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Dynamics of concentration in a population model
structured by age and a phenotypical trait

Samuel Nordmann∗‡ Benoît Perthame†‡ Cécile Taing†‡

March 20, 2017

Abstract

We study a mathematical model describing the growth process of a population structured
by age and a phenotypical trait, subject to aging, competition between individuals and rare
mutations. Our goals are to describe the asymptotic behaviour of the solution to a renewal
type equation, and then to derive properties that illustrate the adaptive dynamics of such a
population. We begin with a simplified model by discarding the effect of mutations, which
allows us to introduce the main ideas and state the full result. Then we discuss the general
model and its limitations.

Our approach uses the eigenelements of a formal limiting operator, that depend on the
structuring variables of the model and define an effective fitness. Then we introduce a new
method which reduces the convergence proof to entropy estimates rather than estimates on
the constrained Hamilton-Jacobi equation. Numerical tests illustrate the theory and show the
selection of a fittest trait according to the effective fitness. For the problem with mutations,
an unusual Hamiltonian arises with an exponential growth, for which we show existence of a
global viscosity solution, using an uncommon a priori estimate and a new uniqueness result.

Key-words: Adaptive evolution; Asymptotic behaviour; Dirac concentrations; Hamilton-Jacobi
equations; Mathematical biology; Renewal equation; Viscosity solutions.

AMS Class. No: 35B40, 35F21, 35Q92, 49L25.

1 Introduction
The mathematical description of competition between populations and selection phenomena

leads to the use of nonlocal equations that are structured by a quantitative trait. A mathematical
way to express the selection of the fittest trait is to show that the population density concentrates
as a Dirac mass (or a sum of Dirac masses) located on this trait. This result has been obtained for
various models with parabolic ([8, 5, 25]) and integro-differential equations ([7, 15]). The question
that we pose in the present paper is the long time behaviour of the population density when the
growth rate depends both on phenotypical fitness and age. This question brings up to consider
the aging parameter and to use renewal type equations. Accordingly, the aim of this paper is to
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study the asymptotic behaviour of the solutions, as ε→ 0, to the following model, with x ≥ 0 and
y ∈ Rn: 

ε∂tmε(t, x, y) + ∂x [A(x, y)mε(t, x, y)] + (ρε(t) + d(x, y))mε(t, x, y) = 0,

A(x = 0, y)mε (t, x = 0, y) = 1
εn

∫
R+

∫
RnM(y

′−y
ε )b(x′, y′)mε(t, x

′, y′)dx′dy′,

ρε(t) =
∫
R+

∫
Rn mε(t, x, y)dxdy,

mε(t = 0, x, y) = m0
ε(x, y) > 0.

(1)

We choose mε(t, x, y) to represent the population density of individuals which, at time t, have
the age x and the trait y. The function A(x, y) is the speed of aging for individuals with age x
and trait y. We denote with ρε(t) the total size of the population at time t. Here the mortality
effect features the nonlocal term ρε(t), which represents competition, and an intrinsic death rate
d(x, y) > 0. The condition at the boundary x = 0 describes the birth of newborns that happens
with rate b(x, y) > 0 and with the probability kernel of mutation M . The terminology of "renewal
equation" comes from this boundary condition. It is related to the McKendrick-von Foerster
equation which is only structured in age (see [32] for a study of the linear equation). This model
has been extended with other structuring variables as size for example (see [26, 31]) and then with
more variables (representing DNA content, maturation, etc.) to illustrate biological phenomena,
among many others, like cell division (see [18, 27]), proliferative and quiescent states of tumour cells
(see [1, 21]). Space structured problems have also been extensively studied (see [24, 29, 30, 33]).

The parameter ε > 0 is used for a time rescaling, since we consider selection-mutation phe-
nomena that occur in a longer time scale than in an individual life cycle. It is also introduced to
consider rare mutations. This rescaling is a classical way to give a continuous formulation of the
adaptive evolution of a phenotypically structured population, in particular to analyze the dynamics
of "ȳε(t)", the fittest trait at time t.

Here we observe two different time scales for our model. The first one is the individual life
cycle time scale, i.e. the time for the population to reach the dynamical equilibrium for a fixed y.
The second one is the evolutionary time scale, corresponding to the evolution of the population
distribution with respect to the variable y. The mathematical expression of these two time scales
is the property of variable separation

mε(t, x, y) ' ρ̄(t)Q(x, y)δy=ȳ(t),

when ε is close to 0, where Q(x, y) is a normalized equilibrium distribution over age for a fixed
y. In order to observe the asymptotic behaviour of the solution to (1), the key point is to prove
convergence results when ε vanishes, that is when the two time scales become totally separated.
In other words, as ε vanishes, the life cycle time scale becomes smaller, whereas the evolutionary
time scale becomes larger.

As a first step, we ignore mutations, i.e. we take M(z) = δ0. Equation (1) becomes

ε∂tmε(t, x, y) + ∂x [A(x, y)mε(t, x, y)] + (ρε(t) + d(x, y))mε(t, x, y) = 0,

A(x = 0, y)mε (t, x = 0, y) =
∫
R+
b(x′, y)mε(x

′, y)dx′,

ρε(t) =
∫∫

mε(t, x, y)dxdy,

mε(t = 0, x, y) = m0
ε(x, y) > 0.

(2)
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The analysis of this simplified model allows us to introduce the main ideas of our work. In order
to study the asymptotic behaviour of the solution to (2), we consider the associated eigenproblem,
that is to find, for each y ∈ Rn, the solution (Λ(y), Q(x, y)) to

∂x [A(x, y)Q(x, y)] + d(x, y)Q(x, y) = Λ(y)Q(x, y),

A(x = 0, y)Q(x = 0, y) =
∫
R+
b(x′, y)Q(x′, y)dx′,

Q(x, y) > 0,
∫
R+ b(x

′, y)Q(x′, y)dx′ = 1.

(3)

We also define Φ, solution of the dual problem{
A(x, y)∂xΦ(x, y) + [Λ(y)− d(x, y)] Φ(x, y) = −b(x, y)Φ(0, y),∫
Q(x, y)Φ(x, y)dx = 1.

(4)

The purpose of this paper is to introduce an alternative to the usual WKB method (see [8, 17]) to
prove the concentration phenomenon in the y variable for the model (2). Indeed we propose a new
approach that consists in firstly introducing the exponential concentration singularity and secondly
in estimating the corresponding age profile. The main idea is to define a function uε(t, y) inde-
pendent of x, and an "age profile" pε(t, x, y), such that we can write mε(t, x, y) = pε(t, x, y)e

uε(t,y)
ε .

Then we prove that uε converges uniformly to a function u, which zeros correspond to the potential
concentration points of the population density when ε vanishes. Moreover, following earlier works,
we prove that pε(t, x, y) converges to the first eigenvector of the stationary problem introduced
in (3) using the general relative entropy (GRE) principle (see [28] for an introduction).

This convergence result does not apply for the model (1) with mutations. Because of several
technical obstructions we cannot prove the full result. However, we are able to derive some esti-
mates resulting from the study of the formal limiting problem. Then we derive an approximation
problem with a Hamilton-Jacobi equation satisfied by a sequence uε that we build and we prove
its convergence to the solution to the constrained Hamilton-Jacobi equation coming from the for-
mal limiting problem. This constrained Hamilton-Jacobi formally determines the locations of the
concentration points.

Recently, the asymptotic behavior of an age-structured equation with spatial jumps has been
determined in [11] when the death rate vanishes and with a slowly decaying birth rate b; then the
eigenproblem (3) does not have a solution.

The Hamilton-Jacobi approach to prove the concentration of the population density goes back
to [17] and has been extensively used in works on the similar issue (see [12] for example). It
also has been used in the context of front propagation theory for reaction-diffusion equations (see
[4, 9, 19]). For example in the case of the simple Fisher-KPP equation, the dynamics of the front
are described by the level set of a solution of a Hamilton-Jacobi equation. In this framework,
it is naturally appropriate to use the theory of viscosity solutions to derive the convergence of
the sequence uε (see [2, 3, 20] for an introduction to this notion). In this paper we also prove
a uniqueness result in the viscosity sense that is not standard because the Hamiltonian under
investigation have exponential growth.

The paper is organized as follows. We first state the general assumptions in section 2. Section 3 is
devoted to the formulation and the proof of the convergence results in the case without mutation.
In section 4, we discuss the case with mutations and tackle the formal limit of the stationary
problem. Finally we present some numerics in section 5.
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2 Assumptions
Since the analysis requires several technical assumptions on the coefficients and the initial data,
we present them first.

Regularity of the coefficients. We assume that x 7→ b(x, y) > 0 and x 7→ d(x, y) > 0 are uniformly
continuous, that x 7→ A(x, y) is C1 and such that, for all y ∈ Rn,

lim
x→+∞

d(x, y) = +∞, (5)

0 < r ≤ b(x, y)− d(x, y) ≤ r, (6)

0 < A0 ≤ A(x, y) ≤ A∞, for two positive constants A0 and A∞. (7)

Conditions on the initial data. We suppose that the total density is initially bounded

0 < ρ0 ≤ ρ0
ε ≤ ρ0, (8)

with ρ
0
and ρ0 two constants. Besides we assume the population to be well prepared for concen-

tration, that is we can write

m0
ε(x, y) = p0

ε(x, y)e
u0
ε (y)

ε ,

where u0
ε is uniformly Lipschitz continuous and

∃k0 > 0,∀ε > 0,∀(y, y′) ∈ R2n, |u0
ε(y)− u0

ε(y
′)| ≤ k0|y − y′|,

u0
ε(y)→ u0(y) ≤ 0 uniformly in y,

∃! ȳ0 ∈ Rn,max
y∈Rn

u0(y) = u0(ȳ0) = 0,

e
u0
ε
ε −−−⇀

ε→0
δȳ0 .

