...,0,} as follows:

e Let k; be such that tl o (k1) is one of the maximisers
of {ti(l)(l),. st (n)} We denote by o1 := Ti , © 09
where, for all 4,5 € {1,...,n}, T, ; is the transposition
between the first i and jth elements. As illustrated in
Figure 2, we clearly have

+tc1m<k ) 2 1 +t¢170(1)’

Lt o(k1) = > t1 +t00(k0)

+t00(k ) Z 1+ oy
Thus o1 minimizes also (8).

a )+t
ZG{Hll * { UO()} ie{l,...,n}

1
) — —001)
0 1
t2 tdo(Q)
Tk
0 ) ! 1
tkl tUo(lﬁ)
t0 t!
ki1+1 Uo(k1+1)

Fig. 2. Computation of the minimal time

o Assume that o; is built. Let k; +1 be such that t (kyen)
is a maximizers of {¢! Gy b, (1 )} We denote by
i1 = Tjt1,k; 41 © 05 Agam we clearly have

0 1 0 1
t§j+1 Hg(k e J+1 Tlog1y
t

ki1 + tU(kj 1) & > tJ+1 + to(k

0 1 1)
tkj+1 + t"’(ijrl)

j+1 + tU(JJrl)
Thus o, minimizes also (8).

0, 41
ie{ml,a.}fn}{ti +t%‘(i)} = Ze{max {t * td (e )}



We remark that the sequence {t} ..., .} is de-
creasing and o, is a minimising permutation. We deduce
that 77 = Tb. ]

IV. OPTIMAL TIME FOR CONTINUOUS MASSES

In this section, we prove Theorem 1 about minimal time
for continuous masses. To achieve controllability in this
setting, one needs to store the mass coming from p° in w
and to send it out with a rate adapted to approximate .

Proof of Theorem 1: We first prove item (i):

(i) Fix € > 0 and s > 0. Let Tj be the infimum satisfying
Condition (a)-(c) in Definition 1. Let K be large enough such
that

[ #uC (W) = 1 — [ @Y1 #u|(w) — e,
for all ¢ € (0,7p). We prove that we can steer ° to a W,-
neighbourhood of ;! on the time interval (0,7 + s). The
proof is divided into two steps:

e In a first step, we discretize the supports of 1¥ and p'.
We use first a coarse uniform mesh, then on each cell
we discretize p° and p!' with respect to the mass.

e In a second step, we explain how to connect the
different masses of ©® and p'.

Step 1:

Let a,b be such that supp(u®) C (a,a + b)¢. Consider the
sequence of uniform meshes (7 )xen+ Where, for all k£ € N*,
Ty is defined by

d : )

H(a—|— ;—ka,a—i— 272—: !

j=1
Let ¥ € supp(u®). Let t(z) as defined in (2). There exists
t*(2%) € (t%(2°),t°(2") + s) and a cell S(z°) of a mesh
Tr(z0) such that

b) : (i1, .y iq) € {0,..., 28 —1}¢

@ft;‘{f)(S(xo)) C w.

By compactness of supp(u°), there exists {29, ...,20} such
that {S(29)} is a finite subcover of supp(u”). Without loss
of generality, we can assume that {S(z{)}; belong to a
mesh Tx. We discretize the support of p' with the same
process. We denote by {z0}; and {z}}s the middlepoints
of the cell and by {t9} and {t} } the times at which these
squares are included in w. System (1) is conservative, i.e. if
we denote by p the solution to System (1) the application
t + [pa p(t) is constant. Hence, to send a measure to
another, these measures need to have the same total mass.
Thus we discretize measure p” X Lg(z0y and p” X Lg,1y in
some measures with the same total mass. We use a strategy
defined in [4]. Fix k € {1,...,n} and let pf := p® X L g(50).
To simplify the presentation, assume that d := 2 and
supp(°) C (0,1)%. We denote by

o= p0(S(2)).
Fix n € N*. Define a the abscissa of the left side of S(z").
and the points a; for all 4 € {1,...,|an|} by induction as
follows: suppose that for ¢ € {0, ..., |[an] — 1} the points a;
are given, then a;y; is the smallest value satisfying

_ lan]

0
j1(a,,,al+1)><Rde - n?Z

Let o := p%([(ai, aix1) x Rl N S(x?)). Again, for all i €
{0, ..., lan| —1}, we define a; o the lowest ordinate of S(z?)
and supposing that for a j € {0, ..., [an] —1} the points a; ;
are already defined, a; ;11 is the smallest values such that

fAMj d‘uo = L?l?J 9
where Ayi; := (ai,aiy1) X (aij, a;j4+1)). We give in Figure
3 an example of such decomposition.

