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On inverse optimal control via polynomial optimization

Jérémy Rouot and Jean-Bernard Lasserre

Abstract— We consider the class of control systems where the
differential equation, state and control system are described
by polynomials. Given a set of trajectories and a class of
Lagrangians, we are interested to find a Lagrangian in this
class for which these trajectories are optimal. To model this
inverse problem we use a relaxed version of Hamilton-Jacobi-
Bellman optimality conditions, in the continuity of previous
work in this vein. Then we provide a general numerical scheme
based on polynomial optimization and positivity certificates, and
illustrate the concepts on a few academic examples.

I. INTRODUCTION

Given a system dynamics, control and/or state con-

straints, and a database D of feasible state-control trajec-

tories {x(t;x0, t0), u(t;x0, t0)} from several initial states

(and different initial times) (x0, t0), the Inverse Optimal

Control Problem (IOCP) consists of computing a Lagrangian

L such that each trajectory of the database D is an optimal

solution of the (direct) optimal control problem (OCP) for

the cost functional
∫ T

t0
L(x(t), u(t))dt to minimize. Even

though it is an interesting problem on its own, it is also of

primary importance in Humanoid Robotics where one tries to

understand human locomotion. In fact whether or not human

locomotion obeys some optimization principle is an open

issue, discussed for instance in several contributions in [13].

As most interesting inverse problems, the (IOCP) is in

general an ill-conditioned and ill-posed problem. For in-

stance, for a source of ill-posedness, consider an (OCP) with

terminal state constraint x(T ) ∈ XT and with Lagrangian

L. Let φ : X × [0, T ] → R be its associated optimal

value function and let g : X → R be a continuously

differentiable function such that g(x) = 0 for all x ∈ XT . If

the couple (x⋆(t;x0, t0), u
⋆(t;x0, t0)) is an optimal solution

of the (OCP) then it is also an optimal solution of the (OCP)

with new Lagrangian L−〈∇g, f〉 (where f is the vector field

of the dynamics) and the optimal value function associated

with the new (OCP) is φ+ g. See e.g. [18] for a discussion.

Therefore in full generality, recovering a Lagrangian that has

an intrinsic physical meaning might well be searching for a

needle in a haystack. This is perhaps why previous works

have considered the (IOCP) with restrictive assumptions on

the class of Lagrangian to recover. Some restrictions are

also more technical and motivated by simplifying the search

process.

In the recent work [18] the authors have proposed to

consider the (IOCP) in relatively general framework. In this
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framework an ε-optimality certificate for the trajectories in

the database D translates into natural “positivity constraints”

on the unknown optimal value function φ and Lagrangian L,

in a relaxed version of the Hamilton-Jacobi-Bellman (HJB)

equations. Moreover some natural normalizing constraint

allows to avoid the source of ill-posedness alluded to above.

Then the (IOCP) is posed as a polynomial optimization prob-

lem and solved via a hierarchy of semidefinite relaxations

indexed by d ∈ N, where the unknown is a couple (φ, L) of

polynomials of potentially large degree d; for more details

the reader is referred to [18].

In the cost criterion min ε + γ ‖L‖1, the regularizing

parameter γ > 0 controls the tradeoff between minimizing

ε and minimizing the sparsity-inducing ℓ1-norm ‖L‖1 of

the Lagrangian. (One assumes that a Lagrangian L with a

physical meaning will have a sparse polynomial approxima-

tion.) In some examples treated in [18] one clearly sees the

importance of γ to recover a sparse meaningful Lagrangian;

the larger is γ the sparser is the Lagrangian (but at the cost

of a larger ε, due to a limited computing capacity).

A. Contribution

As in [18] the approach in this paper is based on the

relaxed-HJB framework to state an ε-optimality certificate

for the trajectories in the database D. Indeed as already

mentioned in [18], HJB-optimality equations is the “perfect

tool” to certify global optimality of a given trajectory (Bell-

man optimality principle is sometimes called a verification

theorem). On the other hand, instead of searching for L as

a polynomial of potentially large degree as in [18], we now

restrict the search of L to some dictionary which is a family

of polynomials of low degree (for instance convex quadratic).

