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NEUMANN AND MIXED PROBLEMS ON MANIFOLDS WITH
BOUNDARY AND BOUNDED GEOMETRY

NADINE GROßE AND VICTOR NISTOR

Abstract. We prove regularity and well-posedness results for the mixed
Dirichlet-Neumann problem for a second order, uniformly strongly elliptic
differential operator on a manifold M with boundary ∂M and bounded geome-
try. Our well-posedness result for the Laplacian ∆g := d∗d ≥ 0 associated to
the given metric require the additional assumption that the pair (M, ∂DM) be
of finite width (in the sense that the distance to ∂DM is bounded uniformly
on M , where ∂DM is the Dirichlet part of the boundary). The proof is a
continuation of the ideas in our previous paper on the Dirichlet problem on
manifolds with boundary and bounded geometry (joint with Bernd Ammann).
We also obtain regularity results for more general boundary conditions. Our
results are formulated in the usual Sobolev spaces defined by the Riemannian
metric on M .
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1. Introduction

We prove regularity and well-posedness results for the mixed Dirichlet-Neumann
problem for a second order, uniformly strongly elliptic differential operator on a
manifold M with boundary ∂M and bounded geometry. For the most part, the
results in this paper are based on and extend those of a previous joint paper of ours
with Bernd Ammann [5]. The main contribution of this paper is a more thorough
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2 N. GROßE AND V. NISTOR

study of the regularity for more general boundary conditions than the ones studied
in [5]. Our regularity and well-posedness results for the mixed Dirichlet-Neumann
problem (or system) are formulated in the higher regularity Sobolev spaces Hk+1

associated to the given riemannian metric on M .
Let (M, g) be a Riemannian manifold with boundary and bounded geometry

(see Section 3 and [5, 25]). To formulate our mixed boundary conditions, we fix a
subset ∂DM ⊂ ∂M where Dirichlet boundary conditions will be imposed and let
∂NM := ∂M \ ∂DM . On ∂NM , we will impose Neumann boundary conditions.
Both ∂DM and ∂NM are supposed to be unions of connected components of ∂M ,
to avoid the issue of singularities where the type of boundary conditions changes.
Let P = Pa + Q be a uniformly strongly elliptic operator, where a is a strongly
coercive bilinear form, Pa is the operator in divergence form associated to a and Q
is a first order differential operator, see Section 2.1 for definitions and more details.
In this introduction and for our main results, we shall assume that either P has
coefficients in W k+1,∞ or that M is a Lie manifold with boundary and structural
compactification M and that P has coefficients in Ck(M). In this paper, k ≥ 1 is
an arbitrary, but fixed regularity parameter.

Our first result is a regularity result for the problem
Pu = f in M
u = hD on ∂DM

∂aνu = hN on ∂NM ,

(1)

where ∂aνu is the associated Neumann condition, as in Remark 2.3.
Theorem 1.1. Let P := Pa + Q be a uniformly strongly elliptic second order
differential operator. We assume either that P has coefficients in W k+1,∞ or that
M is a Lie manifold with boundary with compactification M and P has coefficients
in Ck(M). Then there is C > 0 such that, if u ∈ H1(M), f := Pu ∈ Hk−1(M),
hD := u|∂DM ∈ Hk+1/2(∂DM), and hN := ∂aνu|∂NM ∈ Hk−1/2(∂NM), then u ∈
Hk+1(M) and

‖u‖Hk+1 ≤ C
(
‖f‖Hk−1 + ‖hD‖Hk+1/2 + ‖hN‖Hk−1/2 + ‖u‖H1(M)

)
.

In the last equation, ‖u‖Hk+1 = ‖u‖Hk+1(M), ‖hD‖Hk+1/2 = ‖hD‖Hk+1/2(∂DM),
and so on (we have omitted from the notation of the norms the spaces on which
the functions are defined and we will do so accordingly when there is no danger of
confusion).

This result follows right away from Theorem 4.5 and Corollary 4.18. Note that
in case a = g (the Riemannian metric), we have that Pa = ∆g and that ∂aν = ∂ν .
We note that if we regard d : H1

D(M) := {u ∈ H1(M) | u|∂DM = 0} → L2(M), then
∆g := d∗d has the right boundary conditions (Dirichlet on ∂DM and Neumann on
the complement). Therefore, the above theorem applies to P = ∆g with Dirichlet
or Neumann boundary conditions.

Recall from [5] that we say that (M,∂DM) has finite width ifM is a manifold with
boundary and bounded geometry and there exists R > 0 with dist(x, ∂DM) ≤ R
for all x ∈M .
Theorem 1.2. Let us use the notation and assumptions of Theorem 1.1 and let
us further assume that (M,∂DM) has finite width and that Q = 0. Then we can
choose C such that

‖u‖Hk+1(M) ≤ C
(
‖f‖Hk−1(M) + ‖hD‖Hk+1/2(∂DM) + ‖hN‖Hk−1/2(∂NM)

)
.
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Consequently, the same result is true if ‖Q‖H1→L2 is small enough.

Here ‖Q‖H1→L2 notes the operator norm of Q as an operator from H1 → L2.
The theorem follows directly from Theorems 4.6 and 4.19, see also the discussion
following Theorem 3.16. In particular, under the assumptions of Theorem 1.2, we
obtain an isomorphism˜̃P : Hk+1(M)→ Hk−1(M)⊕Hk+1/2(∂DM)⊕Hk−1/2(∂NM) ,˜̃P (u) := (Pu, u|∂DM , ∂aνu|∂NM ) .

Therefore, if (M,∂DM) has finite width, the Laplacian P = ∆g with Dirichlet
boundary conditions on ∂DM and Neumann boundary conditions on ∂NM will
satisfy the conditions of the above theorem. The same is true for the Schrödinger
operator P := ∆g + V , V ∈ W k,∞(M), V ≥ 0. The proof of the second theorem
(Theorem 1.2), follows from the first theorem (Theorem 1.1) by combining it with
the isomorphism results in [5]. (More precisely, we use the isomorphism result in [5]
that amounts to Theorem 1.2 for k = 0, if properly formulated to allow for the case
k = 0.)

The proof of our regularity result, Theorem 1.1, is based on uniform local
regularity estimates in Fermi coordinate patches near the boundary. These local
regularity estimates are well-known in each coordinate patch, our contribution
being to show that the resulting estimates can be assumed to be uniform (that is,
independent of the patch). The uniform estimates are obtained in Section 2, where
we also introduce our notation, recall the definition of some basic analytic concepts
(Sobolev spaces, differential operators, manifolds with totally bounded curvature,
and so on). Our approach to higher regularity on manifolds with bounded geometry
is to use the compactness of the associated local problems near the boundary. In
Section 3, we recall the definition of manifolds with boundary and bounded geometry
and some well-posedness results from [5], such as the Poincaré inequality for these
manifolds in case they are with finite width. We also discuss the characterization of
Sobolev spaces on manifolds with boundary and bounded geometry using partitions
of unity. In the last section, Section 4, we prove that Dirichlet and Neumann
boundary conditions satisfy the assumptions of the results in Subsection 2.2, and
hence that they provide uniform regularity estimates. We then prove the theorems
stated in this introduction (usually in a slightly more general form). Finally, we
briefly explain how to obtain some more general results in the case of Lie manifolds.
Acknowledgments. We would like to thank Bernd Ammann for several useful
discussions. We also gladly acknowledge the hospitality of the SFB 1085 Higher
Invariants at the Faculty of Mathematics at the University of Regensburg where
parts of this article was written.

2. Preliminaries

We include here some background material. More precisely, we introduce here
the Sobolev spaces and we recall the results from [5] and from other sources that
we will use. We refer to [5] for more details.

Throughout this paper, M will be a (usually non-compact) connected smooth
manifold of dimension m+ 1 with smooth boundary ∂M and Riemannian metric
g. We shall also assume throughout the paper that we are given a disjoint union
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decomposition
∂M = ∂DM t ∂NM

with ∂DM and ∂NM open in ∂M . In particular, each of ∂DM and ∂NM is closed
and a disjoint union of connected components of ∂M . On the set ∂DM we will impose
Dirichlet boundary conditions, whereas on ∂NM we will impose Neumann boundary
conditions. We call ∂DM the Dirichlet part of the boundary and ∂NM := ∂M \∂DM
the Neumann part of the boundary.

2.1. Differential operators and Sobolev spaces. Let M be a smooth manifold
(possibly with boundary) and E → M be a smooth complex vector bundle with
connection ∇. We shall say that (E,∇) (or simply E) has totally bounded curvature
if its curvature RE and all its covariant derivatives ∇jRE are bounded (on tensor
bundles we use the Levi-Civita connection). For simplicity, we shall assume that all
vector bundles in this paper (and all connections) have totally bounded curvature.

If aj is a (measurable) section of End(E)⊗R TM
⊗j , for 0 ≤ j ≤ `, and a` is not

identically equal to 0, then

Pu :=
∑̀
j=0

aj∇ju , (2)

is the general form of an order ` differential operator. Its minimal domain is the
space Γc(M ;E) of smooth sections of E with compact support. It takes values in
the space of measurable sections of E. The slightly more general case of differential
operators acting between sections of different vector bundles E and F can be, to
a large extent, reduced to the setting of a single vector bundle, by using E ⊕ F .
Alternatively, we can use projections from trivial vector bundles, see Lemma 3.12,
for instance. This more general setting is needed in order to deal with operators
such as the chiral Dirac operator, but this will not be the focus of this paper, so
we will consider only operators acting on sections of the same vector bundle, for
notational simplicity.