Z2
aon
ag(n—1) Aj(n—1
ap(n—2) K : .
(oin]
L TG R m—
s anlyn
a”L] .......
aop2 PR
1265+ . |
ao1 25 a;1
11+ 2
7 1
ao a; Qagz --- Q4 Ajt1 -+ Ap—2 Ap—1 Ap

Fig. 3. Example of a decomposition of 0.

We discretize similarly the measure i, := p' x 1 g(,1) on
some sets By;;. To act locally on the sets Ay;; and By,
we define sets Cy;; C Agi; and Dyryrjr C By jr. We then

“ send the mass of uo from each Cp;; to each Dy, while

we do not control the mass in Ag;;\Cg;;. More precisely, we
define, as in Figure 4, a;, a},a;; a:; the smallest values

i s Qi
such that
0o __ 0
f(aiva;)x(aijvai(j+l)) dp” = f(a;r,ai+1)><(aij,ai(j+1)) dyu
an
= ni

and
0 0
Jamat)xaman) ® = Jarahx(atanen) W
_ b (lel el

n3 n

3|

Ai(j+1)
Jr

a;;

a7

P m

a; a, a,

Fig. 4. Example of cell
We define similarly b;", b;, b, b;;. We finally define
Chrij == [a )x[a;j,a;;) and Dy;j := [b;,bj)x[b;j,bfj).
Step 2:

We explain now how to send approximately the measures

1P x 1g,,, to the measures p' x 1 Dyrir;r- Let us first recall
the following result:

Ai+1

-+
i@

Proposition 3 (see [4]) Ler 1 € P*(RY) satisfying
supp(u®) CC w. Define S a square strictly included in w and



choose § > 0. Then there exists a space-dependent velocity
field u, Lipschitz and uniformly bounded with supp(u) C @,
such that the corresponding solution to System (1) satisfies

supp(p(d)) CC S.

Using Proposition 3, it is possible to concentrate the
measures <I>v+“K#(u x1¢,,;) and <I>”+“K#(u XD, .0)
in some squares Eijr, CC Cyjr and Fl/;/k/ CC Dy jryr (as
small as we want). Up to a adaptation of Corollary 1 to the
case of arbitrary concentrated masses, if these squares are
small enough, then there exists a control u Lipschitz in space,
measurable in time and uniformly bounded with supp(u) C
w such that the support of @”#@”*“K#(MO x 1c,,,) is

included in the support of @”“‘K#(,u X1Ip,,..0)-

Using Step 2 in the proof of Proposition 1 in [4], the
refinement of the grid provides convergence to the target p!,
ie.

Waut, u(T)) — 0.
If T =T}, then we control at time 7"+ ¢ and we conclude
using property (4) of the Wasserstein distance.

(ii)) We now prove the second item of Theorem 1. Let Tj
be the infimum satisfying condition (a)-(c) of Theorem 1.
If "< T§ or T" < T7, then it is clear that System is not
controllable at time 7', since we cannot act an each particle.
For all T € (0,75) and sequence {uy}x, there exists s €
(0,T) such that

T (@040 (w) > 1~ lim [0t (w).

(if it is not the case, then 75 is not optimal) We can take for
example the sequence {uy }x defined in (10). Hence, at time
s, there is less mass which has entered w than mass which
have left w. Thus we obtain a contradiction.
|
We have also the following result on the continuity of the
minimal time with respect to the initial condition:

Theorem 3 The application 1° — Ty (u°, u') is continuous
with respect to the Wasserstein distance W ..