In this respect we also follow other previous approaches

(e.g. [15], [17]) which impose restrictive assumptions on

the Lagrangian. A normalizing condition on L avoids some

previously mentioned ill-posedness and in principle no reg-

ularizing parameter γ is needed (that is, one only minimizes

ε which appears in the ε-optimality certificate). Finally, and

again as in [18], the (IOCP) is solved by a hierarchy of

semidefinite relaxations. The quality of the solution improves

in the hierarchy but of course at a higher computational cost.

To compare this approach with that of [18] we have

considered four optimal control problems (of modest size):

The LQG, the Brockett double integrator, and two minimum-

time problems. In all cases we obtain better results as

the Lagrangian L is recovered exactly at a semidefinite

relaxation of relatively low order the hierarchy. In particular

no regularizing parameter γ is needed. At last but not least,

a by-product of the approach is to also provide a means to



detect whether the dictionary of possible Lagrangian is large

enough. Indeed if the resulting optimal value ε⋆ remains

relatively high after several semidefinite relaxations, one may

probably infer that the dictionary is too small to contain a

good Lagrangian.

In section II we define the (IOCP) while the relaxed

Hamilton-Jacobi-Bellman optimality conditions are pre-

sented in Section III (with some discussion on the ill-

posedness of the problem). The numerical scheme consisting

of a hierarchy of semidefinite relaxations is described in

Section IV. The method is illustrated on four academic

examples and compared with [18], before some discussion

of the relative merits of the method.

II. SETTING UP THE PROBLEM

A. Context

Let n and m be nonzero integers. Consider the control

system

ẋ(t) = f(x(t), u(t)) (1)

where f : Rn × Rm is a (smooth) vector field, and u :
[t0, T ] → U (compact) ⊂ Rm are the controls. A control

u(·) is said admissible on [t0, T ] (T > t0 > 0) if the solution

x(·) of (1) satisfies x(t0) = x0 for some x0 ∈ R
n and

(x(t), u(t)) ∈ X × U a.e. on [t0, T ], x(T ) ∈ XT (2)

where X,XT are compact subsets of Rn. The set of admissi-

ble controls is denoted as U . Let us denote by (τ, x(·), u(·)) a

feasible trajectory for (1)-(2) which starts at time τ ∈ [0, T ]
in state x(τ). For an admissible control u(·), we consider

only integral costs associated with the corresponding trajec-

tory x(·), and defined by :

J(t0, T, x0, u(·), L) =

∫ T

t0

L(x(t), u(t)) dt, (3)

where L : Rn × Rm → R is a continuous Lagrangian.

a) Direct optimal control problem (OCP): Given a La-

grangian L and an initial condition x0 ∈ Rn, the (OCP) con-

sists in determining a state-control trajectory (t0, x(·), u(·))
solution of (1) with x(t0) = x0, satisfying the state and

control constraints (2) and minimizing the cost (3). We will

refer to this problem as OCP (t0, x0, L).
The value function J⋆

L associated with OCP (t0, x0, L) is

defined by

J⋆
L(t0, x0) = inf

u(·)∈U
J(t0, T, x0, u(·), L) (4)

if the final time T is fixed, and,

J⋆
L(x0) = inf

T,u(·)∈U
J(0, T, x0, u(·), L) (5)

if the final time T is free.

b) Inverse optimal control problem (IOCP): Given a

set D of controls and their associated feasible trajectories

(obtained by observations) satisfying (2), a couple defined

by a control system (1) and a class (or dictionary) L of

Lagrangians (each L ∈ L defines a cost functional (3)),

the (IOCP) consists in finding a Lagrangian L ∈ L such

that the trajectories of D are optimal solutions of the (OCP)

associated with L.

More precisely, we consider a finite family D =
{(ti, xi(·), ui(·))}i∈I of admissible trajectories, indexed by

some set I , where ti ∈ [0, T ] and u(·) ∈ U for all i ∈ I .

We want to compute L ∈ L such that xi(·) (resp. ui(·))
are optimal state-trajectories (resp. control-trajectories) of

OCP (ti, xi(ti), L), ∀i ∈ I .