Let us assume from now on that E →M is endowed with a Hermitian form and
a connection ∇ : Γ(M ;E)→ Γ(M ;E ⊗ T ∗M) that preserves that form and that the
tensor bundles (TM)⊗i ⊗ (T ∗M)⊗j are endowed with the Levi-Civita connection.
We define

W k,p(M ;E) := {u | ∇ju ∈ Lp(M ;E ⊗ T ∗M⊗j), 0 ≤ j ≤ k}

‖u‖p
Wk,p(M ;E) :=

k∑
k=0
‖∇ku‖pLp(M ;E⊗T∗M⊗j) for p <∞ and

‖u‖Wk,∞(M ;E) :=
kmax
k=0
‖∇ku‖L∞(M ;E⊗T∗M⊗j),

where all Lp-norms are computed with respect to the volume form associated to the
metric g. As usual, we let W∞,p := ∪kW k,p and Hk(M ;E) :=W k,2(M ;E). We let
W k,∞
D (M ;E) be the closure in W k,∞(M ;E) of the space of smooth sections with

compact support in M \ ∂DM . If ∂DM = ∂M 6= ∅, we shall write Hk
0 = Hk

D and
W k,p

0 = W k,p
D , as usual. In this paper, only the cases p = 2 or p =∞ will be used

in a significant way.
If the coefficients in (2) satisfy aj ∈W k,∞(M ; End(E)⊗R TM

⊗j), we shall say
that Pu :=

∑`
j=0 aj∇ju has coefficients in W k,∞. In particular, a scalar first

order differential operator with coefficients in W k,∞ is an operator of the form
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Qu = X(u) + cu where X is a vector field and c is a measurable function with X ∈
W k,∞(M ;TM) and c ∈ W k,∞(M). By definition the operator P :=

∑`
j=0 aj∇ju

then defines a continuous map

P =
∑̀
j=0

aj∇j : W k+k,p(M ;E)→W k,p(M ;E).

Lemma 2.1. Let k ≥ 0 and let P be an order ` differential operator with coef-
ficients aj ∈ W k+1,∞(M ; End(E) ⊗ TM⊗j). Let φ ∈ W k+`+1,∞(M). Then the
commutator [P, φ] defines a continuous linear map Hk+`(M ;E) → Hk+1(M ;E).
Moreover, if {φγ}γ is a bounded family in W k+`+1,∞(M), then operator norms of
[P, φγ ] : Hk+`(M ;E)→ Hk+1(M ;E) are bounded uniformly in γ.

Proof. We have [P, φ]u =
∑`
j=1 aj

∑j−1
s=0

(
j
s

)
∇j−sφ∇su. Thus,

‖[P, φ]u‖Hk+1 ≤C
k+1∑
r=0

∑̀
j=0
‖∇r(aj

j−1∑
s=0
∇j−sφ∇su)‖L2

≤C
k+1∑
r=0

r∑
t=0

∑̀
j=0
‖∇r−taj∇t(

j−1∑
s=0
∇j−sφ∇su)‖L2

and the claim follows by the regularity assumptions on aj and φ. �

Notations 2.2. We let V denote the complex conjugate space of a complex vector
space V . Also, V ′ will denote the (topological) dual of V and V ∗ := (V )′.

Of course, if V is obtained from the complexification of a real, orthogonal vector
space U , that is, if V ' U ⊗R C, then we have canonical isomorphisms V ' V ′ '
V ' V ∗, so the distinction between these spaces becomes unnecessary. This is the
case in many classical applications.

Let C denote the trivial, one-dimensional vector bundle C → M and E′ =
Hom(E,C) denote the dual bundle of E. We define then H−k(M ;E) as the dual of
Hk

0 (M ;E′). For u ∈ H−k(M ;E), the composition Γc(M ;E′) ↪→ Hk
0 (M ;E′) u−→ C

allows us to view u as a distributional section of E, and hence Hk(M,E) ⊂
L2(M,E) ⊂ H−k(M,E). (Note that we are using the metric g on M and its
associated volume form to identify functions with distributions.) Using the Hermitian
form to identify E′ with E, which leads to Hk

0 (M ;E′) ∼= Hk
0 (M ;E) ∼= Hk

0 (M ;E),
we obtain using Notation 2.2 that

H−k(M,E) ∼= Hk
0 (M ;E)∗ := Hk

0 (M ;E)
′ ∼= Hk

0 (M ;E)′. (3)

Thus H−k(M ;E) is the (conjugate) dual of Hk
0 (M ;E) with pivot L2(M, g). If

∂NM 6= ∅, we shall proceed by analogy and consider the spaces Hk
D(M ;E)∗ ∼=

Hk
D(M ;E)′.
We denote by L(V,W ;C) the space of continuous bilinear forms on V ×W . If V

andW are finite dimensional, we then have that the space Sesq(V,W ) of sesquilinear
forms B : V ×W → C is in natural bijection with the spaces L(V,W ;C) of bilinear
forms on V ×W , with the space of linear maps V ⊗W → C, and with the spaces
of linear maps V →W ∗ and W → V ′:

Sesq(V,W ):=L(V,W ;C) ' L(V ⊗W ;C) ' L(V ;W ∗) ' L(W ;V ′) . (4)
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In case V and W are infinite dimensional Banach spaces, we still have continuous
maps Sesq(V,W ) ' L(V,W ;C) → L(V ;W ∗). In the following, we shall use these
isomorphisms to sometimes identify these spaces without further comment. In
particular, these identifications allow us to introduce operators “in divergence form”
as follows: Let

a ∈W k,∞ (M ; [(T ∗M ⊗R E)⊗C (T ∗M ⊗R E)]′
)
,

that is, a is a suitably bounded family of sesquilinear forms ax on T ∗xM ⊗R Ex. We
shall say that a is a W k,∞-sesquilinear form on T ∗M ⊗R E. The Dirichlet form Ba
on H1

D(M ;E) associated to a is

Ba(u, v) :=
∫
M

a(∇u,∇v) dvolg ,

where ∇ : H1
D(M ;E)→ L2(M ;T ∗M ⊗R E) is the connection. In particular

Ba : H1
D(M ;E)×H1

D(M ;E)→ C
is a continuous sesquilinear form, and hence it defines a continuous linear map

P̃a : H1
D(M ;E)→ H1

D(M ;E)∗ ∼= H1
D(M ;E)′

that is uniquely determined by the relation P̃a(v)(w) := Ba(v, w) for all v ∈
H1
D(M ;E) and w ∈ H1

D(M ;E). (See Equation (4) and the discussion following it.)
More precisely, regard a as section in W k,∞ (M ; Hom[T ∗M ⊗R E, (T ∗M ⊗R E)∗])
using again Equation (4). Also, let ∇∗ : L2(M ;T ∗M ⊗R E)→ H1

D(M ;E)∗ be the
adjoint of ∇ : H1

D(M ;E) ⊂ L2(M ;E)→ L2(M ;T ∗M ⊗R E) We have

P̃a(v)(w) := Ba(v, w) :=
∫
M

a(∇v,∇w) dvolg =
∫
M

〈a(∇v),∇w〉 dvolg ,

which gives
P̃a : H1

D(M ;E)→ H1
D(M ;E)∗, v 7→ P̃a(u) := ∇∗

(
a(∇v)

)
. (5)

Note that ∇∗ here is the adjoint ∇∗H1 of ∇ as an operator defined on H1
D(M ;E).

This operator differs from the adjoint of ∇ defined on H1(M,E) only by its domain
of definition. We denote by (∇L2)∗ : H1(M ;T ∗M ⊗R E) → L2(M ;E) the formal
adjoint of ∇, it is a differential operator uniquely determined by 〈(∇L2)∗v, w〉M =
〈v,∇w〉M for v, w ∈ H1

0 . The operators ∇∗ = ∇∗H1 and (∇L2)∗ are related by the
equation

∇∗v(w)− 〈(∇L2)∗v, w〉M = 〈v,∇w〉M − 〈(∇L2)∗v, w〉M =
∫
∂NM

〈ν · v, w〉dS , (6)

where dS is the volume element on ∂M and v ∈ H1
D(M ;T ∗M ⊗R E) and w ∈

H1(M ;E), where ν · v = v(ν) in the sense of the duality pairing between T ∗M
and TM . This is related to the weak formulation of the Neumann problem, see
[2, 10, 11, 20, 23, 24].

Let
res : H1

D(M ;E)∗ → H−1(M ;E) := H1
0 (M ;E)∗

be the natural restriction map. Then, on H1
D(M ;T ∗M ⊗R E), we have res ◦∇∗ =

(∇L2)∗ by the discussion above. Therefore, using (3),
Pa := res ◦P̃a : H1

D(M ;E)→ H−1(M ;E)
is the “usual” differential operator associated to a and has an extension to H1(M ;E)
that is independent of the boundary conditions.
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If Q is a first order differential operator with coefficients in L∞, then it defines
a continuous map Q : H1

D(M ;E)→ L2(M ;E) ⊂ H1
D(M ;E)∗. We shall denote by

Q̃ the resulting operator from H1
D(M ;E) to H1

D(M ;E)∗ and consider continuous
operators of the form

P̃ := P̃a + Q̃ : H1
D(M ;E)→ H1

D(M ;E)∗, (7)

which we call second order differential operators in divergence form. We say that P̃
has coefficients in W k,∞ if a ∈W k,∞ and the coefficients of Q are in W k,∞. We set

P := res ◦P̃ := Pa +Q : H1
D(M ;E)→ H−1(M ;E). (8)

We further note that in the case of the pure Dirichlet problem, the distinction
between P and P̃ disappears. We need to consider P̃ only in order to deal with
Neumann conditions for u ∈ H1(M ;E), for which the restriction of the normal
derivative to the boundary does not make sense (and hence, we shall deal with these
low regularity Neumann conditions in a weak sense). Note that P determines P̃ as
well.