(9)

Finally, we assume that, for all y ∈ Rd, there are positive constants γ(y) and γ(y) such that, for
all ε > 0, x ∈ R+

γ(y)Q(x, y) ≤ p0
ε(x, y) ≤ γ(y)Q(x, y), (10)∫

R+

∣∣p0
ε(x, y)− γ0(y)Q(x, y)

∣∣Φ(x, y)dx −→
ε→0

0, uniformly in y, (11)

where Q,Φ are eigenelements associated with the eigenproblem (3)-(4) which properties are ana-
lyzed in section 3.1.

Some notations: We define, for x ∈ R+, y ∈ Rn and λ ∈ R, the functions

f(x, y, λ) =
b(x, y)

A(x, y)
exp

(
−
∫ x

0

d(x′, y)− λ
A(x′, y)

dx′
)
, F (y, λ) =

∫
R+

f(x, y, λ)dx. (12)
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3 Case without mutations
We present our new approach to understand how solutions of (2) behave when ε vanishes. To show
that a concentration in the y variable may occur, we first consider the principal eigenvalue Λ of
(3), and define uε as the solution of the equation{

∂tuε(t, y) = −Λ(y)− ρε(t), t > 0, y ∈ Rn,
uε(0, y) = u0

ε , y ∈ Rn.
(13)

We first show that uε converges locally uniformly. Then, by defining pε such that

mε(t, x, y) = pε(t, x, y)e
uε(t,y)

ε , (14)

we show that pε converges when ε→ 0 respectively to a function p in some way that we will specify.
This section is devoted to the proof of the following theorem, which states the concentration of the
population density on the fittest traits.

Theorem 3.1. Assume (5)-(11). Let mε be the solution of (2), uε the solution of (13) and pε
defined by the factorization (14). Then, the following assertions hold true:

(i) ρε converges to a function ρ when ε vanishes in L∞(0,∞) weak-?.

(ii) uε converges locally uniformly when ε vanishes to a continuous function u solution of
∂tu(t, y) = −Λ(y)− ρ(t), t > 0, y ∈ Rn,
u(0, y) = u0(y), y ∈ Rn,
sup
y∈Rn

u(t, y) = 0, ∀t > 0.

(iii) pε converges to a multiple of the normalized eigenfunction Q for a weighted L1 norm.

(iv) Hence, mε converges weakly as ε vanishes to a measure µ which support is included in
{(t, y) ∈ R∗+ × Rn|u(t, y) = 0}.

(v) Furthermore, assuming u0 and −Λ are strictly concave

mε(t, x, y) ⇀
ε→0

ρ(t)
Q(x, y)

‖Q(·, y)‖L1

δy=ȳ(t),

where ȳ(t) ∈ Rn satisfies a canonical differential equation.

3.1 The eigenproblem
We first study the eigenproblem (3) and the associated dual problem (4). The operator in (3),
which is time independent, is obtained by formally taking ε = 0 in system (2) and by removing
the formal limiting term ρ(t). We point out that this approach relies on the observation that
ρε(t) operates linearly on mε, therefore its effect on the eigenvalue Λ is no more than a shift.
The following theorem states existence and uniqueness for these eigenelements as well as some
properties.

5



Theorem 3.2. We assume (5) and (7). For a given y ∈ Rn, there exists a unique triplet
(Λ(y), Q(x, y),Φ(x, y)) solution of (3)-(4). Moreover, the function x 7→ Q(x, y) is bounded and
belongs to L1((0,+∞)), the function y 7→ Λ(y) is C1 and we have

∂λF > 0, F (y,Λ(y)) = 1, ∇yΛ(y) = −∇yF (y,Λ(y))

∂λF (y,Λ(y))
. (15)

The complete proof, which only uses classical arguments, is postponed to Appendix B. We give
here a formal idea of the method. The eigenfunction Q satisfies a linear differential equation that
allows us to derive

Q(x, y) =
1

A(x, y)
exp

(
−
∫ x

0

d(x′, y)− Λ(y)

A(x′, y)
dx′
)
.

From this formulation, we deduce that the eigenvalue Λ(y) must satisfy F (y,Λ(y)) = 1, for all
y ∈ Rd, where F is defined in (12). Since ∂λF > 0, the above equality determines a unique Λ, and
therefore a unique Q. Similarily, we derive an explicit formula for Φ.

Note that Q represents the age distribution at equilibrium for a fixed y, thus it seems natural
that it exponentially decreases. The eigenvalue Λ defines what we call the "effective fitness". It
drives the adaptive dynamics of the population, as discussed in what follows.

3.2 Concentration
3.2.1 Saturation of the population density

The nonlocal term ρε in (2) can be interpreted as the pressure exerted by the total population on the
survival of individuals with trait y. It leads the total population to be bounded. This saturation
property is stated in the following proposition, which proof, using very classical arguments, is
postponed to Appendix A.

Proposition 3.3. We assume (6)-(8), then,

∀t ≥ 0, ρm ≤ ρε(t) ≤ ρM ,

where ρm := min(r, ρ0) and ρM := max(r̄, ρ̄0). Hence, after extraction of a subsequence, ρε
converges weakly-? to a function ρ in L∞(0,+∞).

Thereafter, in order to remove the restriction to a subsequence, we need a uniqueness statement
to prove the assertion (i) of Theorem 3.1. This is done in section 3.2.2.

We now introduce uε solution to (13), and then we define pε(t, x, y) by the factorization (14).
In this way, we show a convergence result for pε as stated in the following theorem, which proof is
given at the end of the section.

Theorem 3.4. We assume (5)-(11). With the constants defined in (10)-(11),

(i) we have γ(y)Q(x, y) ≤ pε(t, x, y) ≤ γ(y)Q(x, y) for all t ≥ 0,

(ii) moreover, the profile pε converges to the eigenfunction Q for a weighted L2 norm. Namely,
for γ0 defined in assumption (11) we have, uniformly in (t, y)∫

R+

∣∣∣∣pεQ (t, x, y)− γ0(y)

∣∣∣∣Q(x, y)Φ(x, y)dx→ 0 when ε→ 0.
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3.2.2 Convergence of uε

Integrating (13), we obtain the explicit formula

uε(t, y) = u0
ε(y)− tΛ(y)−

∫ t

0

ρε(s)ds. (16)

Hence, after extraction of a subsequence, uε(t, y) converges locally uniformly to a function u(t, y)
which is given by

u(t, y) = u0(y)− tΛ(y)−
∫ t

0

ρ(s)ds. (17)

Next, we claim that
sup
y∈Rn

u(t, y) = 0, ∀t ≥ 0. (18)

Indeed, we recall mε(t, x, y) = pε(t, x, y)e
uε(t,y)

ε and pε(t, x, y) converges in vertue of Theorem 3.4
(that we prove independently). If there existed a point y0 for some t such that u(t, y0) > 0, ρε(t)
would diverge, which is a contradiction with Proposition 3.3. In a similar way, supy u(t, ·) < 0
would imply ρε(t)→ 0, which also contradicts Proposition 3.3. Hence (18) must hold.

Thus, up to extraction of a subsequence, mε weakly converges to a measure which support is
included in the set {(t, y) ∈ [0,+∞) × Rn|u(t, y) = 0}. Outside of this set, we know that the
population density vanishes locally uniformly as ε→ 0.

Finally we prove the convergence of the whole sequence uε. From (17) and (18) we obtain∫ t

0

ρ(s)ds = sup
y∈Rn

[u0(y)− tΛ(y)], ∀t ≥ 0. (19)

The uniqueness of the limit function ρ is therefore ensured, which implies that the full sequence ρε
converges to ρ. Then, the convergence of the full family uε follows from (16). Hence the statements
(iii) and (iv) of Theorem 3.1, provided (ii).

3.3 Convergence of pε
This section is devoted to the proof of Theorem 3.4, which completes (ii) of Theorem 3.1. The
main ingredients of the proof are as follows: in a first step we show that pε

Q is bounded so we can
extract a weak-? limit for the L∞ norm. Then we use an entropy in order to identify this limit,
and to show that the convergence occurs in a weighted L2 space. Our approach follows closely
[28, 32].

First step: bounds on pε
Q . From (2) and (13)-(14), we infer that pε satisfies{

ε∂tpε(t, x, y) + ∂x [A(x, y)pε(t, x, y)] + [d(x, y)− Λ(y)] pε(t, x, y) = 0,

A(x = 0, y)pε(t, x = 0, y) =
∫
b(x′, y)pε(t, x

′, y)dx′.

Moreover Q satisfies the same linear equation. Assumption (10) and the comparison principle for
transport equations show the first statement of Theorem 3.4.
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Second step: Entropy inequality. In the sequel, we consider

vε(t, x, y) :=
pε(t, x, y)

Q(x, y)
− γ0(y).

We also define, for any function f(t, x, y), the average

〈f〉(t, y) :=

∫
R+

f(t, x, y)b(x, y)Q(x, y)dx,

and we notice that a direct computation shows{
ε∂tvε(t, x, y) +A(x, y)∂xvε(t, x, y) = 0,

vε(t, x = 0, y) = 〈vε〉(t, y).