III. HAMILTON-JACOBI-BELLMAN TO CERTIFY

GLOBAL-OPTIMALITY

A. Hamilton-Jacobi-Bellman

Hamilton-Jacobi-Bellman (HJB) equation is the “ideal”

tool to provide sufficient (and in a certain sense almost

necessary) conditions for a trajectory to be globally-optimal,

see [4], [8], [3]. In general, the value function is nonsmooth

and cannot be identified to a classical solution of the HJB

equation. Yet, there are many approaches to characterize the

value function from the HJB equation, among others the

concept of viscosity solutions [3] or the concept of proximal

subgradient [21]. In what follows, a relaxation of the (HJB)

equation provides a simple certificate of global-optimality

for (OCP) of the form OCP (t0, x0, L).

Definition 3.1: Let L : Rn×Rm → R and let ϕ : [0, T ]×
Rn → R be continuously differentiable. Given a vector field

f , we define the linear operator Hf which acts on (L,ϕ) as

Hf (L,ϕ) = L+
∂ϕ

∂t
+∇xϕ

⊺f

The following certificate was at the core of the method

proposed in [18].

Proposition 3.2: Let ū(·) ∈ U be an admissible control

associated with a trajectory x̄(·) starting from x0 at time

t = t0. Assume there exists a function ϕ : [t0, T ]×X → R,

continuously differentiable and such that

Hf (L,ϕ)(t, x, u) ≥ 0, ∀(t, x, u) ∈ [t0, T ]×X × U, (6)

ϕ(T, x) = 0, ∀x ∈ XT , (7)

Hf (L,ϕ)(t, x̄(t), ū(t)) = 0, ∀t ∈ [t0, T ]. (8)

Then ū(·) is an optimal control associated with the trajectory

x̄(·) for the problem OCP (t0, x0, L).

Proof: For any admissible control u(·) associated with

a trajectory x(·), integrating (6) yields
∫ T

t0
L(x(s), u(s))ds+

∫ T

t0
dϕ (s, x(s)) ≥ 0. Using (7), we obtain ϕ(t0, x0) ≤

J(t0, T, x0, u(·), L) + ϕ(T, x(T )) = J(t0, T, x0, u(·), L).
The same applied to x̄(·) and ū(·) yields ϕ(t0, x0) =
J(t0, T, x0, ū(·), L) and therefore ū(·) is optimal for

OCP (t0, x0, L).



B. ε-optimal solution for the inverse problem

Next, we describe slightly weaker conditions than those of

Proposition 3.2. They are the basis of our numerical method.

Proposition 3.3: Let ū(·) be an admissible control asso-

ciated with a trajectory x̄(·) starting from x0 at t = t0.

Suppose that there exist a real ε and a continuous function

L : X × U → R and continuous differentiable function

ϕ : [0, T ]×X → R such that

Hf (L,ϕ)(t, x, u) ≥ 0, ∀(t, x, u) ∈ [t0, T ]×X × U, (9)

− ε ≤ ϕ(T, x) ≤ 0, ∀x ∈ XT , (10)
∫ T

t0

Hf (L,ϕ)(s, x̄(s), ū(s))ds ≤ ε. (11)

Then ū(·) is 2ε-optimal for OCP (t0, x0, L).
Proof: Following the proof of Proposition 3.2, we

get ϕ(t0, x0) ≤ J(t0, T, x0, u(·), L), ∀u(·) ∈ U and from

condition (11), we get ϕ(t0, x0) ≥ J(t0, T, x0, ū(·), L) +
ϕ(T, x̄(T )) − ε and therefore J(t0, T, x0, ū(·), L) ≤
ϕ(t0, x0) + 2ε.

In general the value function is nonsmooth, but in case

where it is at least continuous, by the Stone-Weierstrass

theorem, it can be approximated by polynomials, uniformly

on compact sets, and this approximation will provide lower

and upper bounds for the value function. Note that in this

case, we can approximate the optimal value as closely as

desired.