Remark 2.3. The best way to see the differences and the similarities between P and
P̃ is as follows. Let us consider h ∈ Hk−1/2(∂NM ;E) and f ∈ Hk−1(M ;E). Let

F (v) :=
∫
M

〈f, v〉 dvolg +
∫
∂NM

〈h, v〉dS ,

where dS is the induced volume form on ∂DM and 〈., .〉 denotes the Hermitian form
on E. Then F defines a linear functional on H1

D(M ;E) and hence an element of
H1
D(M ;E)∗. We denote Φk(f, h) := F the induced map

Φk : Ȟk−1(M ;E) := Hk−1(M ;E)⊕Hk−1/2(∂NM ;E)→ H1
D(M ;E)∗.

The equation
P̃ (u) = F (9)

is then equivalent to the mixed boundary value problem
Pu = f in M
u = 0 on ∂DM

∂aνu = h on ∂NM
(10)

that is the boundary problem (1) with hD = 0, where ∂aνu := ν · a(∇u). Indeed,
u = 0 on ∂DM since u is in the domain of P̃ . The rest follows from Equation (6),
which gives

P̃ (u)(w)− F (w) =Ba(u,w) + 〈Qu,w〉 −
∫
M

〈f, w〉 dvolg −
∫
∂NM

〈h,w〉dS

=〈(∇H1)∗(a∇u) +Qu− f, w〉M −
∫
∂NM

〈h,w〉dS

=〈(∇L2)∗(a∇u) +Qu− f, w〉M +
∫
∂NM

〈ν · a(∇u)− h,w〉dS.

This discussion will be useful in treating the mixed boundary value problem (1) (or
rather (10)) using a weak formulation in Subsection 4.2.
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For second order operators in divergence form, we have the following mapping
properties. Recall that a ∈ W k,∞ (M ; [(T ∗M ⊗R E)⊗C (T ∗M ⊗R E)]′

)
defines a

W k,∞-sesquilinear form on T ∗M⊗RE, and hence a second order differential operator
in divergence form Pa.

Lemma 2.4. Let a ∈ W k,∞ (M ; [(T ∗M ⊗R E)⊗C (T ∗M ⊗R E)]′
)
, let k ≥ 1, and

assume that Q has coefficients in W k−1,∞. Then P̃ := P̃a + Q̃ defines a continuous
map P : Hk+1(M ;E)→ Hk−1(M ;E). Moreover, P ∈ L(Hk+1(M ;E), Hk−1(M ;E))
depends continuously on the coefficients.

The reader should compare the mapping properties of this lemma to Equations
(7) and (8), which amount to the statement of the Lemma for k = 0 (in which case,
we need to adjust the formulation and use P̃ instead of P ).

Proof of Lemma 2.4. For k ≥ 0, this follows from the relation (5) and from res ◦∇∗ =
−(∇L2)∗. �

In order to study the invertibility of the operator P in Equation (10), one often
uses (strong) ’coercivity’. Recall the following basic concept, where we use the
terminology from [?, 26].
Definition 2.5. A bounded sesquilinear form a on T ∗M⊗RE will be called strongly
coercive if there exists ca > 0 satisfying

< a(ξ, ξ) ≥ ca‖ξ‖2, for all ξ ∈ T ∗M ⊗R E.

Note that this definition depends on the choice of the Riemannian metric g
on M , because both the strongly coercivity condition and the condition that a
is bounded (i.e. a ∈ W 0,∞ (M ; [(T ∗M ⊗R E)⊗C (T ∗M ⊗R E)]′

)
) depend on the

metric. However, since the metric is fixed in this paper, we will not show the metric
in the notation.

We can now introduce the operators in which we are interested.

Definition 2.6. Let {P := Pa+Q} be a family of second order differential operator
in divergence form with each a being a bounded sesquilinear form on T ∗M ⊗R E
and each Q a first order differential operator with coefficients in L∞. We shall say
that the family {P} is a bounded family if the L∞-bounds on the sesquilinear forms
and on the coefficients of the operators Q can be chosen independently of P . We
say that the bounded family {P} is uniformly strongly elliptic if each a is strongly
coercive and we can choose ca in Definition 2.5 independent of P .

In particular, the j-th coefficients of the differential operators P in a uniformly
strongly elliptic family {P} are uniformly bounded in W 0,∞(M ; End(E)⊗ TM⊗j).
We shall say that an operator P := Pa + Q is uniformly strongly elliptic if the
family {P} consisting of just the operator P is uniformly strongly elliptic. See
[1, 2, 12, 21, 15] for more information on strongly elliptic operators and other related
results.

2.2. Uniform regularity estimates for families. Let (M, g) be a Riemannian
manifold with smooth boundary ∂M . We assume that M has totally bounded
curvature (which, we recall, means that the curvature of M and all its covariant
derivatives are bounded) and that the restriction Hk(M ;E)→ Hk−1/2(∂M ;E), the
trace map, is continuous for all k ≥ 1. This assumption is, of course, satisfied if M
has bounded geometry, see Theorem 3.15. Let D be a differential operator on M
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with bounded coefficients (i.e. in W 0,∞) acting between sections of two Hermitian
vector bundles E,E1 →M . Let C : Γ(M ;E)→ Γ(∂M ;F ) be a differential boundary
condition, more precisely

Cu := (C ′u)|∂M
for some differential operator C ′ on M . Typically in our applications, we will have
E1 = E and F = E|∂M , so we will assume that this is the case in what follows,
for notational simplicity. The general case is treated in exactly the same way, just
by slightly changing the notation. Of course, when dealing with strongly elliptic
operators, we need to have E1 = E. Similarly, when dealing with Dirichlet or
Neumann boundary conditions, we need F = E. The operator C ′ is clearly not
uniquely determined, for instance, if C represents Neumann boundary conditions,
then C ′ depends on the extension of the unit normal field of the boundary to the
interior. We shall say that C has coefficients in W k,∞ if we can choose C ′ to have
coefficients in W k,∞. Assume, for simplicity, that C (or rather a choice of C ′ with
minimal order) has constant order j at every point of the boundary and that D is a
second order operator.

Notations 2.7. We shall denote by Dk,j(M ;E) the set of pairs (D,C), where D
is a second order differential operator defined on sections of E → M and C is an
order j boundary condition, with both D and C assumed to have coefficients in
W k,∞. In case M has no boundary and, thus, there are no boundary conditions, we
shall denote the resulting space Dk,∅(M ;E). If E := C (that is, if we are dealing
with scalar boundary value problems), then we shall drop the vector bundle from
the notation.

We endow the space Dk,j(M ;E) with the norm defined by the maximum of the
W k,∞-norms of the coefficients. Recall the following standard definition:

Definition 2.8. We say that (D,C) ∈ Dk,j(M ;E), k ≥ j, satisfies an order k
regularity estimate on an open subset N ⊂ M if there exists cR > 0 with the
following property: For any w ∈ Hk(M ;E) such that Dw ∈ Hk−1(M ;E) and
Cw ∈ Hk−j+1/2(∂M ;E), we have w ∈ Hk+1(M ;E) and

‖w‖Hk+1(M ;E) ≤ cR
(
‖Dw‖Hk−1(M ;E) + ‖w‖Hk(M ;E) + ‖Cw‖Hk−j+1/2(∂M ;E)

)
.

If S ⊂ Dk,∅(M ;E), we just drop the term ‖Cw‖Hk−j+1/2(∂M ;E) from the last
equation.

The conditions that D and C have coefficients in W k,∞ are needed so that
Dw ∈ Hk−1(M ;E) and Cw ∈ Hk−j+1/2(∂M ;E) for a large set of sections w, see
Lemma 2.4.

We shall need a uniform version of this definition. We consider a family of
boundary value problems (D,C) as follows. Let M be a Riemannian manifold with
(possibly empty) boundary and E →M a Hermitian vector bundle endowed with a
metric preserving connection.

Definition 2.9. We say that the family S ⊂ Dk,j(M ;E) satisfies a uniform order
k regularity estimate on N ⊂M if each (D,C) ∈ S satisfies an order k regularity
estimate on N ⊂ M and we can choose the bound cR in Definition 2.8 to be
independent of the choice of (D,C). If S ⊂ Dk,∅(M ;E), we just consider D ∈ S.
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Proposition 2.10. Assume that S ⊂ Dk,j(M ;E) is compact and that each (D,C)
satisfies an order k regularity estimate on M . Then S satisfies a uniform order k
regularity estimate on M . The same result holds if S ⊂ Dk,∅(M ;E).

Proof. Consider first the case S ⊂ Dk,j(M ;E). Let us assume the contrary and
show that we obtain a contradiction. Thus, let us assume that there exist sequences
(Di, Ci) ∈ S and 0 6= wi ∈ Hk+1(M ;E) such that
‖wi‖Hk+1(M ;E) ≥ 2i

(
‖Diwi‖Hk−1(M ;E) + ‖wi‖Hk(M ;E) + ‖Ciwi‖Hk−j+1/2(∂M ;E)

)
.