Thus we have, in a weak sense

ε∂t|vε(t, x, y)|+A(x, y)∂x|vε(t, x, y)| = 0.

We now introduce the generalized relative entropy Eε(t, y) =
∫
R+
|vε(t, x, y)|Q(x, y)Φ(x, y)dx and

compute

ε∂tEε(t, y) =

∫
R+

ε|∂tvε(t, x, y)|Q(x, y)Φ(x, y)dx

= −
∫
R+

A(x, y)|∂xvε(t, x, y)|Q(x, y)Φ(x, y)dx

= − [|vε|AQΦ]
∞
x=0 +

∫
R+

|vε|∂x (AQΦ)dx

= Φ(0, y) |〈vε〉| (t, y)− Φ(0, y)

∫
R+

bQ|vε|dx.

Hence, using the Cauchy-Schwarz inequality,

ε∂tEε(t, y) = −Φ(0, y) (〈|vε|〉 − |〈vε〉|) ≤ 0.

Therefore 0 ≤ Eε(t, y) ≤ Eε(0, y), and we conclude for (ii) using (11).

Remark 3.5. As vε is bounded, the convergence stated in (ii) occurs in all weighted Lp norms.
Namely, for all p ≥ 1 ∫

R+

∣∣∣∣pεQ (t, x, y)− γ0(y)

∣∣∣∣pQΦdx −→ 0, when ε→ 0.

3.4 Properties of concentration points
Since we can explicitly integrate (13) to obtain (17), we are able to identify the points where the
population concentrates, which are the points where u vanishes.

Proposition 3.6. Let t ∈ (0,∞) and ȳ(t) ∈ Rn such that u(t, ȳ(t)) = 0. As ȳ(t) is a maximum
point of u(t, ·), it satisfies

∇u0(ȳ(t)) = t∇Λ (ȳ(t)) , (20)
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and we have

u0(ȳ(t)) =

t∫
0

ρ(t′)dt′ − tρ(t). (21)

Proof. From equation (17) we derive

u0(ȳ(t)) = tΛ(ȳ(t)) +

∫ t

0

ρ(t′)dt′. (22)

Besides, ȳ(t) is a maximum point of u(t, ·), therefore ∇yu(t, ȳ(t)) = 0 which shows (20). Moreover
∂tu(t, ȳ(t)) = 0, and using (13) we obtain

Λ(ȳ(t)) = −ρ(t). (23)

Thus, combining (22) and (23), we obtain equation (21)

At this stage, the concentration of the population density on a single trait ȳ(t) cannot be
concluded yet because the above relation defines a hypersurface. There are two frameworks in
which one can show that the population is monomorphic, that is the population converges in
measure toward a Dirac mass located on a unique point ȳ(t) at each time t ≥ 0. The first
framework assumes that y is one dimensional, and y 7→ Λ(y) is strictly monotonic. The second
assumes, for y ∈ Rd, that u0

ε(·) and −Λ(·) are strictly concave uniformly in ε. The interested reader
can refer to [8] and [25] for a complete analysis of these two cases.

In the framework of uniform strict concavity, we obtain the additional result of uniform regu-
larity on uε and u, which enables to rigorously derive a form of canonical equation in the language
of adaptive dynamics. This canonical equation gives the dynamics of the selected trait, that is the
evolution of the concentration point in an evolutionary time scale.

Theorem 3.7. Assume u0 and −Λ are strictly concave. Then u(t, ·) is strictly concave and there
exists T > 0 such that for all t ∈ (0, T ), u(t, ·) reaches its maximum 0 on a unique point ȳ(t).
Moreover t 7→ ȳ(t) ∈ C1 (0, T ) and its dynamics is described by the equation

˙̄y(t) =
(
∇2
yu(t, ȳ(t))

)−1 · ∇yΛ (ȳ(t)) , ȳ(0) = ȳ0. (24)

If, in addition, y 7→ Λ(y) is coercive, then the above result holds globally in time.

Proof. We are interested in the solutions ȳ(t) ∈ Rn of

∇yu(t, ȳ(t)) = 0. (25)

Note that u is striclty concave, because u0 and −Λ are. Therefore, such a ȳ(t) must satisfy
u(t, ȳ(t)) = maxy u(t, y) = 0.

From (9) we know that at initial time there exists a unique solution ȳ0 of (25). Besides, as
u is strictly concave, ∇2

yu is invertible. Hence, thanks to the implicit functions theorem, there
exists T > 0 such that for all t ∈ (0, T ), there exists a unique ȳ(t) ∈ Rn satisfying (25). Moreover,
t 7→ ȳ(t) is a C1 function, and then differentiating (25) with respect to t, we obtain, using (17)

0 =
d

dt
[∇yu(t, ȳ(t))] = −∇yΛ(ȳ(t)) + ˙̄y(t)∇2

yu(t, ȳ(t)),

and (24) follows.
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Finally, note that we have

d

dt
[Λ (ȳ(t))] = ∇yΛ (ȳ(t)) ·

(
∇2
yu(t, ȳ(t))

)−1 · ∇yΛ (ȳ(t)) ≤ 0.

Therefore, if y 7→ Λ(y) is coercive, ȳ(t) remains in a compact set of Rn, and thus the result holds
globally in time.

From this result we infer the statement (v) of Theorem 3.1. We also give the following additional
results. The first one is derived directly from (15).

Corollary 3.8. Under the same hypothesis as in Theorem 3.7, the critical points for evolutionary
dynamics satisfy ∇yF (y∗,Λ(y∗)) = 0.

Corollary 3.9. Under the same hypothesis as in Theorem 3.7, we have t 7→ ρ(t) ∈ C1(0, T ) and
ρ̇(t) ≥ 0 for all t ∈ (0, T ).

Proof. From (19), (23) and the regularity of ȳ(t), we infer that t 7→ ρ(t) is C1 for t ∈ (0, T ). We
have

0 =
d

dt
[∂tu(t, ȳ(t))] = −∇yΛ(ȳ(t)) ˙̄y(t)− ρ̇(t),

thus
ρ̇(t) = −∇yΛ(ȳ(t)) ·

(
∇2
yu(t, y(t))

)−1∇yΛ(ȳ(t)),

and ρ̇(t) ≥ 0 since ∇2
yu is negative in (t, y(t)).

4 Case with mutations
We turn to the model (1) including mutations. We use the same approach as in the previous
section, that is we write mε(t, x, y) = pε(t, x, y)e

uε(t,y)
ε and insert this form in (1). We obtain

ε∂tpε(t, x, y) + ∂x [A(x, y)pε(t, x, y)] + d(x, y)pε(t, x, y) = −(ρε(t) + ∂tuε(t, y))pε(t, x, y),

A(x = 0, y)pε (t, x = 0, y) = 1
εn

∫
R+

∫
RnM(y

′−y
ε )b(x′, y′)pε(t, x

′, y′)e
uε(t,y

′)−uε(t,y)
ε dx′dy′,

ρε(t) =
∫
R+

∫
Rn mε(t, x, y)dxdy,

pε(t = 0, x, y) = p0
ε(x, y) > 0.

(26)

With the change of variable z = y′−y
ε , the renewal term is written as

A(x = 0)pε(t, x = 0, y) =

∫
R+

∫
Rn
M(z)e

uε(t,y+εz)−uε(t,y)
ε b(x′, y + εz)pε(t, x

′, y + εz)dx′dz. (27)

By taking formally the limit ε→ 0, we get

A(x = 0)p(t, x = 0, y) =

∫
Rn
M(z)e∇u(t,y)·zdz

∫
R+

b(x′, y)p(t, x′, y)dx′.

Denoting

η(t, y) :=

∫
Rn
M(z)e∇yu(t,y).zdz,
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the formal limit of (26) is written as

∂x [A(x, y)p(t, x, y)] + d(x, y)p(t, x, y) = −(ρ(t) + ∂tu(t, y))p(t, x, y),

A(x = 0)p(t, x = 0, y) = η(t, y)
∫
R+
b(x′, y)p(t, x′, y)dx′,

ρ(t) =
∫
R+

∫
Rn m(t, x, y)dxdy,

p(t = 0, x, y) = p0(x, y) > 0, u(t = 0, y) = u0(y).

With this form, one can consider the following eigenproblem: for fixed (y, η) ∈ Rn × (0,+∞), find
(Λ(y, η), Q(x, y, η)), solution of

∂x [A(x, y)Q(x, y, η)] + d(x, y)Q(x, y, η) = Λ(y, η)Q(x, y, η),

A(x = 0, y)Q(x = 0, y, η) = η
∫
R+
b(x′, y)Q(x′, y, η)dx′,

Q(x, y, η) > 0,
∫
R+
b(x, y)Q(x, y, η)dx = 1.

(28)

Using this eigenproblem, we firstly compute the formal limit u of the sequence uε, and show
that it satisfies the following Hamilton-Jacobi equation ∂tu(t, y) = −Λ

(
y,

∫
M(z)e∇u(t,y)·zdz

)
− ρ(t), t ≥ 0, y ∈ Rn,

u(0, y) = u0(y), y ∈ Rn.
(29)

In this way, we formally recover the limit profile p using (28) with η = η(t, y). Back to the question
of adaptative dynamics, Λ(y, η(t, y)) defines the effective fitness of the population with trait y.