C. Non well-posedness of the inverse problem

Proposition 3.3 provides us with a simple and powerful

tool to certify global-suboptimality of a given set of trajec-

tories, e.g. those given in the database D. However as we

have already mentioned, there are many couples (ϕ,L) that

can satisfy (9)-(11), and which make the (IOCP) ill-posed in

general. For instance:

• Trivial solution. The zero Lagrangian and the zero

function satisfy conditions (9)-(10)-(11) with ε = 0,

independently of the input trajectories.

• Conserved quantity. Let u(·) be an optimal control as-

sociated with a trajectory x(·). Suppose that the system

dynamics is such that all feasible trajectories satisfy an

equation of the form g(x(t), u(t)) = 0, ∀t ∈ [0, T ] for

some continuous function g. Then L = g2 is a candidate

for the inverse problem associated with the zero value

function ϕ.

Such class of optimal control problems is well spread in

applications, especially nonholonomic systems [6], [7].

The latter falls into sub-Riemannian geometry frame-

work and have many applications namely in robotics

[5], [12], [2]. They can be formulated as

L(x) = (ẋ · ẋ)1/2, (T is fixed)

f(x, u) =

m
∑

i=1

uiFi(x), x ∈ X ⊂ R
n, u ∈ U ⊂ R

m

XT = {xT }, xT ∈ R
n

(12)

where (F1, . . . Fm) are m (smooth) orthonormal vector

fields. The Lagrangian L(x) stands for the length of the

admissible curve x(·) .

It is well known [6] that this is a length minimization

problem equivalent to the energy minimization problem

where the Lagrangian is L(x, u) = ẋ·ẋ and also equiva-

lent to the time minimization problem with L(x, u) = 1
and where the control domain is restricted to: ‖u‖22 = 1.

• Total variations. Consider a continuous function ψ :
[0, T ] × X → R such that ψ vanishes on XT . Then

(ϕ,L) with ϕ = −ψ and L = −∇xψ · f is solution to

the (IOCP) regardless of the database D!

• Conic convexity. Let (L,ϕ) be a solution of the inverse

problem (IOCP ) and let ψ : [0, T ]×X → R be such

that ψ(T, x) = 0, ∀x ∈ XT . If ϕ̃ = ϕ+ψ then the pair

(L + (∇xψ) · f), φ̃) satisfies the same conditions (9)-

(10)-(11) with the same ε and is solution of the same

inverse problem.

To illustrate this last issue, we consider the following prob-

lem. Let ϕL be a solution of HJB equations associated with

the following optimal control problem

min
T>0,‖u‖2≤1

∫ T

0

L(x(t)) dt, (T is free)

(P )L ẋ = u,

x(0) ∈ X = B2, x(T ) ∈ XT = ∂X

where B2 denotes the unit ball of R2.

Lemma 3.4: The optimal control law of (P )L is given by

u = −∇ϕL/‖∇ϕL‖2 and the Lagrangian L satisfies L =
‖∇ϕL‖2.

Proposition 3.5: Let p ∈ N and define Lp(x) = ‖x‖p2.

The value function associated with (P )Lp
is J⋆

Lp
(x) =

1/(p + 1) (1 − ‖x‖p+1
2 ). Besides, for all p ∈ N, problems

(P )Lp
have the same optimal control law given by u⋆(x) =

x/‖x‖2.

For p ∈ N, let gp : X → R be defined by gp(x) =
‖x‖2 − 1/(p + 1) (‖x‖p+1

2 + p). Then, Lp(x) = L0(x) −
〈∇gp(x), u

⋆(x)〉 and J⋆
Lp

(x) = J⋆
L0
(x) + gp(x).

Normalization.

Due to the convexity of the conditions (9)-(10)-(11), the set

of solutions of the inverse problem is a convex cone. Hence,

to overcome the non uniqueness of solutions of the inverse

problem and to avoid solutions which do not have a physical

interpretation, a natural idea is to impose a normalizing

constraint (see e.g. [2], [15] or more recently [18]). For

instance for free terminal time problems, in [18] one imposes

the constraint on (ϕ,L):

| 1−A(L,ϕ) | = ε,

where A is the linear operator:

A(L,ϕ) =

∫

X̃×U

[

L+
∂ϕ

∂t
+∇xϕ · f

]

dxdu.