Since S forms a compact subset in Dk,j(M ;E), by replacing (Di, Ci) with a subse-
quence, if necessary, we can assume that (Di, Ci) converges. Let us denote the limit
with (D,C) ∈ S. Thus, there is a sequence εi → 0 with

‖Diw‖Hk−1(M ;E) ≥ ‖Dw‖Hk−1(M ;E) − εi‖w‖Hk+1(M ;E),

‖Ciw‖
Hk−j+ 1

2 (∂M ;E)
≥ ‖Cw‖

Hk−j+ 1
2 (∂M ;E)

.− εi‖w‖
Hk+ 1

2 (∂M ;E)
.

Together with the assumed continuity of the trace map, this implies

‖wi‖Hk+1(M ;E) ≥ 2i
(
‖Dwi‖Hk−1(M ;E) + ‖wi‖Hk(M ;E) + ‖Cwi‖Hk−j+1/2(∂M ;E)

−c′εi‖wi‖Hk+1(M ;E)
)
.

On the other hand, (D,C) satisfies, by assumption, an order k regularity estimate.
Consequently, there is a c > 0 such that
‖Dwi‖Hk−1(M ;E) + ‖wi‖Hk(M ;E) + ‖Cwi‖Hk−j+1/2(∂M ;E) ≥ c−1‖wi‖Hk+1(M ;E) ,

and hence we obtain
‖wi‖Hk+1(M ;E) ≥ 2i(c−1 − c′εi)‖wi‖Hk+1(M ;E) .

For i→∞, this gives the desired contradiction since 2i(c−1− c′εi)→∞, for i→∞,
and ‖wi‖Hk+1(M ;E) 6= 0. This completes the proof if S ⊂ Dk,j(M ;E).

If S ⊂ Dk,∅(M ;E), the proof is obtained by simply dropping the terms that
contain Cw from the above proof. (We can also replace 2εi with εi, but that is not
necessary.) �

Recall that a relatively compact subset is a subset whose closure is compact.

Proposition 2.11. Let N ⊂ M be a relatively compact open subset and let S ⊂
Dk+1,j(M ;E) be a bounded subset. Assume that every Dk,j(N ;E)–limit (D̃, C̃)
(so (D̃, C̃) ∈ Dk,j(N ;E)) of a sequence (Di, Ci) ∈ S satisfies an order k regularity
estimate on N . Then S satisfies a uniform order k regularity estimate on N . The
same result holds if S ⊂ Dk+1,∅(M ;E).

We remark that in this proposition the compactness condition of Proposition 2.10
is replaced by a higher regularity assumptions on the coefficients. This is needed
in order to use the Arzela-Ascoli Theorem. Moreover, we note that by choosing
a constant sequence, we see that the assumptions imply that each element in S
satisfies an order k regularity estimate on N .

Proof of Proposition 2.11. We treat explicitly only the case S ⊂ Dk+1,j(M ;E), the
other one being completely similar. Since the coefficients of all boundary value
problems in S are bounded in W k+1,∞(M), the set of coefficients of the operators
(D,C) ∈ S is precompact in W k,∞(N), by the Arzela-Ascoli theorem. Let K be
the closure of S in Dk,j(N,E), which is therefore a compact set. Moreover, our
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assumptions imply that every element in K satisfies an order k regularity estimate.
Proposition 2.10 then implies the result. �

Corollary 2.12. Let S ⊂ Dk+1,j(Bmr (0)× [0, r)) be a bounded, uniformly strongly
elliptic family of scalar boundary value problems on Bmr (0)× [0, r) ⊂ Rm+1 equipped
with the euclidean metric, r ≤ ∞. We assume that the boundary conditions are
either Dirichlet or Neumann (depending on j). Then the family S satisfies a uniform
order k regularity estimate on Bmr′ (0)× [0, r′), r′ < r.

Proof. Let (Dn, Cn) ∈ S converge to (D,C) ∈ Dk,j(Bmr′ (0) × [0, r′)). Then D is
a uniformly strongly elliptic operator because the parameter ca stays away from
0 on S, in view of Definition 2.6. Moreover, uniformly strongly elliptic operators
with either Dirichlet or Neumann boundary conditions satisfy regularity estimates
(of orders up to the regularity of the coefficients), see [20]. See also [1] for smooth
coefficients. We can then use Proposition 2.11, for the relatively compact subset
N := Bmr′ (0)× [0, r′) of M := Bmr (0)× [0, r), since the type of boundary conditions
(Dirichlet or Neumann) do not change by taking limits. �

Analogously, (in fact, even easier, since we do not have to take boundary conditions
into account), we obtain

Corollary 2.13. Let S ⊂ Dk+1,∅(Bm+1
r (0);E) be a bounded uniformly strongly

elliptic family of differential operators on Bm+1
r (0) ⊂ Rm+1, for some 0 < r ≤ ∞.

Then the family S satisfies a uniform order k regularity estimate on Bm+1
r′ (0) ⊂ Rm+1

for any r′ < r.

Remark 2.14. The regularity results of this section extend to the Lp-Sobolev spaces
W k,p, 1 < p <∞, with essentially the same proofs by using also the results in [15].

We shall use the weaker result of Proposition 2.10 to deal with Lie manifolds in
Subsection 4.3. The slightly weaker results of Corollaries 2.12 and 2.13 will be used
to deal with general manifolds of bounded geometry. This is the reason for which
we need the stronger regularity on the coefficients for general bounded geometry
regularity estimates.

3. Manifolds with boundary and bounded geometry

We include here some needed definitions and results on manifolds with boundary
and bounded geometry. Most of them can be found in [5], where further references
are also provided.

3.1. Definition and Poincaré’s inequality. Let (Mm+1, g) be a Riemannian
manifold without boundary. Recall that the injectivity radius rinj(M) of M (or,
more precisely, of (M, g)), is defined as

rinj(M) := sup{r > 0 | The exponential map expMp : Bm+1
r (0) ⊂ TpM →M

is a diffeomorphism onto its image for all p ∈M} .

Definition 3.1. If ∂M = ∅, we say that a Riemannian manifold M has bounded
geometry if TM has totally bounded curvature and rinj(M) > 0.

Recall the following definition from [5, 16].
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Definition 3.2. Let (Mm+1, g) be a Riemannian manifold of bounded geometry
with a hypersurface Nm ⊂ M that admits a unit normal field ν. We say that a
closed subset N ofM is a bounded geometry hypersurface if the following conditions
are satisfied:
(i) The second fundamental form of N and all its covariant derivatives are bounded.
(ii) There is a number r∂ > 0 such that N × (−r∂ , r∂)→M , (x, t) 7→ expMx (tνx)

is injective.

Note that if N is as in the definition above, then N with the induced metric is
itself a manifold with bounded geometry [5, Corollary 6.13]. We have the following
definition equivalent to the one in [25], see also [5, Theorem 6.1].

Definition 3.3. A Riemannian manifoldM with smooth boundary ∂M has bounded
geometry if there is a Riemannian manifold M̂ with bounded geometry, M ⊂ M̂ ,
such that ∂M is a bounded geometry hypersurface in M̂ .

We shall assume from now on that M is a manifold with boundary and bounded
geometry. As unit normal vector field we will always choose the inner unit normal
field.

Definition 3.4. If M is a Riemannian manifold with boundary and bounded geom-
etry, if ∂DM is an open component of the boundary ∂M , and if M ⊂ UR(∂DM) :=
{p ∈M | dist(p, ∂DM) ≤ R} for some R > 0, then we shall say that (M,∂DM) has
finite width. If ∂DM = ∂M , we shall also say that M has finite width.

Manifolds with finite width satisfy the Poincaré inequality for functions vanishing
on ∂DM :

Theorem 3.5. [5, Theorem 3.10] Assume that (M,∂DM) has finite width and that
E has totally bounded curvature. Let 1 ≤ p ≤ ∞. Then there exists CM > 0 such
that

CM‖f‖p ≤ ‖∇f‖p (11)

for all f ∈ H1
loc(M ;E) with f |∂DM = 0.

3.2. Sobolev spaces and partitions of unity. We now recall the definition of
Sobolev spaces using partitions of unity and “Fermi coordinates” following [16].
See especially Definition 20 of that paper, whose notation we follow here. Recall
that rinj(M) and rinj(∂M) denote, respectively, the injectivity radii of M and
∂M . Also, let ν be the inner unit normal vector field of ∂M and let r∂ as in the
bounded geometry condition for ∂M in M , Definition 3.2. Moreover, for a metric
space X, we shall denote by BXr (p) the open ball of radius r centered at p and
set Bmr (p) := BRm

r (p). Recall that we assume for the rest of the paper that M is a
manifold with boundary and bounded geometry.

In the following, we shall identify TpM with Rm+1 and, respectively, Tp∂M with
Rm, using an orthonormal basis, thus obtaining a diffeomorphism expMp : Bm+1

r (0)→
BMr (p). For r < 1

2 min{rinj(∂M), rinj(M), r∂} we define the maps{
κp : Bm2r(0)× [0, 2r)→M, κp(x, t) := expMq (tνq), if p ∈ ∂M, q := exp∂Mp (x)
κp : Bm+1

r (0)→M, κp(v) := expMp (v), if dist(p, ∂M) ≥ r,
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with range

Up(r) :=
{
κp(Bm2r(0)× [0, 2r)) ⊂M if p ∈ ∂M
κp(Bm+1

r (0)) = expMp (Bm+1
r (0)) ⊂M otherwise.