In what follows, we study this limit problem and construct a solution u. Actually the conver-
gence of pε towards the solution Q of the eigenproblem is an unsolved question. Indeed because of
the particular form of the boundary condition (27), we derive a stationary problem which depends
on ε and thus we do not know how to study the asymptotic of pε as ε→ 0. However, we construct
a sequence uε from an approximation problem of (29) that is well defined and we prove it converges
to the solution of (29) in the viscosity sense.

To begin with, we state the saturation of the population density, and the existence and unique-
ness of the eigenelements of (28).

4.1 Saturation and stationary problem
As in the case without mutations in the previous section, it still holds that the total population is
bounded.

Proposition 4.1. We assume (6)-(8). Then there exist two constants ρm, ρM > 0 such that

∀t ≥ 0, 0 < ρm ≤ ρε(t) ≤ ρM .

Hence, after extracting a subsequence, ρε converges to a function ρ in weak*-L∞(0,+∞).

We now establish the existence and uniqueness of the eigenelements in (28). Hence we introduce
the associated dual problem: find Φ(x, y, η) solution of

A(x, y)∂xΦ(x, y, η) + [Λ(y, η)− d(x, y)] Φ(x, y, η) = −ηb(x, y)Φ(0, y, η),∫
Q(x, y, η)Φ(x, y, η)dx = 1.

(30)
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We also recall the definition (12) for the function F . The proof of the following theorem is given
in Appendix B.

Theorem 4.2. We assume (5)-(7). For given y ∈ Rn and η ∈ R+, there exists a unique triplet
(Λ(y, η), Q(x, y, η),Φ(x, y, η)) solution of (28) and (30). The map x 7→ Q(x, y, η) is bounded and
integrable, y 7→ Λ(y, η) is C1 and we have

∂λF > 0, F (y,Λ(y, η)) =
1

η
, (31)

∇yΛ(y, η) = −∇F (y,Λ(y, η))

∂λF (y,Λ(y, η))
, ∂ηΛ(y, η) = − 1

η2∂λF (y,Λ(y, η))
< 0. (32)

In the sequel we consider the effective Hamiltonian (fitness)

H(y, p) := −Λ
(
y, η(p)

)
, η(p) :=

∫
M(z)ep.zdz > 0. (33)

Before constructing a solution to the associated Hamilton-Jacobi equation in the next section, we
state the following result, which is proved in Appendix C.

Proposition 4.3. The mapping p 7→ H(y, p) is convex, for all y ∈ Rn.

4.2 The Hamilton-Jacobi equation
Here we consider the Hamilton-Jacobi equation (29) that we may write from (33) as{

∂tu(t, y) = H(y,∇yu)− ρ(t),

u(0, y) = u0(y), y ∈ Rn.

Our goal is to build a solution to this equation. Therefore, we introduce uε solution of an approx-
imate problem motivated by the form in (26), which reads{

∂tuε(t, y) = −Λ
(
y,
∫
M(z)e

uε(t,y+εz)−uε(t,y)
ε dz

)
− ρε(t),

uε(0, y) = u0
ε(y), y ∈ Rn.

(34)

To simplify the Hamiltonian in equation (34), we set Uε(t, y) := uε(t, y)+
∫ t

0
ρε(t

′)dt, which satisfies

∂tUε(t, y) = −Λ

(
y,

∫
M(z)e

Uε(t,y+εz)−Uε(t,y)
ε dz

)
. (35)

For clarity, we set

ηε(t, y) =

∫
M(z)e

Uε(t,y+εz)−Uε(t,y)
ε dz.

We state the following theorem, which is the main result of this section. The set of assumptions
(H) is presented below.

Theorem 4.4. Assuming (H) there exists a unique solution Uε to (35). Furthermore, Uε converges
locally uniformly to a function U which is a viscosity solution of the equation

∂tU(t, y) = H(y,∇yU) = −Λ

(
y,

∫
M(z)e∇yU.zdz

)
. (36)
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In other words, we prove a stability result in the language of the viscosity solutions theory (see
[3]) in a situation where the Hamiltonian depends on ∇U with an exponential growth, which is
the major difficulty here. The plan of the proof is as follows. Firstly we consider the truncated
equation associated to (35), for which classical results give existence and uniqueness of a global
solution. Then we provide a uniform a priori estimate on the time derivative of the solution. It
allows us to remove the truncation and to infer a global solution Uε of (35). This proves the first
step.

Secondly, we consider the semi-relaxed limits U := lim supUε and U := lim inf Uε, and prove
that they are respectively subsolution and supersolution of (36) in the viscosity sense. Then, an
assumption of coercivity of η 7→ Λ(y, η) in (38), allows us to state that U is Lipschitzian. Finally,
using a nonclassical uniqueness result on the Hamiltonian H, we prove that U = U , and conclude
that Uε converges locally uniformly to a viscosity solution of (36).

Assumptions (H). We assume (9). In addition, for any compact interval I, we assume there
exist two constants L0, L1 > 0, (depending on I) such that

∀y ∈ Rn,∀η ∈ I,

{
|Λ(y, η)| ≤ L0,

|∂ηΛ(y, η)| ≤ L1.
(37)

We also assume

|Λ(y, η)| → +∞ when η → +∞ or η → 0, uniformly in y ∈ Rn. (38)

Finally, the following assumption is required for our uniqueness result, stated in Theorem 4.13.
For all compact set Kp ⊂ Rn, we assume there exist C > 0, γ1 ∈ [0, 4), γ2 ∈ [0, 6) such that

∀y ∈ Rn,∀p ∈ Kp,

{
|∇yH(y, p)| ≤ C (1 + |y|γ1) ,

|∇pH(y, p)| ≤ C (1 + |y|γ2) .
(39)

4.3 Global existence and a priori estimate
This section is devoted to the proof of the following, which is the first step towards Theorem 4.4.

Theorem 4.5. Assume (37). Then, for all ε > 0, there exists a unique global solution Uε to the
equation (35), such that |∂tUε(t, y)| ≤ CV for a constant CV > 0, uniformly in ε > 0, t > 0, y ∈ Rn.

4.3.1 The truncated problem

We first consider a truncated problem associated to (35). For a fixed R > 0, we define the function
φR : R+ → R+ which is smooth, increasing and satisfies

φR(r) =


r for r ∈ [−R

2
,
R

2
],

R for r ≥ R,
−R for r ≤ −R,

(40)

0 ≤ φ′R ≤ 1, |φ′′R| uniformly bounded.
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Let ε > 0 be fixed. We consider the Cauchy problem ∂tU
R
ε (t, y) = φR

(
−Λ

(
y,

∫
M(z)e

URε (t,y+εz)−URε (t,y)

ε dz

))
,

URε (0, ·) = u0
ε .

(41)

We state the following result

Lemma 4.6. Assuming (37), there exists a unique solution of (41), defined globally in time.

The proof is based on the Cauchy-Lipschitz Theorem and uses only classical arguments. It is left
to the reader.

4.3.2 Estimate on the time derivative

The particular form of (41) allows us to infer uniform a priori estimates on ∂tURε . It is stated in
the following result.

Proposition 4.7. For all R > 0, ε > 0, we have

‖∂tURε ‖∞ ≤ ‖∂tu0
ε‖∞ := ‖Λ(y, ηε(0, y))‖∞ .

As a consequence, there exists a positive constant CV , independant of R and ε such that

∀ε > 0,∀R > 0,∀t ≥ 0,∀y ∈ Rn, |∂tURε (t, y)| ≤ CV .

The complete proof is postponed to Appendix D. However we give the formal idea here. As R is
fixed, we simply write Uε instead of URε . We set Vε(t, y) := ∂tUε(t, y). Differentiating (36) with
respect to t, we obtain

∂tVε(t, y) =

∫
Kε(t, y, z)

(
Vε(t, y + εz)− Vε(t, y)

ε

)
dz,

where Kε(t, y, z) :=
(
− ∂ηΛ (y, ηε(t, y))

)
×M(z)e

Uε(t,y+εz)−Uε(t,y)
ε . Note that Kε ≥ 0 from (32).

Then, if for some t > 0, Vε(t, ·) reaches its maximum at ȳ ∈ Rn, we obtain the inequality

∂tVε(t, ȳ) =

∫
Kε(t, ȳ, z)

(
Vε(t, ȳ + εz)− Vε(t, ȳ)

ε

)
dz ≤ 0.

Formally, it shows that the maximum value of Vε is decreasing with time, that is supy Vε(t, y) ≤
supy Vε(0, y) = supy ∂tu

0
ε . With the same method we show infy ∂tUε ≥ infy ∂tu

0
ε , which completes

the first step of the proof. Then, using (37) and that u0
ε is Lipschitzian from (9), we infer an

estimate on ∂tUε, uniform in R > 0 and ε > 0.

4.3.3 Removing the truncation

From Proposition 4.7, V Rε (t, y) = φR (−Λ (y, ηε(t, y))) is bounded uniformly in R. As φR ≡ Id on
[−R2 ,

R
2 ], then for large enough R, the truncated and the non-truncated problems are equivalent.