This allows to avoid the trivial solution (ϕ,L) = (0, 0).
In this paper, we will not use such a normalization. Rather

we propose (a) to restrict the search of Lagrangian solutions



L to a class of functions L introduced in the next section,

and (b) include a normalization constraint on L which is

more appropriate for our numerical scheme.

IV. NUMERICAL IMPLEMENTATION

A. Polynomial and semi-algebraic context

Without any further assumptions on the data X,XT , U
and f , the “positivity constraints” (9)-(10)-(11) cannot be

implemented efficiently. However if X,XT , U are compact

basic semi-algebraic sets and f is a polynomial, then we

may and will use powerful positivity certificate from real

algebraic geometry, e.g. Putinar’s Positivstellensatz [20]. In

doing so, the positivity constraints (9)-(10)-(11) translate into

linear matrix inequalities (LMI). The maximum size of the

latter depends on the degree allowed for the sums-of-squares

(SOS) polynomials involved in the positivity certificate. Of

course the higher is the degree, the more powerful is the

certificate.

In the sequel the class of Lagrangian L, denoted by La,b, is

a set of polynomials. For a multi-index α = (α1, . . . , αp) ∈
Np, |α| =

∑p
i=1 αi and for y = (y1, . . . , yp), the notation

yα stands for the monomial yα1

1 . . . y
αp

p . For two vectors

x = (x1, . . . , xn) ∈ Rn, u = (u1, . . . , um) ∈ Rm, and

two integers a, b, let La,b ⊂ R[x, u] be defined by:

La,b =

{

L ∈ R[x, u] | L(x, u) = ma(x)
⊺ Cx

a ma(x)

+mb(u)
⊺ Cu

b mb(u), C
x
a ∈ S

j
+, j =

(

n+ a

a

)

,

Cu
b ∈ S

k
+, k =

(

m+ b

b

)

}

,

(13)

where md(z) denotes the vector of monomials (zα)|α|≤d

which forms a canonical basis of Rd[z] and Sd+ is the set

of real symmetric and positive semidefinite d× d matrices.

Remark 4.1: A polynomial of La,b is the sum of a poly-

nomial Lx ∈ R2a[x] and a polynomial Lu ∈ R2b[u] such that

Lx and Lu are SOS. Conversely, every SOS polynomial q
of R2d[x] can be written as q = md(x)

⊺Qmd(x), Q ∈ S+.

To avoid the trivial Lagrangian L = 0, we include the

normalizing constraint

tr(Cx
a ) + tr(Cu

b ) = C, C is a constant. (14)

where tr(A) denotes the trace of a matrix A, and Cx
a , C

u
b

are the matrices which define L in its definition (13). Note

that the map P ∈ S+ 7→ tr(P ) ∈ R+ is linear and define a

norm.

B. Inverse problem formulation

For practical computation, the input data consists of N
trajectories D = {(ti, xi(·), ui(·))}i=1,...,N (ti, xi(·), ui(·))
starting at time ti in state xi(ti) and admissible for (1)-

(2), for all i = 1, . . . , N . In practice, each trajectory

(ti, xi(·), ui(·)) is sampled at some points (kT/s), k =
0, 1, . . . s, of the interval [0, T ], for some fixed integer s ∈ N.

Then with ti := kiT/s for some integer ki < s, the

database D is the collection ((kiT/s, xi(kT/s), ui(kT/s)),
k = ki, . . . , s, i = 1, . . . , N ,

Then condition (11) is replaced by :

s
∑

k=ki

Hf (L,ϕ)(ki, xi(kT/s), ui(kT/s)) ≤ ε,

for all i = 1, . . . , N . Alternatively one my also consider

N
∑

i=1

s
∑

k=ki

Hf (L,ϕ)(ki, xi(kT/s), ui(kT/s)) ≤ ε.