(12)

In the next definition we need to consider only the case p ∈ ∂M , however, the other
case will be useful in the next section when considering partitions of unity.

Definition 3.6. Let rFC := min
{ 1

2 rinj(∂M), 1
4 rinj(M), 1

2r∂
}
and 0 < r ≤ rFC .

Then κp : Bmr (0)× [0, r)→ Up(r) is called a Fermi coordinate chart at p ∈ ∂M (see
Figure 1). The charts κp for dist(p, ∂M) ≥ r are called geodesic normal coordinates.

Bm(r)× [0, r)

(x, t)

0

∂Mp

y = exp∂Mp (x)

νy

expMy (tνy)

M

Up

κ

Figure 1. Fermi coordinates

To define our Sobolev spaces, we need suitable coverings of our manifold. For the
sets in the covering that are away from the boundary, we will use geodesic normal
coordinates, whereas for the sets that intersect the boundary, we will use the Fermi
coordinates introduced in Definition 3.6.

We shall need suitable coverings and partitions of unity.

Definition 3.7. LetM be a manifold with boundary and bounded geometry and let
0 < r ≤ rFC := min

{ 1
2 rinj(∂M), 1

4 rinj(M), 1
2r∂

}
, as in Definition 3.6. A subset

{pγ}γ∈N is called an r-covering subset of M if the following conditions are satisfied:
(i) For each R > 0, there exists NR ∈ N such that, for each p ∈ M , the set
{γ ∈ N| dist(pγ , p) < R} has at most NR elements.

(ii) For each γ ∈ N, we have either pγ ∈ ∂M or dist(pγ , ∂M) ≥ r, so that
Uγ := Upγ (r) is defined, compare to (12).

(iii) M ⊂ ∪∞γ=1Uγ .

Remark 3.8. If 0 < r < rFC , then we can always find an r-covering subset of M ,
since M is a manifold with boundary and bounded geometry [16, Remark 4.6].
Moreover, it then follows from (i) of Definition 3.7 that the coverings {Uγ} of M
and {Uγ ∩ ∂M} of ∂M are uniformly locally finite.

We shall need the following class of partitions of unity defined using r-covering
sets. Recall the definition of the sets Uγ := Upγ (r) from Equation (12).

Definition 3.9. A partition of unity {φγ}γ∈N of M is called an r-uniform partition
of unity associated to the r-covering set {pγ} ⊂M , see Definition 3.7, if the support
of each φγ is contained in Uγ and supγ ‖φγ‖W `,∞(M) <∞ for each fixed ` ∈ Z+.
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Remark 3.10. Given an r-covering set S with r ≤ rFC , an r-uniform partition of
unity associated to S ⊂M always exists, since M is a manifold with boundary and
bounded geometry [16, Lemma 25].

In order to deal with boundary value problems with values in a vector bundle
(systems), we will also need the concept of synchronous trivializations, which we
briefly recall here:

Definition 3.11. Let M be a Riemannian manifold with boundary and bounded
geometry, and let E → M be a Hermitian vector bundle with metric connection.
Let (Uγ , κγ , φγ) be Fermi and geodesic normal coordinates on M together with
an associated r-uniform partition of unity as in the definitions above. If pγ ∈
M \ Ur(∂M), then E|Uγ is trivialized by parallel transport along radial geodesics
emanating from pγ , see [16, Definition 5.2] for a more explicit description. If
pγ ∈ ∂M , then we trivialize E|Uγ as follows: First we trivialize E|Uγ∩∂M along
the underlying geodesic normal coordinates on ∂M . Then, we trivialize by parallel
transport along geodesics emanating from ∂M and being normal to ∂M , compare [16,
Definition 5.12]. The resulting trivializations are called synchronous trivializations
along Fermi coordinates and are maps

ξγ : κ−1
γ (Uγ)× Ct → E|Uγ (13)

where t is the rank of E.

In the following, we will always assume that E → M has totally bounded
curvature. One way to think of such vector bundles is given by the following lemma:

Lemma 3.12. Let us assume that M is a manifold with bounded geometry (possibly
with boundary) and that E → M is a Hermitian vector bundle of totally bounded
curvature. Then there exists an isometric embedding E ⊂M × CN into the trivial
N-dimensional vector bundle with the standard metric such that, if e denotes
the orthogonal projection onto E, then e ∈ MN (W∞,∞(M)). Conversely, if e ∈
MN (W∞,∞(M)) and E := e(M × CN ), then E with the Grassmann (projection)
connection has totally bounded curvature.

Proof. Let us consider for each open subset Uγ as above the synchronous trivializa-
tion ξγ : E|Uγ → κ−1

γ (Uγ)× Ct from Equation (13), with Ct the typical fiber above
pγ . Then φ1/2

γ ξγ extends to a vector bundle map E →M×Ct that is inW∞,∞ since
M has bounded geometry and the connection on E has totally bounded curvature.
Let N = N5r, with N5r as in Definition 3.7. By the construction of the sets Uγ , we
can divide the set of all γ’s into N + 1 disjoint subsets Γk, such that, for each fixed
k and any γ, γ′ ∈ Γk, the sets Uγ and Uγ′ are disjoint, by the construction of the
sets Uγ . Let Ψk :=

∑
γ∈Γk φ

1/2
γ ξγ and Ψ := (Ψ1,Ψ2, . . . ,ΨN+1) : E →M ×Ct(N+1)

be the resulting bundle morphism. Then Ψ is isometric, it is in W∞,∞, and hence
e := ΨΨ∗ is the desired projection. �

This lemma may also be used to reduce differential operators acting on vector
bundles to matrices of scalar differential operators.

We have the following proposition that is a direct consequence of Theorems 14
and 26 in [16] (see [5] for more related references). See also [4, 3, 6, 18, 27, 28] for
related results, in particular, for the use of the partitions of unity. See [13] and its
outgrowth [14] for an introduction to manifolds of bounded geometry.



MIXED PROBLEMS 15

Proposition 3.13. Let M be a Riemannian manifold with boundary and bounded
geometry. Let {φγ} be a uniform partition of unity associated to an r-covering set
{pγ} ⊂M and let κγ = κpγ be as in Definition 3.6. Let E →M be a vector bundle
with totally bounded curvature with trivializations ξγ as in Definition 3.11. Then

|||u|||p :=
∑
γ

‖ξ∗γ(φγu)‖pW s,p

defines a norm equivalent to the standard norm on W s,p(M ;E), s ∈ R, 1 < p <∞.

We immediately obtain

Corollary 3.14. Assume, as before, that M is a Riemannian manifold with bound-
ary and bounded geometry and that E →M has totally bounded curvature. Then the
space Γc(M ;E) of smooth, compactly supported sections of E is dense in W s,p(M ;E)
for s ∈ R and 1 < p <∞.

Proof. It is enough to truncate the sum u =
∑
γ φγu and then to use Proposition 3.13.

�

Similarly, we have the following extension of the trace theorem to the case of
manifolds with boundary and bounded geometry, see Theorem 27 in [16] (see [5] for
more references).

Theorem 3.15 (Trace theorem). Let M be a manifold with boundary and bounded
geometry and let E →M have totally bounded curvature. Then, for every s > 1/2,
the restriction to the Dirichlet part of the boundary res : C∞c (M) → C∞c (∂DM)
extends to a continuous, surjective map

res : Hs(M ;E) → Hs− 1
2 (∂DM ;E).

The results of [5], compare Theorem 3.5, give the following (recall that our
differential operators are assumed to have coefficients in W 0,∞). Let CM ≥ 0 be the
(best) constant such that (11) holds and ca the best constant defining the strongly
coercivity of a. In particular, if (M,∂DM) does not satisfy a Poincaré inequality as
in Theorem 3.5, CM = 0.

Theorem 3.16. Let M be a manifold with boundary and bounded geometry and
let E → M have totally bounded curvature. Let P = Pa + X be a uniformly
strongly elliptic second order differential operator on M with X ∈ L∞(M ;TM). Let
c ∈ W 0,∞(M), <(c) ≥ cm ∈ R, cm ≥ 0, and ‖X‖ := ‖X‖H1,L2 . We assume that
one of the following two conditions is satisfied{

4cacm >‖X‖2 or
4cacm ≥‖X‖2 and cm < CMca .

(14)

Then the operator P̃ + c : H1
D(M ;E)→ H1

D(M ;E)∗ is an isomorphism.

Note that latter case can only occur if CM > 0, which entails that (M,∂DM) has
finite width; compare with Theorem 3.5.
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Proof of Theorem 3.16. Let us denote |u| := ‖∇u‖L2(M ;T∗M⊗E). Then the defini-
tions of CM and ca give
<〈(P̃ + c)u, u〉M =<

(
Ba(u, u) + 〈Xu, u〉M + 〈cu, u〉M

)
≥ca|u|2 − ‖X‖|u|‖u‖L2(M ;E) + cm‖u‖2L2(M ;E)

≥(ca − ε)|u|2 − ‖X‖|u|‖u‖L2(M ;E) + (cm + εCM )‖u‖2L2(M ;E) .