Hence Uε := URε is the unique solution of (35) with ‖∂tUε‖∞ ≤ CV , for large enough R. The proof
of Theorem 4.5 is thereby complete.
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4.4 The semi-relaxed limits
We assume (37). Thanks to Theorem 4.5, there exists a constant C > 0 such that

|Uε(t, y)| ≤ |u0
ε(y)|+ CV t ≤ C(1 + t) + k0|y|, ∀t > 0, ∀y ∈ Rn, (42)

uniformly in ε > 0. This allows us to consider the following semi-relaxed limits (see [6, 22])

U(t, y) = lim sup
x→y
s→t
ε→0

Uε(s, x), U(t, y) = lim inf
x→y
s→t
ε→0

Uε(s, x).

Note that accordingly U and U satisfy the inequality (42). In this section, we prove

Theorem 4.8. Assuming (37), (38) and (39), we have U = U .

This result implies that Uε converges locally uniformly to a solution U of equation (36), which
completes the proof of Theorem 4.4.

4.4.1 Subsolution and supersolution

The following proposition is adapted from very classical stability results for viscosity solutions of
Hamilton-Jacobi equations (see [3]). Note that it slightly differs from the usual case because of the
nonlocal term ηε(t, y).

Proposition 4.9. The semi-continuous functions U and U are respectively subsolution and super-
solution of (36) in the viscosity sense in (0,∞)×Rn. Also, for all T > 0, the viscosity inequalities
stand for t ∈ (0, T ].

Proof of Proposition 4.9. In order to show that U is a viscosity subsolution of (36), let us consider
a test function ϕ and a point (t0, y0) such that U − ϕ reaches a global maximum at (t0, y0). It is
classical that up to extraction of a subsequence ε→ 0, there exists (tε, xε) such that

(tε, yε) −→
ε→0

(t0, y0),

max
t,y

Uε − ϕ = (Uε − ϕ)(tε, yε).

Besides, note that for all z ∈ Rn, ϕ(tε, yε + εz)− Uε(tε, yε + εz) ≥ ϕ(tε, yε)− Uε(tε, yε), thus we
have

ϕ(tε, yε + εz)− ϕ(tε, yε)

ε
≥ Uε(tε, yε + εz)− Uε(tε, yε)

ε
.

Since ∂ηΛ < 0 from (32), equation (35) gives

∂tϕ(tε, yε) = −Λ

(
yε,

∫
M(z)e

Uε(tε,yε+εz)−Uε(tε,yε)
ε dz

)
≤ −Λ

(
yε,

∫
M(z)e

ϕ(tε,yε+εz)−ϕ(tε,yε)
ε dz

)
.

As ε goes to 0,

∂tϕ(t0, y0) ≤ −Λ

(
y0,

∫
M(z)e∇yϕ(t0,y0).z

)
= H(y0,∇yϕ(t0, y0)).

Since U is upper semi-continuous, it is a viscosity subsolution of (36). With the same method, we
prove that U is a viscosity supersolution. It completes the first part of the proof. The second part
of the statement is a well known result, and a proof can be found in [3].
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4.4.2 A posteriori Lipschitz estimate on U

The annouced Lipschitz continuity of U is stated in the following result.

Proposition 4.10. Assume (37)-(38). Then the lower semi-continuous function U is K2-Lipschitzian
with K2 = max(k0,K) and K defined below.

We first prove these two preliminary lemmas. We point out that (38) plays a crucial role in the
proof.

Lemma 4.11. Assume (37)-(38) and let be T > 0. Then there exist some positive constants
η, η̄, L1 such that, uniformly in ε, ∀(t, y) ∈ (0,+∞)× Rn,

η ≤ ηε(t, y) ≤ η̄, (43)

|∂ηΛ (y, ηε(t, y))| ≤ L1. (44)

Proof. From Theorem 4.5, we know ∂tUε(t, y) = −Λ(y, ηε(t, y)) is bounded for (t, y) ∈ (0,+∞) ×
Rn, uniformly in ε > 0. From (38), we deduce that ηε(t, y)is bounded, which shows (43). Then we
derive (44) directly from assumption (37).

Lemma 4.12. In the viscosity sense, ∇yU is bounded, i.e. there exists a constant K1 > 0 such
that if ψ is a smooth function and U − ψ reaches its minimum in a point (t0, y0), then

|∇yψ(t0, y0)| ≤ K1.

Proof. Let ψ be a smooth function such that U − ψ reaches its minimum at a point (t0, y0).
Similariy to the proof of Proposition 4.9, up to extraction of a subsequence, there exists a sequence
of minimum points (tε, yε) of Uε−ψ which converges to (t0, y0). As U is a supersolution, we obtain

−Λ

(
yε,

∫
M(z)e

ψ(tε,yε+εz)−ψ(tε,yε)
ε dz

)
≤ ∂tψ(tε, yε) = ∂tUε(tε, yε) = −Λ (yε, ηε(t, y)) .

From ∂ηΛ < 0, as ε goes to 0 and using (43) we derive∫
M(z)e∇yψ(t0,y0).zdz ≤ η.

Since M(z) > 0, the proof is complete.

Proof of Proposition 4.10. We want to prove that

∀t ∈ [0, T ],∀(y, y′) ∈ (Rn)2, U(t, y)− U(t, y′) ≤ K2|y − y′|,

where K2 := max(K1, ko). By contradiction, we assume

∃K > K2, ∃t0 ∈ [0, T ],∃(y0, y
′
0) ∈ (Rn)2, U(t0, y0)− U(t0, y

′
0)−K|y0 − y′0| > 0. (45)

The difficulty here is that the viscosity sense is in (t, y) and not only in y. Let us define the test
function ψ(t, y) := U(t, y′0)+K|y−y′0|. As k0 < K, from (42) we derive that U(t, y)−ψ(t, y)→ −∞
when |y| → ∞, uniformly in t ∈ [0, T ]. Because this function is lower semicontinuous, it reaches
its minimum at a point (t̄, ȳ) ∈ [0, T ] × Rn. Thanks to (45), we know that ȳ 6= y0, and thus ψ is
smooth in a neighborhood of ȳ. Moreover, as u0 is k0-Lipschitzian, we have t̄ > 0. Using Lemma
4.12, we obtain ∇yψ(t̄, ȳ) = K ≤ K1, which is a contradiction.
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4.5 Uniqueness result using (H2)
We show the following theorem.

Theorem 4.13. Assume (37)-(39). Then, we have

U ≡ U.

This implies that Uε converges locally uniformly to a function U solution of (36) in the viscosity
sense. Therefore, it completes the proof of Theorem 4.4.

In fact, we show that a Lipschitz continuous supersolution remains above a subsolution provided
it is the case at initial time. We point out that this uniqueness result is not standard since our
assumption (39) allows the Hamiltonian to have superlinear growth. The fact that U is Lipschitz
continuous, as stated in Proposition 4.10, is used as a key ingredient.

Proof. We fix T > 0. By contradiction, we assume

σ := sup
y∈Rn
t∈[0,T ]

(U(t, y)− U(t, y)) > 0.

From (42), there exists a constant C > 0 such that

∀t > 0,∀y ∈ Rn, |U(t, y)|+ |U(t, y)| ≤ C + k0|y|, (46)

The same estimate also holds for U . We use the classical method of doubling the variables in
the framework of viscosity solutions (see [13, 14]). We also use correction terms to ensure that
Ū − U − ϕ reaches its maximum in a localized compact set for a test function ϕ. Namely, let us
fix α > 0, δ ∈ [0, 1] and set for all t ∈ [0, T ], t′ ∈ [0, T ], y ∈ Rn, y′ ∈ Rn,

Vδ(t, y, t
′, y′) :=

[
Ū(t, y)− αt− δ|y|2

]
−
[
U(t′, y′) + αt′ + δ|y′|2

]
− |y − y

′|2

δ2
− |t− t

′|2

δ2
.

Thanks to (46), Vδ reaches its maximum Mδ at a point (tδ, yδ, t
′
δ, y
′
δ). In what follows we use the

following lemma (for which the Lipschitz continuity of U is crucial).

Lemma 4.14. When δ vanishes, the estimates hold

1. δ|yδ|, δ|y′δ| = O(
√
δ),

2. |tδ − t′δ|, |yδ − y′δ| = O(δ2),

3. tδ, t′δ > 0 for δ small enough.

The proof of this lemma is postponed to the end of this section.
We now use that Ū and U are subsolution and supersolution in the viscosity sense. We define the
test function

ϕα,δ(t, y) := αt+ δ|y|2 +
[
U(t′δ, y

′
δ) + αt′δ + δ|y′δ|2

]
+
|y − y′δ|2

δ2
+
|t− t′δ|2

δ2
,

which is smooth and is such that Ū −ϕα,δ reaches its global maximum at the point (tδ, yδ). Since
Ū is a subsolution of (36) ands tδ ∈ (0, T ], the viscosity inequality holds

∂tϕα,δ(tδ, yδ) = α+
2

δ2
(tδ − t′δ) ≤ H

(
yδ, 2δyδ +

2

δ2
(yδ − y′δ)

)
.
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In the same way, since U is a supersolution, we derive

−α+
2

δ2
(tδ − t′δ) ≥ H

(
y′δ,−2δy′δ +

2

δ2
(yδ − y′δ)

)
.