The definition of W, is recalled in Section II. Theorem
3 will be useful for the approximation of the initial data.
As it will be explained in Remark 5, the application p° —
To(u°, 1) is instead not continuous with respect to the L!-
norm or the other Wasserstein distance W), with 1 < p < 0.

Proof of Theorem 3: Consider p°, p' € P*(R?) and
a sequence {10},ens C PI(RY) satisfying Condition 1
and Woo (p2, 12) < 1/n. Let Ty = max{Ty, Ty, Ty} and
Ty, = max{Ty,, T1 T n} be the corresponding minimal
time associated to z° and ©2. In a first step, we prove that
To,n converge to T and in a second step that 775, converges
to 15

(i) Fix € > 0. We aim to prove that for n large enough
|To,n, — To| < €. For all n € N*, there exists a measurable
map S, : RY — R? such that p2 = S,#u°. We have
|Sn(2%) — 2° < 1/n. For all 2° € supp(u) there exists
r(2°) such that

|20 — 3% < r(2?) = [to(a®) — t°(3%)] < e.

By compactness, for a family {:cl, ey 29, } C supp(p®) we
have supp(u°) < U;B(2?,7r(2?)). Thus for n such that
1/n < inf;(r(z?)), we obtain |t0( ) —9(S, (%) < e.

(i) Let T = T5 + s with s > 0 and {up}r the
corresponding sequence to ;. With the same argument of
compactness as above, for n large enough:

lim (@} 7" #pp](w) > 1~ lim [@757 #pt|(w),
k—o0 k—o0
for all t € (s,T). Thus lim T3, < T5.

Let now T < Ty. For all sequence {uy}x, there exists
€ (0,T) and § > 0 such that

lim [®UF " #1%(w) < 1 — lim [@V5F #u'](w) — 6.
k—oo k—o0
It implies that for n large enough
Jim [@g“%#ug](w) <1- lim [@”*“k#u J(w) — §/2.
Hence 15, >T. Thus lim T2 w2z 15 ]

n—oo

Remark 5 The application ° — To(u®, ') is not continu-
ous with respect to the L'-norm or the Wasserstein distance
Wy. Indeed, consider p® = p' := L1 € P(RY),
w := (0,1) and v := 2. The minimal time to send p° to
u! is clearly equal to 0. For each n € N*, we define the

measure 1-1/nifz € (0,1),
Pl =14 nifze (=2,-1),
0 otherwise.

We remark that Wi (ul, u®) — 0, ||u2 — pu%||pr — 0 and
To(u®, u*) = 1. Thus the application u® +— To(ul, ut) is
not continuous with respect to the Wasserstein distance or
the L!'-norm.

V. NUMERICAL SIMULATIONS

In this section, we give a numerical illustration of the
algorithm developed in the proof of Theorem 1 to compute
the minimal time. We highlight that some concentration of
the mass in the control region w can appear. We first recall
this algorithm:

Algorithm 1:

Step 1 : Discretisation of u® and p'
(i) Construction of the uniform mesh
(ii) Computation of the cell A;; following the mass

Step 2: Computation of the minimal time using
Expression (11)

Step 3: Association of the masses of u° and g
minimising Expression (9)

Step 4: Concentration of the masses (if necessary)
Step 5: Final computation

Consider the initial data ;° and the target ;' defined by

0. 0.5 ifz€(0,2),
F"=90 0 otherwise
and L[ 05 ifxze (7,8 U(10,11),
"= 0 otherwise.



We fix the velocity field v := 1 and the control region w :=
(5,6). Following Algorithm 1, we approximate the minimal
time Tj and a control u such that the corresponding solution
w to System (1) satisfies W (u(Tp + 6), u') < e. We use ¢ t = 0.0s

Lagrangian scheme for simulation (see [6] for more details) 2.0
Some approximations at some times are given in Figure 5 — uld)

It is interesting to see that we observe the apparition of ¢ 1.5 { EEE Control region
concentration of the mass in the control region w.
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Fig. 5. Solution at time t =0, ¢t =4.6,t = 7.6 and t =T = 9.006.