If δ := 4(ca− ε)(cm + εCM )−‖X‖2 > 0 for some ε ≥ 0 small enough, this gives that
there exists η > 0 such that <〈(P̃ + c)u, u〉 ≥ η(|u|2 + ‖u‖2L2(M ;E)) = η‖u‖2H2(M ;E).
We thus obtain that P̃ + c satisfies the assumptions of the Lax-Milgram Lemma [15]
and hence that it is an isomorphism H1

D(M ;E)→ H1
D(M ;E)∗. If 4cacm > ‖X‖2,

we can take ε = 0 to obtain δ > 0. If 4cacm ≥ ‖X‖2, (M,∂DM) has finite width,
and cm < CMca, it suffices to take ε > 0 small enough to again obtain δ > 0. �

We notice that, the conditions of the above theorem are such that, in general,
ca > 0 and infM <c ≥ ε > 0. If, however, (M,∂DM) has finite width and X = 0,
then we can also take infM <c ≥ 0.

4. Higher regularity and bounded geometry

The relevance of uniform regularity conditions introduced in Subsection 2.2 is that
it allows us to obtain higher regularity on manifolds with boundary and bounded
geometry and suitable boundary conditions as follows.

4.1. General boundary conditions. Let M be a Riemannian manifold with
boundary and bounded geometry, as before. Let (P,B) be a boundary value
problem on M . We assume, for notational simplicity, that B has constant order
j at the boundary. For the same reasons, we also assume that all vector bundles
(domains and ranges of operators) are the same E. The results of this subsection hold,
however, in full generality (when the vector bundles E, E1, and F of Subsection 2.2
are distinct). Let 0 < r ≤ rFC , as in Definition 3.6, and recall Up and κp from (12)
and ξp from Definition 3.11, where either p ∈ ∂M or dist(p, ∂M) ≥ r. We denote
by (Pp, Bp) the induced boundary value problems on κ−1

p (Up) = Bm2r(0) × [0, 2r),
if p ∈ ∂M . Then Pp = ξ∗p ◦ P ◦ (ξp)∗ and Bp = ξ∗p ◦ B ◦ (ξp)∗, with the obvious
notation, meaning that the operators correspond through the diffeomorphisms ξp. If
dist(p, ∂M) ≥ r, there is no Bp and we obtain a differential operator Pp on Bm+1

r (0).
Let us denote the rank of E by t. We denote by

Fb := {(Pp, Bp)| p ∈ ∂M} ⊂ D0,j(Bm2r(0)× [0, 2r);Ct)

Fi := {(Pp)| dist(p, ∂M) ≥ r} ⊂ D0,∅(Bm+1
r (0);Ct)

(15)

the induced boundary and interior families of operators. Note that we always
equip Bm2r(0) × [0, 2r), (respectively, Bm+1

r (0)) with the euclidean metric. We
tacitly assumed in Equation (15), in order to define the Fermi and normal geodesic
coordinates, one considered all orthogonal trivializations of the tangent spaces (that
is, of Tp∂M , if p ∈ ∂M , and of TpM , if dist(p, ∂M) ≥ r). Of course, this yields
many equivalent boundary value problems, but it does not affect the boundedness
of the families Fb and Fi, where the boundedness is in the natural norms on
Dk,j(Bm+1

r (0),Ct) and, respectively, on Dk,j(Bm2r(0)× [0, 2r),Ct).

Lemma 4.1. Assume (P,B) ∈ Dk,j(M,∂M). Then Fi ⊂ Dk,∅(Bm+1
r (0),Ct) and

Fb ⊂ Dk,j(Bm2r(0)× [0, 2r),Ct).
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Proof. This follows from the bounded geometry assumption on M , since the Fermi
and normal geodesic coordinates maps κp of Equation (12) map W k,∞(M) to
W k,∞(Uγ), since the Christoffel symbols in the chosen coordinate charts are bounded
together with all their derivatives, compare with [16]. �

Theorem 4.2. Let M be a Riemannian manifold with boundary and bounded
geometry and let E →M be a Hermitian vector bundle with totally bounded curvature.
Let (P,B) ∈ Dk,j(M ;E) and let each of the families Fb := {(Pp, Bp)| p ∈ ∂M} and
Fi := {Pp| dist(p, ∂M) ≥ r} (see Equation 15 and above) satisfy a uniform order k
regularity estimate. Then (P,B) satisfies an order k regularity estimate.

Proof. This follows from Definition 2.8 of uniform order k regularity estimates, from
Proposition 3.13, and from Lemma 2.1:

‖u‖2Hk+1
.
∑
γ

‖ξ∗γ(φγu)‖2Hk+1

.
∑
γ

(
‖Pγξ∗γ(φγu)‖Hk−1 + ‖Bγξ∗γ(φγu)‖H

k−j+ 1
2

+ ‖ξ∗γ(φγu)‖Hk
)2

.
∑
γ

(
‖ξ∗γP (φγu)‖2Hk−1

+ ‖ξ∗γB(φγu)‖2H
k−j+ 1

2
+ ‖ξ∗γ(φγu)‖2Hk

)
.(‖Pu‖2Hk−1

+ ‖Bu‖2H
k−j+ 1

2
+ ‖u‖Hk)2 +

∑
γ

‖ξ∗γ [P, φγ ]u‖2Hk−1

+
∑
γ

‖ξ∗γ [B,φγ ]u‖2
Hk−j+ 1

2

.(‖Pu‖2Hk−1
+ ‖Bu‖2H

k−j+ 1
2

+ ‖u‖Hk)2 +
∑
γ

‖[P, φγ ]u‖2Hk−1

+
∑
γ

‖[B,φγ ]u‖2
Hk−j+ 1

2
,

since the trivializations ξγ have uniformly bounded norms. Next we notice that∑
γ ‖[P, φγ ]u‖2Hk−1 ≤ ‖u‖2Hk since the family [P, φγ ]u is uniformly locally finite.

The boundary term is treated similarly by noticing also that if j = 0 it is actually
zero. �

Remark 4.3. It is known [1, 26, 17] that a family (Dy, Cy) of boundary value
problems on Rm+1

+ ⊂ Rm+1 satisfies regularity estimates if, and only if, (Dy, Cy)
satisfies the Shapiro-Lopatinski conditions for all y. It would be interesting to have a
uniform Shapiro-Lopatinski condition that would imply a uniform, order k regularity
estimate. That would allow us to consider operators with bounded coefficients in
W k,∞ in Corollary 2.12 and in Theorem 4.2, which means that we require less
regularity for the coefficients.

Remark 4.4. The method of proof of Theorem 4.2 will yield similar global result
in other classes of spaces, as long as the local regularity results are available and
as long as a local description of these spaces using partitions of unity is available.
This is the case for the Lp-Sobolev spaces, 1 < p <∞, for which we have both the
local description using partitions of unity (Proposition 3.13) and the local regularity
results [15].
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4.2. Mixed boundary conditions. Let us turn now back to the study of mixed
boundary value problems on M . Let P = Pa + Q be a second order differential
operator in divergence form, as in (8), and endow it with the differential boundary
conditions B : C∞(M)→ C∞(∂M), locally of order j ∈ {0, 1}, that define the mixed
boundary value problem (1), namely:

Bu =
{

u on ∂DM (j = 0),
∂aνu on ∂NM (j = 1).

(16)

That is, the boundary conditions B amount to Dirichlet conditions on ∂DM and to
the associated Neumann conditions on ∂NM . Let

‖Bv‖k := ‖v‖Hk+1/2(∂DM) + ‖∂aνv‖Hk−1/2(∂NM).

Theorem 4.5. Let P = Pa + Q be a uniformly strongly elliptic second order
differential operator on M with coefficients in W k+1,∞ and let B be the boundary
operator of Equation (16). Then (P,B) satisfies an order k regularity estimate
in the sense that there exists c > 0 such that, if u ∈ Hk(M), Pu ∈ Hk−1(M),
u|∂DM ∈ Hk+1/2(∂DM), and ∂aνu|∂NM ∈ Hk−1/2(∂NM), then u ∈ Hk+1(M) and

‖u‖Hk+1(M) ≤ c
(
‖Pu‖Hk−1(M) + ‖u‖Hk(M) + ‖Bu‖k

)
.

Notice that in the statement of the theorem, we have dropped the condition that
B be of constant order (it will be, nevertheless, of locally constant order).

Proof. Let φ0 ∈W∞,∞(M) be equal to 1 in a neighborhood of ∂DM and be equal
to 0 in a neighborhood of ∂NM and φ1 := 1− φ0. The result follows by applying
Corollary 2.12 and Theorem 4.2 to φ0u together with Dirichlet boundary conditions
on the whole of ∂M and to (1− φ0)u together with Neumann boundary conditions
on the whole of ∂M :
‖u‖Hk+1(M) ≤ ‖φ0u‖Hk+1(M) + ‖φ1u‖Hk+1(M)

≤ c
(
‖P (φ0u)‖Hk−1(M) + ‖P (φ1u)‖Hk−1(M) + ‖φ0u‖Hk(M)

+ ‖φ1u‖Hk(M) + ‖φ0u‖Hk+1/2(∂M) + ‖∂aν (φ1u)‖Hk−1/2(∂M)
)

≤ 2c
(
‖[P, φ0]u‖Hk−1(M) + ‖Pu‖Hk−1(M) + ‖u‖Hk(M) + ‖Bu‖k

)
≤ c′

(
‖Pu‖Hk−1(M) + ‖u‖Hk(M) + ‖Bu‖k

)
where c is the maximum of the bounds appearing in Theorem 4.2 applied first to
Dirichlet and then to Neumann boundary conditions and where we used Lemma 2.1.
We have also used ‖φ0u‖Hk+1/2(∂M) + ‖∂aν (φ1u)‖Hk−1/2(∂M) = ‖Bu‖k. �

Let us now discuss the weak formulation of the Neumann problem, see [2, 20,
23, 24]. Let P = Pa +Q be a uniformly strongly elliptic second order differential
operator on M with coefficients in W∞,∞(M), as in Theorem 4.5 above. We define

Ȟ`−1(M) :=
{
H`−1(M)⊕H`−1/2(∂NM) for ` ≥ 1
H1
D(M)∗ for ` = 0.