Then consider the following hierarchy of optimization prob-

lems indexed by p ∈ N:

ε⋆p = inf
L,ϕ,ε

ε

s.t. Hf (L,ϕ)(t, x, u) ≥ 0, ∀(t, x, u) ∈ [0, T ]×X ×U,
ϕ(T, x) ≤ 0, ∀x ∈ XT ,
ϕ(T, xk) ≥ −ε, k = ki, . . . , s,
N
∑

i=1

s
∑

k=ki

Hf (L,ϕ)(ki, xi(kT/s), ui(kT/s)) ≤ ε,

L ∈ La,b with tr(Cx
a ) + tr(Cu

b ) = 1,
(IOCPa,b)

where ϕ ∈ R2p[t, x] and ε ∈ R.

Remark 4.2: (IOCPa,b) is written for control problems

with fixed terminal time T . For free terminal time problems

the function ϕ doesn’t depend on t.
In (IOCPa,b), each positivity constraint on (L,ϕ) is replaced

by a Putinar’s positivity certificate [20]. The latter asserts

that if a polynomial p is positive on a compact basic semi-

algebraic set K = {x | gi(x) ≥ 0, gi ∈ R[x], i = 1, . . . ,m}
then p can be written as

p(x) =

m
∑

i=0

gi(x)σi(x), ∀x ∈ R
n, (15)

for some SOS polynomials σi, i = 0, . . . ,m (and where

g0(x) := 1 for all x). In addition we impose the degree

bound deg(σi gi) ≤ 2p, i = 0, . . . ,m.

In doing so (IOCPa,b) becomes a hierarchy of semidefi-

nite programs (SDP) indexed by p ∈ N [10], [9]. The size of

each SDP in the hierarchy depends on p, i.e., on the strength

of Putinar’s positivity certificate (15) used in (IOCPa,b). In

practice this size is limited by the capabilities of semidefinite

solvers.

Our implementation is based on the YALMIP toolbox

[14] which provides a SOS interface to handle polynomial

constraints and then solves the resulting SDP problem by

running the MOSEK solver [16]. We can handle problems up

to 6, 7 variables (t, x, u) and degree 12 for ϕ. For larger

size problems, heuristics and/or techniques exploiting the

structure of the problem should be used. Also, using the

recent alternative positivity certificates (to (15)) proposed in

[11] and [1] should be helpful.

V. ILLUSTRATIVE EXAMPLES

We have tested our numerical method described in Section

IV on four examples also analyzed in [18].



A. Settings

The input of our numerical scheme consists of:

• final time T if the problem has fixed finite horizon,

• state constraint set X and the control set U ,

• state (and final state) constraints X,XT ,

• vector field f ,

• class of polynomials La,b (13) to which we restrict the

search for the Lagrangian L.

Since for problems considered here, at each point (t, x) ∈
[0, T ] × X we know the associated optimal control

u(t), the database D now consists of the collection

((tk, xk, u(tk))k=1,...,N ∈ [0, T ] × X × U where for each

k the couple (tk, xk) is randomly generated in some set

SD ⊂ [0, T ]×X .

The output of (IOCP) is a triple (L,ϕ, ε⋆) where L is

a polynomial Lagrangian, ϕ is a polynomial value function

and ε⋆ is a parameter which quantify the sub-optimality of

the solutions associated with L. More precisely, according

to Proposition (3.3), if J⋆
L(t0, x0) is the value function of

OCP (t0, x0, L) then

ϕ(tk, xk) ≥ J⋆
L(tk, xk)−2 ε⋆, k = 1, . . . , N,

ϕ(T, xk) ≥ −ε⋆, k = 1, . . . , N,

ϕ(t, x) ≤ J⋆
L(t, x), ϕ(T, x) ≤ 0, ∀(t, x) ∈ [0, T ]×X.

B. Benchmark direct problems

We present the optimal control problems that we consid-

ered for our numerical computation. In all cases we know

the value function J⋆
L̄

associated with the Lagrangian L̄.

1) Linear Quadratic case:

T = 1, X = B2, XT = R
2, U = R

2, f = (x2, u)
⊺.

where B2 denotes the unit ball in R2. This is the celebrated

LQ-problem and here the Lagrangian to recover is L̄ =
2x21 + 1/2 x1x2 + x22 + u2.