Substracting this last inequality from the previous one and using Lemma 4.14, we obtain

2α ≤ H
(
yδ, 2δyδ +

2

δ2
(yδ − y′δ)

)
−H

(
y′δ,−2δy′δ +

2

δ2
(yδ − y′δ)

)
≤
[
H

(
yδ, 2δyδ +

2

δ2
(yδ − y′δ)

)
−H

(
yδ,−2δy′δ +

2

δ2
(yδ − y′δ)

)]
+

[
H

(
yδ,−2δy′δ +

2

δ2
(yδ − y′δ)

)
−H

(
y′δ,−2δy′δ +

2

δ2
(yδ − y′δ)

)]
≤ C(1 + |yδ|γ2)× 2δ|yδ − y′δ|+ C(1 + |yδ|γ1 + |y′δ|γ1)× |yδ − y′δ|

= O(δ3− γ2
2 ) +O(δ2− γ1

2 ).

From assumption (39) we have 2α = o(1), and as δ goes to 0, we find α ≤ 0, which is a contradiction.
Therefore σ = 0 and we have U = U. The proof of Theorem 4.13 is thereby complete.

To complete this section, we prove Lemma 4.14 which is essentially technical. Note that the
Lipschitz continuity of U is a key ingredient, since usual estimates cannot give any better result
than |yδ − y′δ| = O(δ).

Proof of Lemma 4.14. From Mδ ≥ Vδ(tδ, yδ, tδ, yδ) and because U is K2-Lipschitzian from Propo-
sition 4.10, we have

α(tδ + t′δ) + δ
(
|yδ|2 + |y′δ|2

)
+
|yδ − y′δ|2

δ2
+
|tδ − t′δ|2

δ2
≤ U(tδ, yδ)− U(t′δ, y

′
δ)− U(tδ, yδ) + U(tδ, yδ)

≤ K2|yδ − y′δ|.
Consequently, we obtain |yδ−y′δ|

2

δ2 ≤ K2|yδ − y′δ| and thus the second assertion. Then from
δ
(
|yδ|2 + |y′δ|2

)
≤ K2|yδ − y′δ|, we infer the first assertion.

Set M := max(t,y)∈[0,T ]×Rn Vδ(t, y, t, y) and choose δ and α small enough to ensure M ≥ σ
2 . We

write
σ

2
≤M ≤Mδ ≤ Ū(tδ, yδ)− U(t′δ, y

′
δ)

≤ [Ū(tδ, yδ)− u0(yδ)] + [u0(yδ)− u0(y′δ)] + [u0(y′δ)− U(t′δ, y
′
δ)]

≤ CV (tδ + t′δ) + k0|yδ − y′δ|.
From that and |yδ−y′δ| → 0 as δ goes to 0, we can choose δ small enough so that CV (tδ+t

′
δ) ≥ σ

4 > 0.
Along with |tδ − t′δ| → 0, this last inequality implies tδ, t′δ > 0 for δ small enough, which ends the
proof.

4.6 Additional result: a priori estimate on the gradient
In regards of Proposition 4.7, one can derive an a priori estimate on ∇yUε by further assuming
that for any compact interval I, there exists a constant L2 > 0 such that

∀y ∈ Rn,∀η ∈ I, |∇yΛ(y, η)| ≤ L2. (47)

It is stated in the following proposition.
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Proposition 4.15. Assume (37) and (47). There exists a constant L2 such that for all ε > 0, i ∈
{1, . . . , n}, t > 0, y ∈ Rn, we have

‖∂yiURε ‖∞ ≤ ‖∂yiu0
ε‖∞ + L2t.

As a consequence, for all T > 0, Uε(t, y) is Lipschitz continuous in the y variable, uniformly in
ε > 0 and t ∈ [0, T ].

This proposition gives an alternative to the approach we have developed here. Indeed, by making
the further assumption (47) we show that all the derivatives of Uε are uniformly bounded. Thus
we can use Ascoli’s theorem and extract a converging subsequence, avoiding the introduction of
the semi-relaxed limits lim supUε and lim inf Uε.

The rigorous proof of this proposition is given in Appendix E and follows closely the proof of
Proposition 4.7. However we have to deal here with a "source term" ∂yiΛ (y, ηε(t, y)) that we can
bound by a constant L2 thanks to (47) along with (43). More precisely, fixing i ∈ {1, . . . , n} and
defining

Wε(t, y) = ∂yiUε(t, y),

we have
∂tWε(t, y) = −∂yiΛ(y, ηε) +

∫
Kε(t, y, z)

[
Wε(t, y + εz)−Wε(t, y)

ε

]
dz,

with Kε ≥ 0, and we proceed as in the proof of Proposition 4.7 to conclude that

Wε(t, y) ≤ sup
y∈Rn

∂yiu
0
ε(y) + L2t.

We deduce the reverse inequality similarly and, since supy∈Rn |∂yiu0
ε(y)| is bounded uniformly in ε,

we obtain that Uε is Lipschitz continuous in the y variable uniformly in ε > 0 and t ∈ [0, T ].

5 Numerical simulations
In order to complete the theory, we present numerical results in the case without mutations studied
in Section 3. We perform a simulation of equation (2) with ε = 5 · 10−3. The numerical results
allow to visualize uε and then the concentration dynamics of the population density. We choose
the variable pair (x, y) to be in the set [0, 1] × [0, 4] which we discretize with the steps ∆x = 1

M
and ∆y = 1

N with M = 90, N = 40. The time step ∆t is chosen to be 5 · 10−5 according to the
CFL condition. We denote by mk

i,j the numerical solution at grid point xi = i∆x, yj = j∆y and
time tk = k∆t. The equation (2) is solved by an implicit-explicit finite-difference method with the
following scheme: for i = 1, . . . , N and j = 1, . . . ,M ,

mk+1
i,j = mk

i,j −
∆t

ε

A(xi, yj)m
k
i,j −A(xi−1, yj)m

k
i−1,j

∆x
− ∆t

ε

(
ρkmk

i,j − d(xi, yj)m
k+1
i,j

)
, (48)

and the boundary term is discretized as

A(0, yj)m
k+1
0,j =

M∑
i=1

b(xi, yj)m
k
i,j ,

which is necessary for computing when i = 0 in (48).
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The numerics is performed using Matlab with parameters as follows. We choose the initial
number of individuals to be 1000 and the final time T = 1.5. We choose the following functions
A, b and d as follows

A(x, y) = 1, b(x, y) = 10 · y

1 + x2
, d(x, y) = 2 · y3

1 + x/6
,

and the initial data
m0(x, y) = p0(x, y)e

u0(y)
ε ,

with

p0(x, y) = exp (−0.8x), u0(y) = − (y − 0.5)2

2
.

We choose to create a trade-off between the birth and death rates with regards to the y variable,
by assuming that y 7→ b(x, y) and y 7→ d(x, y) are increasing, which means that a greater natality
also induces a greater mortality. This assumption allows to determine an Evolutionary Stable
Distribution or ESD from the language of adaptive dynamics, which gives the repartition of the
fittest traits (see [10, 16, 23]). We do not know this ESD from the beginning, however it is important
to select, according to asusmptions (5)-(6), a death rate with a stronger increase for large x than
the growth rate with regards to the trait variable in order to avoid that the dominant traits go to
infinity.

Figure 1: Isolines in (x, y) of the population distribution

The Figure 1 shows the population distribution with regards to y (abscissa) and x (ordinates)
at two different times. The population has moved and concentrated to a location which is different
from its initial one. One can observe this continuous evolution of the population distribution in
Figure 2 where we show the distribution of individuals with age x = 0 at different times and
identify an ESD.

The ESD can also be identified thanks to the principal eigenvalue. We show in Figure 3 the
eigenvalue Λ(y) solved by the Newton method using (15). From equation (24) one can notice
that the equilibrium points have to satisfy ∇yΛ(y) = 0 and moreover that the dynamics of the
concentration is directed towards the minimum points of Λ(y), as predicted by our analysis.
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Figure 2: Concentration dynamics: snapshots of the population distribution in y at four different
times with respect to the trait variable. Blue dashed line= mε, red dotted line = uε.
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Figure 3: Left: Principal eigenvalue Λ(y). Right: Evolution of ρ over time

6 Conclusion
The approach we develop here, based on the transformation mε = pεe

uε
ε , seems convenient for

the study concentration phenomena. In the case without mutations, we get precise results on the
concentration points as well as on the asymptotical age profile of the population. In particular
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we have developed a method where the asymptotic analysis is not performed on uε but on pε,
using relative entropy methods. Because of technical difficulties, we are not able yet to infer
the same conclusion for the case with mutations. However the result seems to hold, at least for
short time, more precisely before the Hamilton-Jacobi singularities occur in (36). Indeed, denoting
Qε(t, x, y) = Q(x, y, ηε(t, y)) we have that vε = pε

Qε
satisfies a transport equation with a source

term which reads

ε∂tvε(t, x, y) +A(x, y)∂xvε(t, x, y) = ε
∂ηQ(x, y, ηε(t, y))

Q(x, y, ηε(t, y))
∂tηε(t, y)vε(t, x, y).

If ∂tηε is bounded uniformly, we can show that vε is also bounded uniformly, which implies a weak
concentration of the population on the set {(t, y) / u(t, y) = 0}. A rigorous proof of this result
along with an entropy method to prove strong convergence of pε will be proposed in a forthcoming
paper.
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A Saturation of the population denstity
We prove Proposition 3.3. Integrating (1) and using (6), we obtain

ε
d

dt
ρε(t) = −

∫∫
∂x[A(x, y)mε(t, x, y)]dxdy −

∫∫
d(x, y)mε(t, x, y)dxdy − ρε(t)

∫∫
mεdxdy

=

∫∫ ( 1

εn

∫
M(

y′ − y
ε

)dy
)
b(x, y′)mε(t, x, y

′)dxdy′ −
∫∫

d(x, y)mε(t, x, y)dxdy − ρ2
ε(t)

≤ rρε(t)− ρ2
ε(t).