In particular, Ȟ`(M) ⊂ Ȟ`−1(M), ` ≥ 0. For ` = 0, this inclusion is the map Φ0
of Remark 2.3. In general the natural inclusion Ȟ`(M)→ Ȟ−1(M) := H1

D(M)∗ is
given by Φ` of the same remark. Let P̃` : H`+1

D (M)→ Ȟ`−1
D (M) be given by

P̃`(u) := (Pu, ∂aνu|∂NM ) for ` ≥ 1. (17)
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Then the relation between P̃` and P̃0 := P̃ is by (9) expressed in the commutativity
of the diagram

H`+1
D (M) P̃`−−−−→ Ȟ`−1(M)y yΦ`

H1
D(M) P̃−−−−→ Ȟ−1(M)

(18)

where the vertical arrows are the natural inclusions. Thus, although the definition
of P̃` : H`+1

D (M)→ Ȟ`−1
D (M) for ` = 0 is different from the definitions of P̃` for the

other values of `, it fits into a scale of regularity spaces.

Theorem 4.6. Assume that the conditions of Theorem 3.16 are satisfied. In
particular, P = Pa + Q is a uniformly strongly elliptic second order differential
operator. Moreover, assume that the coefficients of Pa are in W k+1,∞(M) and
c ∈W k,∞(M) is big enough (as in Equation (14) of that theorem). Then the map
P̃k + c : Hk+1

D (M)→ Ȟk−1
D (M) of Equation (17) is an isomorphism.

Proof. For k = 0, this is exactly Theorem 3.16. In general, let us replace Q with
Q+c, and thus assume that c = 0. Let P̃−1

0 : Ȟ−1(M)→ H1
D(M) denote the inverse

of P̃0 : H1
D(M) → Ȟ−1(M), which we have just proved to exist. The regularity

result of Theorem 4.5 then gives that, if F ∈ Ȟk−1
D (M) (it is enough to prove first a

regularity estimate without c and then to include it, so we can assume less regularity
for c), then P̃−1

0 (F ) ∈ Hk+1
D (M). This proves that P̃k is surjective. Since P̃k is the

restriction of P̃0 (see Equation (18)), the result follows. �

Since the trace (or restriction) map Hk+1(M)→ Hk+1/2(∂DM) is surjective, we
also obtain the following corollary.

Corollary 4.7. Let (M,∂DM), P , and c be as in Theorem 4.6, then the map
(P + c,B) : Hk+1(M)→ Hk−1(M)⊕Hk+1/2(∂DM)⊕Hk−1/2(∂NM), k ≥ 1,

(P + c,B)(u) := ((P + c)u, u|∂M , ∂aνu|∂NM )
is an isomorphism.

The assumptions of the above corollary are satisfied if P = ∆g. Thus the problem
(1) is well-posed for P = ∆g + c, c > 0, on manifolds with boundary and bounded
geometry. If (M,∂DM) has finite width, then this problem is well-posed also for
c = 0.

4.3. Lie manifolds. We notice that in Theorem 4.5 we require more regularity for
our coefficients (they must belong to a bounded set in W k+1,∞) than what may
seem to suffice for order k regularity estimates. In fact, we can do better in the
important case of “Lie manifolds” [7]. We follow the approach in [22].

Recall that a manifold with corners M is a manifold that is locally modeled
by [0, 1]n. Then M is homeomorphic to a manifold with boundary ∂M , such that
∂M is the union of the faces of M . The interior of M is M r ∂M . To recall the
definition of a “Lie manifold,” we need first to recall that of a “Lie algebroid:”

Definition 4.8. A Lie algebroid A → M is a real vector bundle over a manifold
with corners M together with a Lie algebra bracket [ , ] on its space of sections
Γ(M ;A) and a vector bundle map % : A→ TM such that:
(i) %∗([X,Y ]) = [%∗(X), %∗(Y )] and
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(ii) [X, fY ] = f [X,Y ] + (%∗(X)f)Y , for all X,Y ∈ Γ(M ;A) and f ∈ C∞(M).
The map % : A → TM is called the anchor of A and %∗ : Γ(M ;A) → Γ(TM)

is the induced map. We shall denote by Diff(M ;A) the differential operators on
M generated by C∞(M) and %∗(Γ(M ;A)) and call them admissible (differential
operators on M). For further use, let us denote Vb(M) ⊂ Γ(M ;TM) the set of
smooth vector fields on M that are tangent to all faces of M .
Definition 4.9. A pair (M,A) consisting of a compact manifold with corners M
and a Lie algebroid A→M with anchor % : A→ TM is called a Lie manifold if it
satisfies the following properties:
(i) % : Ax → TxM is an isomorphism for all x ∈M r ∂M and
(ii) %∗(Γ(M ;A)) ⊂ Vb(M).
We see therefore that the vector bundle A→M extends TM to M .

Example 4.10. One of the simplest examples of a Lie manifold corresponds to
Γ(M ;A) ' %∗(Γ(M ;A)) = Vb(M). In case M is a manifold with smooth boundary,
this example models manifolds with cylindrical ends.

We shall need the variant of this definition for manifolds with boundary. We first
need to introduce Lie submanifolds [7].
Definition 4.11. Let (M,A) be a Lie manifold and L ⊂M be a submanifold (L
is allowed to have corners). We say that L is a sub Lie manifold of (M,A) if there
exists a Lie manifold structure (L,B) on L and a tubular neighborhood π : U → L
of L in M such that

A|U ∼= {(v, ξ) ∈ B × TU | %B(ξ) = π∗(ξ) ∈ TL } ,
where %B : B → TL is the anchor map of B.

We can now introduce Lie manifolds with boundary.
Definition 4.12. A Lie manifold with boundary (M,A) is a pair consisting of a
compact manifold with corners M for which there exists a Lie manifold (M1, A1)
such that M ⊂M1, A = A1|M , and the closure of ∂M r ∂M1 in M1 is a sub Lie
manifold of M1.

The closure of ∂M r ∂M1 in M1 will be denoted ∂′M and will be called the
true boundary of M . It is a Lie manifolds on its own, by the definition of a
Lie manifold with boundary and of a Lie submanifold. Sometimes, by abuse of
notation, we shall identify the Lie manifold M with the manifold with boundary
M := (M r ∂M) ∪ (∂M r ∂M1). The analysis and regularity will, in fact, happen
on M . We will use the notation introduced in this paragraph throughout the rest of
the paper. In particular, the boundary of M is ∂M = ∂M r ∂M1 = ∂′M r ∂M1
and ∂M is the interior of the Lie manifold ∂′M .
Example 4.13. Let us consider the following example. Let M1 be a manifold with
smooth boundary. Since Vb(M1) is a projective C∞(M1)-module, the Serre-Swan
theorem gives that there exists a vector bundle A1 →M1 such that Γ(M1;A1) '
Vb(M1). Let L ⊂ M1 be a submanifold with boundary such that ∂L = L ∩ ∂M1
and L intersects ∂M1 transversely. Then L is a Lie submanifold of (M1, A).

Let us now assume that L has codimension one and that L divides M1 into two
disjoint components. Let M be the closure of one of these components. Then M is
a Lie manifold with boundary. Its true boundary is the interior of L.
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For any Lie manifold with boundary (M,A), the choice of a metric on A yields a
metric on M , the interior of M , since A is canonically isomorphic to the tangent
space to M . All the resulting metrics are equivalent and will be called admissible
metrics. They will have very similar properties, since M is compact, and hence all
metrics on A are (Lipschitz) equivalent.

Proposition 4.14. A Lie manifold with boundary is a manifold with boundary and
bounded geometry for any admissible metric.

Proof. Let M be our Lie manifold with boundary and use the notation of Definition
4.12 and in the paragraph following it. We know from [7] that the interior ofM1 ⊃M
has bounded geometry for the metric induced from any metric on A1 → M1. It
follows from the definition of a Lie submanifold (Definition 4.11) that the interior
of a Lie submanifold is a submanifold with bounded geometry, since all tensors
(including the tubular neighborhood) extend to its compactification, as in [7]. (Recall
that a Lie submanifold is a compact manifold with corners.) In particular, ∂M is a
hypersurface with bounded geometry of the interior of M1. The result then follows
from Definition 3.3 of a manifold with boundary and bounded geometry. �

We continue to use the notation introduced in the paragraph after Definition 4.8
and consider a boundary value problem (P,B) on M , with B of constant order j
on the boundary. We assume that P and B are admissible (that is, that they are
restrictions of admissible differential operators on M1 ⊃M ⊃M). We shall denote
by D∞,jadm(M ;E) the set of admissible boundary value problems on M , if P acts on
sections of E (we do not show the range in the notation). We also denote

Dk,jcont(M ;E) := Ck(M1)D∞,jadm(M ;E)

:=
{ ∑

finite
ajPj | aj ∈ Ck(M1) and Pj ∈ D∞,jadm(M ;E)

}
.

Let (P,B) ∈ D∞,jadm(M ;E). We shall use the notation and constructions introduced
in Subsection 4.1. Namely, we consider the Fermi and geodesic normal coordinate
charts κp that have as domain the open balls in the tangent space TpM . That is, we
consider κp : BTpMr (p)→ Up(r) and κp : BTp∂M2r (p)× [0, 2r)→ Up(r) (analogous to
(12)), together with the synchronous trivializations ξp introduced in Definition 3.11.
Then we consider the corresponding differential operators (Pp, Bp) or, simply (Pp)
obtained from P and B in the trivialization ξp, as in Subsection 4.1.

The assumption that (P,B) be admissible means that the definition of (Pp, Bp)
extends to all p ∈ ∂′M and the definition of Pp extends to all p ∈ M such that
dist(p, ∂M) ≥ r [7]. Clearly, this is true if we extend the coefficients to be less
regular, that is, for (P,B) ∈ Dk,jcont(M ;E). We can then extend the families Fb and
Fi introduced in Subsection 4.1 to subsets (or families)

Fb := {(Pp, Bp)| p ∈ ∂′M ⊃ ∂M} ⊂ Dk,j(Bm2r(0)× [0, 2r);Ct)

F i := {(Pp)| p ∈M, dist(p, ∂M) ≥ r} ⊂ Dk,∅(Bm+1
r (0);Ct) .

(19)

The point here is the following lemma.

Lemma 4.15. The sets ∂′M and {p ∈M, dist(p, ∂M)} are compact. Choose a local
trivialization of A → M over some open subset U ⊂ M . The families (Pp, Bp) ∈
Dk,j(Bm2r(0)×[0, 2r);Ct) and Pp ∈ Dk,∅(Bm+1

r (0);Ct) depend continuously on p ∈ U .
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Proof. The first statement is completely trivial. For the rest, let f t(x) := f(x− t)
denote the translation, and notice first that the translation R 3 t 7→ f t and
restriction W k,∞(Rn)→W k,∞(Bnr (0)) combine to define a continuous map

Rn ×
(
Ck(Rn) ∩W k,∞(Rn)

)
3 (t, f)→ f t|Bnr (0) ∈W k,∞(Bnr (0)) .

The result then follows by using this observation and local coordinates since the
Christoffel symbols in the chosen coordinate charts are bounded together with all
their derivatives, compare [16]. �

Lemma 4.15 gives right away the following corollary.

Corollary 4.16. The sets Fb ⊂ Dk,j(Bm2r(0)×[0, 2r);Ct) and F i ⊂ Dk,∅(Bm+1
r (0);Ct)

of Equation (19) are compact.

Proposition 2.10 and Theorem 4.2 then give the following result. Recall (P,B) ∈
Dk,jcont(M ;E) consists of admissible boundary value problem with coefficients in
Ck(M).

Theorem 4.17. Let us assume that (M,A) is a Lie manifold with boundary, that
(P,B) ∈ Dk,jcont(M ;E) and that P = Pa + Q is a strongly elliptic operator such
that a extends to a strongly coercive sesquilinear form on A. Assume that the
family (Pp, Bp), p ∈ ∂′M = ∂M , satisfies order k regularity estimates. Then (B,P )
satisfies an order k regularity estimate.

Proof. This follows from Corollary 4.16, Proposition 2.10, and Theorem 4.2. Indeed,
Corollary 4.16 states that Fb and F i are compact. We have assumed that the set
Fb satisfies order k regularity estimates. Since it is a compact set, it satisfies a
uniform order k regularity estimate, by Proposition 2.10. The assumption that a
extends to a strongly coercive sesquilinear form the whole of A shows that the set F i
satisfies order k regularity estimates. Since it is compact, it satisfies a uniform order
k regularity estimate, by Proposition 2.10. Consequently, the subsets Fb ⊂ Fb and
Fi ⊂ F i satisfy, each, a uniform order k regularity estimate. We are thus in position
to infer from Theorem 4.2 that (P,B) satisfies an order k-regularity estimate, as
desired. �

The point of the above theorem is that we are allowing lower regularity in the
coefficients, that is, Ck instead of W k+1,∞ and we are not assuming uniform order
k regularity estimates. The assumptions of the above theorem are in particular
satisfied for mixed boundary conditions introduced in (16).

Corollary 4.18. Consider the setting of Theorem 4.17. In particular, M is a
Lie manifold with boundary, P = Pa +Q is an adapted uniformly strongly elliptic
differential operator with coefficients in Ck and with a strongly coercive on A. Assume
furthermore that B gives mixed boundary conditions. Then (P,B) satisfies an order
k regularity estimate.

We finally obtain the following result.

Theorem 4.19. Let P = Pa + Q be as in Corollary 4.18, that is, P = Pa + Q
is strongly elliptic with a strongly coercive on A, Q is a first order operator, P
is admissible with Ck-coefficients, and B gives mixed boundary conditions. Let
c ∈ W k,∞(M) satisfy the Condition (14) of Theorem 3.16. Then the map P̃ +
c : Hk+1

D (M)→ Ȟk−1
D (M) is an isomorphism.
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This theorem extends a result from [19]. Its assumptions are satisfied by suitable
Schrödinger operators. Indeed, by the results of [7], if we fix a metric on A and
let g be the induced metric on M , then the associated Laplacian ∆g := d∗d is an
admissible differential operator and we obtain:
Corollary 4.20. Let M be a Lie manifold with boundary and admissible metric
g. Let P = ∆g + V with V ∈ W k,∞(M) and assume that either <(V ) ≥ 0 and
(M,∂DM) has finite width, or that there exists ε > 0 such that <(V ) ≥ ε. Then
P̃ : Hk+1

D (M)→ Ȟk−1
D (M) is an isomorphism.

It would be interesting to the relation between the results of this paper and those
of Karsten Bohlen [9, 8].

References
[1] Agranovich, M. S. Elliptic boundary problems. In Partial differential equations, IX, vol. 79

of Encyclopaedia Math. Sci. Springer, Berlin, 1997, pp. 1–144, 275–281. Translated from the
Russian by the author.

[2] Agranovich, M. S. On the theory of Dirichlet and Neumann problems for linear strongly
elliptic systems with Lipschitz domains. Funktsional. Anal. i Prilozhen. 41, 4 (2007), 1–21, 96.

[3] Amann, H. Anisotropic function spaces and maximal regularity for parabolic problems. Part
1. Jindr̆ich Nec̆as Center for Mathematical Modeling Lecture Notes, 6. Matfyzpress, Prague,
2009. Function spaces.

[4] Amann, H. Function spaces on singular manifolds. Math. Nachr. 286, 5-6 (2013), 436–475.
[5] Ammann, B., Grosse, N., and Nistor, V. Poincaré inequality and well-posedness of the

poisson problem ong manifolds with boundary and bounded geometry. 2016, ArXiv preprint,
submitted.

[6] Ammann, B., Ionescu, A. D., and Nistor, V. Sobolev spaces on Lie manifolds and regularity
for polyhedral domains. Doc. Math. 11 (2006), 161–206 (electronic).

[7] Ammann, B., Lauter, R., and Nistor, V. On the geometry of Riemannian manifolds with a
Lie structure at infinity. Int. J. Math. Math. Sci., 1-4 (2004), 161–193.

[8] Bohlen, K. Boutet de Monvel operators on Lie manifolds with boundary. Preprint
arxiv:1507.01543.

[9] Bohlen, K. Boutet de Monvel operators on singular manifolds. C. R. Math. Acad. Sci. Paris
354, 3 (2016), 239–243.

[10] Brenner, S. C., and Scott, L. R. The mathematical theory of finite element methods,
second ed., vol. 15 of Texts in Applied Mathematics. Springer-Verlag, New York, 2002.

[11] Ciarlet, P. The Finite Element Method for Elliptic Problems, vol. 4 of Studies in Mathematics
and Its Applications. North-Holland, Amsterdam, 1978.

[12] Douglis, A., and Nirenberg, L. Interior estimates for elliptic systems of partial differential
equations. Comm. Pure Appl. Math. 8 (1955), 503–538.

[13] Engel, A. Indices of pseudodifferential operators on open manifolds. Preprint
arXiv:math/1410.8030 [math.DG], 2014.

[14] Engel, A. Index theory of uniform pseudodifferential operators. Preprint arXiv:1502.00494
[math.DG], 2015.

[15] Gilbarg, D., and Trudinger, N. Elliptic partial differential equations of second order.
Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[16] Große, N., and Schneider, C. Sobolev spaces on Riemannian manifolds with bounded
geometry: general coordinates and traces. Math. Nachr. 286, 16 (2013), 1586–1613.

[17] Hörmander, L. The analysis of linear partial differential operators. III. Classics in Mathe-
matics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the 1994 edition.

[18] Kordyukov, Y. A. Lp-theory of elliptic differential operators on manifolds of bounded
geometry. Acta Appl. Math. 23, 3 (1991), 223–260.

[19] Mazzucato, A., and Nistor, V. Well-posedness and regularity for the elasticity equation
with mixed boundary conditions on polyhedral domains and domains with cracks. Arch.
Ration. Mech. Anal. 195, 1 (2010), 25–73.

[20] McLean, W. Strongly elliptic systems and boundary integral equations. Cambridge University
Press, Cambridge, 2000.

http://arxiv.org/abs/1507.01543


24 N. GROßE AND V. NISTOR

[21] Nirenberg, L. Remarks on strongly elliptic partial differential equations. Comm. Pure Appl.
Math. 8 (1955), 649–675.

[22] Nistor, V. Analysis on singular spaces: Lie manifolds and operator algebras. J. Geom. Phys.
105 (2016), 75–101.
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