Therefore, using (8) we conclude

0 ≤ ρε(t) ≤ max
(
r, ρ0

ε

)
.

The other inequality can be proved the same way.

B Proof of Theorem 4.2 and Theorem 3.2
We only prove Theorem 4.2, as Theorem 3.2 is a particular case with η = 1. Equation (28) is
equivalent to write

Q(x, y, η) = Q(0, y, η)exp

(
−
∫ x

0

∂xA(x′, y) + d(x′, y)− Λ(y, η)

A(x′, y)
dx′
)
,

and thanks to the condition at x = 0,

Q(x, y, η) = η
1

A(x, y)
exp

(
−
∫ x

0

d(x′, y)− Λ(y, η)

A(x′, y)
dx′
)
. (49)
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Multiplying by b(x, y) and integrating with regard to the x variable, we obtain

1

η
= F (y,Λ(y, η)). (50)

A direct calculation shows ∂λF > 0, thus (50) ensures uniqueness for Λ and then for Q.
Moreover, as F (y,+∞) = +∞ and F (y,−∞) = 0, there exists such a Λ(y, η). Besides, defining

Q as in (49) implies that Q is in L1 ∩ L∞, thanks to (5), thus it proves existence. Finally, using
the implicit function theorem in (50) we deduce that Λ(y, η) is C1 and (32) holds true.

For the dual equation (30), a simple calculation shows that the solution Φ must be given by

Φ(x, y, η) = Φ(0, y, η)e
−

∫ x
0

Λ(y,η)−d(x′,y)

A(x′,y)
dx′
(

1− η
∫ x

0

b(x′, y)

A(x′, y)
e
∫ x′
0

Λ(y,η)−d(x′′,y)

A(x′′,y)
dx′′
)
,

where Φ(0, y, η) > 0 is determined by the normalization
∫
Q(x, y, η)Φ(x, y, η)dx = 1.

C Proof of Proposition 4.3
We first state the following lemma, which proof is given below.

Lemma C.1. We have

η(p)
[
∂λF

(
y,Λ(y, η(p))

)]2 ≤ ∂2
λF
(
y,Λ(y, η(p))

)
, (51)

and [
∂piη(p)

]2 ≤ η(p)∂2
piη(p). (52)

By differentiating twice (31) with respect to pi, we obtain

∂λF
(
y,Λ(y, η(p))

)
DpiΛ(y, η(p)) = −∂piη(p)

η(p)
2 , (53)

∂λF ·D2
piΛ(y, η(p)) + ∂2

λF ·
[
DpiΛ(y, η(p))

]2
= −

∂p2
i
η(p)

η(p)2
+ 2

∂piη(p)

η(p)3
.

Then using (51), (52) and (53), we derive

∂λF ·D2
piΛ(y, p) = −∂2

λF

[
∂piη(p)

η(p)2∂λF

]2

−
∂p2

i
η(p)

η(p)2
+ 2

[
∂piη(p)

]2
η(p)3

≤ −
[
∂piη(p)

]2
η(p)3

−
∂p2

i
η(p)

η(p)2
+ 2

[
∂piη(p)

]2
η(p)3

= − 1

η(p)3

(
η(p)∂2

piη(p)−
[
∂piη(p)

]2) ≤ 0.,

hence the announced convexity result on p 7→ H(y, p).

Proof of Lemma C.1. We define and compute using (12)

g(x, y) :=

∫ x

0

1

A(x′, y)
dx′, ∂λF (y, λ) =

∫ ∞
0

g(x, y)f(x, y, λ)dx,

23



With these notations we may write

∂2
λF (y, λ) =

∫ ∞
0

g(x, y)2f(x, y, λ)dx.

Using the Cauchy-Schwarz inequality we obtain[
∂λF

(
y,Λ(y, η(p))

)]2 ≤ ∂2
λF
(
y,Λ(y, η(p))

)
× F

(
y,Λ(y, η(p))

)
,

and then thanks to (31) the first inequality follows. The second inequality is a simple consequence
of the Cauchy-Schwarz inequality on η(p) =

∫
RnM(z)ep·zdz.

D Proof of Proposition 4.7
Our goal is to show

∂tU
R
ε (t, y) ≤ sup

y∈Rd
∂tU

R,0
ε := sup

y∈Rn
∂tu

0
ε(0, y), ∀R > 0,∀y ∈ Rn,∀t > 0. (54)

The reverse inequality can be obtained similarly. Note that from (37) we have that

∂tU
0,R
ε = −Λ

(
y,

∫
M(z)e

u0
ε (y+εz)−u0

ε (y)

ε dz

)
is bounded uniformly in ε,

thus (54) allows us to conclude that ∂tURε is bounded uniformly in R and ε.

We prove (54) by contradiction. We assume that there exists (T, y0) ∈ (0,+∞)× Rn such that

∂tU
R
ε (T, y0)− sup ∂tU

R,0
ε > 0. (55)

For conciseness, we define V Rε (t, y) := ∂tU
R
ε (t, y). For β > 0, α > 0 small and for t ∈ [0, T ], y ∈ Rn,

we also introduce
ϕα,β(t, y) := V Rε (t, y)− αt− β|y − y0|.

We choose α small enough to ensure ϕα,β(T, y0) > ϕα,β(0, y0) = ∂tU
R,0
ε (y0), which is possible

thanks to assumption (55). From (40) we have |V Rε (t, y)| ≤ R, therefore ϕα,β decreases to −∞ as
|y| → ∞ and reaches its maximum on [0, T ]× Rn at a point (t̄, ȳ). We have

ϕα,β(t̄, ȳ + εz) ≤ ϕα,β(t̄, ȳ), ∀z ∈ Rn,

and thus
V Rε (t̄, ȳ + εz)− V Rε (t̄, ȳ)

ε
≤ β |ȳ + εz| − |ȳ|

ε
≤ β|z|, ∀z ∈ Rn. (56)

Moreover, as u0
ε is k0-Lipschitz continuous from (9), then we obtain for all t > 0, (y, y′) ∈ R2n,

|URε (t, y)− URε (t, y′)| ≤ |URε (t, y)− UR,0ε (y)|+ |UR,0ε (y)− UR,0ε (y′)|+ |UR,0ε (y′)− URε (t, y′)|
≤ 2RT + k0|y − y′|.

(57)
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Next, we set

ηRε (t, y) :=

∫
M(z)e

URε (t,y+εz)−URε (t,y)

ε dz,

η± :=

∫
M(z)e±( 2RT

ε +k0|z|)dz,

and notice that 0 < η− ≤ ηRε (t, y) ≤ η+.
We have chosen α such that ϕα,β(0, y0) < ϕα,β(T, y0), then we know that t̄ > 0. Hence

∂tϕα,β(t̄, ȳ) ≥ 0, that is ∂tV Rε (t̄, ȳ) ≥ α (if t̄ = T then ∂tV
R
ε (t̄, ȳ) stands for the left-derivative).

Differentiating (41), we have

∂tV
R
ε (t, y) = φ′R

(
−Λ

(
y, ηRε

))
×
(
−∂ηΛ

(
y, ηRε

))
× ΓRε (t, y), (58)

where ΓRε (t, y) :=
∫
M(z)e

URε (t,y+εz)−URε (t,y)

ε

(
V Rε (t,y+εz)−V Rε (t,y)

ε

)
dz.

Writing (58) at (t̄, ȳ), using (32) and (56)-(57) we have

α ≤ ∂tV Rε (t̄, ȳ) = φ′R
(
−Λ

(
y, ηRε (t̄, ȳ)

))
×
(
−∂ηΛ

(
y, ηRε (t̄, ȳ)

))
× ΓRε (t̄, ȳ)

≤ sup
r∈R

φ′R(r)× sup
η∈(η−,η+)
y∈Rn

[−∂ηΛ (y, η)]×
(∫

M(z)e
URε (t̄,ȳ+εz)−URε (t̄,ȳ)

ε |z|dz
)
× β

≤ sup
r∈R

φ′R(r)× sup
η∈(η−,η+)
y∈Rn

[−∂ηΛ (y, η)]×
(∫

M(z)e
2RT
ε +k0|z||z|dz

)
× β.

Hence α ≤ C̄β, where C̄ is a constant that does not depend on β. Then as β goes to 0, we obtain
α ≤ 0, which is absurd. The proof is thereby achieved.

E Proof of Lemma 4.15
We fix i ∈ {1, . . . , n}, and for all t ∈ [0, T ],∀y ∈ Rn, we set

Wε(t, y) := ∂yiUε.

Differentiating (35), we obtain

∂twε(t, y) = −∂yiΛ(y, ηε)− ∂ηΛ(y, ηε)

(∫
M(z)e

Uε(t,y+εz)−Uε(t,y)
ε

[
Wε(t, y + εz)−Wε(t, y)

ε

]
dz

)
:= F(t, y,Wε(t, ·)).

For R > 0, we define a truncated problem, and its solution WR
ε satisfying

WR
ε (t, y) = φR

(
∂yiu

0
ε(y) +

∫ t

0

F(s, y,WR
ε (s, ·))ds

)
, (59)

where F is defined above. One may infer that we have existence and uniqueness of a global solution
of(59) by a direct application of the Cauchy-Lipschitz theorem. Hence such a solution WR

ε exists.
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We set W̄R
ε := WR

ε − tL2, where L2 is defined in assumption (47) along with (43). We want to
show

∀t ∈ [0, T ],∀y ∈ Rn, W̄R
ε (t, y) ≤ max ∂yiu

0
ε . (60)

Since we proceed as in the proof of Proposition 4.7, we do not give all the details of the proof
but only the main points. By contradiction, we assume (60) does not hold, so there exists
y0 ∈ Rn, t0 ∈ [0, T ] such that

W̄R
ε (t0, y0)− sup ∂yiu

0
ε > 0. (61)

For β > 0, α > 0 small enough, t ∈ [0, T ], y ∈ Rn we introduce

ϕα,β(t, y) := W̄R
ε (t, y)− αt− β|y − y0|.

As W̄R
ε is bounded, ϕα,β reaches its maximum on [0, T ]× Rn at a point (t̄, ȳ). We have

∀z ∈ Rn, ϕα,β(t̄, ȳ + εz) ≤ ϕα,β(t̄, ȳ).

Then, we obtain the inequality

∀z ∈ Rn,
W̄R
ε (t̄, ȳ + εz)− W̄R

ε (t̄, ȳ)

ε
≤ β |ȳ + z − y0| − |ȳ − y0|

ε
≤ β|z|.

We choose α small enough so that ϕα,β(t0, y0) > ϕα,β(0, y0) = ∂yiu
0
ε(y0), which is possible

thanks to (61). It implies t̄ > 0. Hence ∂tϕα,β(t̄, ȳ) ≥ 0, i.e. ∂tW̄R(t̄, ȳ) ≥ α. Differentiating (59)
at point (t̄, ȳ), we write

α ≤ ∂tW̄R
ε (t̄, ȳ)

≤ − supφ′R × ∂yiΛ(y, ηε(t, y))− L2

+ supφ′R × (−∂ηΛ(y, η))

∫
M(z)e

Uε(t̄,ȳ+εz)−U(t̄,ȳ)
ε

[
WR
ε (t̄, ȳ + εz)−WR

ε (t̄, ȳ)

ε

]
dz

≤ L1

(∫
M(z)e

Uε(t̄,ȳ+εz)−U(t̄,ȳ)
ε |z|dz

)
× β

≤ L1

(∫
M(z)e

2CV T

ε +k0|z||z|dz
)
× β.

Then, passing to the limit β → 0 we obtain α ≤ 0, which is asburd. Thus we have

W̄R
ε ≤ sup |∂yiu0

ε |.

We proceed similarly to obtain the reverse inequality. Then we derive, for all R > 0, ε > 0, t ∈
[0, T ], y ∈ Rn

|WR
ε (t, y)| ≤ sup |∂yiu0

ε |+ TL2.

Finally, as we performed previsouly in section 4.3.3, as the bound on WR
ε is uniform in R, we

can remove the truncation. Therefore WR
ε = Wε for R large enough and

|∂yiUε(t, y)| ≤ sup |∂yiu0
ε |+ TL2.

In addition, as u0
ε is assumed to be uniformly k0-Lipschitzian from (9), we can infer a bound on

|∇yUε(t, y)| which is uniform in ε > 0, t ∈ [0, T ], y ∈ Rn.

26



References
[1] M. Adimy, F. Crauste, and S. Ruan. A mathematical study of the hematopoiesis process

with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65(4):1328–1352
(electronic), 2005.

[2] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Birkhäuser Boston, 1997.

[3] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag Berlin
Heidelberg, 1994.

[4] G. Barles, L. C. Evans, and P. E. Souganidis. Wavefront propagation for reaction diffusion
systems of PDE. Duke Math. J., 61(3):835–858, pages 835-858, 1990.

[5] G. Barles, S. Mirrahimi, and B. Perthame. Concentration in Lotka-Volterra parabolic or
integral equations: a general convergence result. Methods Appl. Anal., 16(3):321–340, 2009.

[6] G. Barles and B. Perthame. Exit time problems in optimal control and vanishing viscosity
method. SIAM J. Control Optim., 26(5):1133–1148, 1988.

[7] G. Barles and B. Perthame. Concentrations and constrained Hamilton-Jacobi equations arising
in adpative dynamics. Contemporary Mathematics, 439:57, 2007.

[8] G. Barles and B. Perthame. Dirac concentrations in Lotka-Volterra parabolic PDEs. Indiana
Univ. Math J., 57 (7):3275–3301, 2008.

[9] G. Barles and P. E. Souganidis. Front propagation for reaction-diffusion equations arising in
combustion theory. Asymptot. Anal., 14(3):277–292, 1997.

[10] Wenli Cai, Pierre-Emmanuel Jabin, and Hailiang Liu. Time-asymptotic convergence rates
towards the discrete evolutionary stable distribution. Math. Models Methods Appl. Sci.,
25(8):1589–1616, 2015.

[11] V. Calvez, P. Gabriel, and Á. Mateos González. Limiting Hamilton-Jacobi equation for the
large scale asymptotics of a subdiffusion jump-renewal equation. arXiv:1609.06933, September
2016.

[12] N. Champagnat and P.-E. Jabin. The evolutionary limit for models of populations interacting
competitively via several resources. Journal of Differential Equations, 251(1):176–195, 2011.

[13] M. G. Crandall, L. C. Evans, and P.-L. Lions. Some properties of viscosity solutions of
Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 282(2):487–502, 1984.

[14] M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order
partial differential equations. Bulletin of the American Mathematical Society, 27(1):1–67,
1992.

[15] L. Desvillettes, P.-E. Jabin, S. Mischler, and G.Raoul. On mutation selection dynamics.
Commun. Math. Sci., 6(3):729-747, 2008.

[16] O. Diekmann. A beginner’s guide to adaptive dynamics. Banach Center publications, 63:47–
86, 2004.

27



[17] O. Diekmann, P.-E. Jabin, S. Mischler, and B. Perthame. The dynamics of adaptation:
an illuminating example and a Hamilton-Jacobi approach. Theoretical Population Biology,
67(4):257–271, 2005.

[18] M. Doumic and P. Gabriel. Eigenelements of a general aggregation-fragmentation model.
Math. Models Methods Appl. Sci., 20(5):757–783, 2010.

[19] L. C. Evans and P. E. Souganidis. A PDE approach to geometric optics for certain semilinear
parabolic equations. Indiana Univ. Math J., 38(1):141–172, 1989.

[20] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions. Ap-
plications of Mathematics 25. Springer, 1993.

[21] M. Gyllenberg and G. F. Webb. A nonlinear structured population model of tumor growth
with quiescence. J. Math. Biol., 28(6):671–694, 1990.

[22] Hitoshi Ishii. Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open
sets. Bull. Fac. Sci. Engrg. Chuo Univ., 28:33–77, 1985.

[23] Pierre-Emmanuel Jabin and Gaël Raoul. On selection dynamics for competitive interactions.
J. Math. Biol., 63(3):493–517, 2011.

[24] Pierre-Emmanuel Jabin and Raymond Strother Schram. Selection-Mutation dynamics with
spatial dependence. Submitted, 2016.

[25] A. Lorz, S. Mirrahimi, and B. Perthame. Dirac mass dynamics in multidimensional nonlo-
cal parabolic equations. Communications in Partial Diffenretial Equations, 36(6):1071–1098,
2011.

[26] J. A. J. Metz and O. Diekmann. The dynamics of physiologically structured populations,
volume 68 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1986.

[27] Philippe Michel. Existence of a solution to the cell division eigenproblem. Math. Models
Methods Appl. Sci., 16(7, suppl.):1125–1153, 2006.

[28] Philippe Michel, Stéphane Mischler, and Benoît Perthame. General relative entropy inequality:
an illustration on growth models. J. Math. Pures Appl. (9), 84(9):1235–1260, 2005.

[29] S. Mirrahimi. Adaptation and migration of a population between patches. Discrete and
Continuous Dynamical System - B (DCDS-B), 18.3:753–768, 2013.

[30] S. Mirrahimi and B. Perthame. Asymptotic analysis of a selection model with space. Journal
de Mathématiques Pures et Appliquées, 104(6):1108–1118, 2015.

[31] Stéphane Mischler, Benoît Perthame, and Lenya Ryzhik. Stability in a nonlinear population
maturation model. Math. Models Methods Appl. Sci., 12(12):1751–1772, 2002.

[32] B. Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag,
Basel, 2007.

[33] Perthame, B. and Souganidis, P. E. Rare Mutations Limit of a Steady State Dispersal Evo-
lution Model. Math. Model. Nat. Phenom., 11(4):154–166, 2016.

28


	Introduction
	Assumptions
	Case without mutations
	The eigenproblem
	Concentration
	Saturation of the population density
	Convergence of u

	Convergence of p
	Properties of concentration points

	Case with mutations
	Saturation and stationary problem
	The Hamilton-Jacobi equation
	Global existence and a priori estimate
	The truncated problem
	Estimate on the time derivative
	Removing the truncation

	The semi-relaxed limits
	Subsolution and supersolution
	A posteriori Lipschitz estimate on U

	Uniqueness result using (H2)
	Additional result: a priori estimate on the gradient

	Numerical simulations
	Conclusion
	Saturation of the population denstity
	Proof of Theorem 4.2 and Theorem 3.2
	Proof of Proposition 4.3
	Proof of Proposition 4.7
	Proof of Lemma 4.15