The optimal control law is given by the closed-loop control

u(t) = I2 BE(t)x(t) where, for this problem B = (1 0),
E(.) is solution of the corresponding Riccati equation

(E(T ) = 0) and the value function is given by J⋆
L̄
(t, x(t)) =

−x(t)⊺E(t)x(t).
2) Minimum exit-norm in dimension 2:

T is free, X = U = B2, XT = ∂X, f = u.

The Lagrangian to recover is L̄ = ‖x‖22 + ‖u‖22. The

associated direct OCP is called the minimum exit-norm

problem because at T ⋆, x(T ⋆) ∈ ∂X . The optimal control

law is u = x and the value function is the polynomial

J⋆
L̄
(x) = 1− ‖x‖22.

3) Minimum exit-time in dimension 2:

T is free, X = U = B2, XT = ∂X, f = u.

The Lagrangian to recover is L̄ = 1. The optimal control law

is u = x/‖x‖2 and the value function is J⋆
L̄
(x) = 1− ‖x‖2.

It corresponds to the problem (P )L0
introduced in Section

III-C.

4) Minimum time Brockett integrator:

T is free, X = 3B2, U = B2, XT = {0},

f = (u1, u2, x2u1 − x1u2)
⊺.

The Lagrangian to recover is L̄ = 1. The optimal control

law and the value function are described in [19].

C. Numerical results

According to our optimization inverse problem

(IOCPa,b), we consider several classes of polynomials La,b

in which we seek a Lagrangian L solution of (IOCP). We

vary also the degree of the test function ϕ. Results of the

problems V-B.1, V-B.2, V-B.3, V-B.4 are respectively given

in Table I, Table II, Table III and Table IV.

We generate N = 500 data points from a set D ⊂ X and

our algorithm implements the normalization constraint (14).

degϕ class of L ε⋆ L

4 L1,1 7e− 2 0.78x2

1
+ 0.82x1x2 + 2.11x2

2
+ 1.12u2

10 L1,0 3.1e− 1 2.67x2

1
− 2.31x1x2 + 1.33x2

2

10 L1,1 4.5e− 6 2x2

1
+ 0.5x1x2 + x2

2
+ u2

10 L2,2 4.5e− 6 2x2

1
+ 0.5x1x2 + x2

2
+ u2

TABLE I

SOLUTION (L, ε⋆) OF THE PROBLEM (IOCP ) ASSOCIATED WITH THE

PROBLEM V-B.1.

degϕ class of L ε⋆ L

2 L1,1 0 x2

1
+ x2

2
+ u2

1
+ u2

2

2 L2,2 0 x2

1
+ x2

2
+ u2

1
+ u2

2

4 L1,1 0 x2

1
+ x2

2
+ u2

1
+ u2

2

4 L2,2 0 x2

1
+ x2

2
+ u2

1
+ u2

2

2 L0,1 2e− 3 1.97 + 0.54(u2

1
+ u2

2
)

TABLE II

SOLUTION (L, ε⋆) OF THE PROBLEM (IOCP ) ASSOCIATED WITH THE

PROBLEM V-B.2.

SD degϕ class of L ε⋆ L

B2 4 L0,1 1e− 1 0.31 + 0.34u2

1
+ 0.36u2

2

B2 12 L0,1 2e− 2 0.327 + 0.335u2

1
+ 0.337u2

2

B2\1/2B2 12 L0,1 2e− 4 0.338 + 0.326u2

1
+ 0.336u2

2

B2 2 L1,1 4.5e− 2 0.337u2

1
+ 0.339u2

2

+0.741x2

1
+ 0.738x2

2

B2 12 L1,1 3e− 4 x2

1
+ x2

2

B2 4 L0,2 0 (1− u2

1
− u2

2
)2

B2 4 L2,2 0 (1− u2

1
− u2

2
)2

TABLE III

SOLUTION (L, ε⋆) OF THE PROBLEM (IOCP ) ASSOCIATED WITH THE

PROBLEM V-B.3. SD ⊂ X IS THE SAMPLE FROM WHICH D IS

GENERATED.

D. Discussion

Clearly, two Lagrangians are equivalent up to a multiplica-

tive constant. This multiplicative constant is set by the value

of the constant C in (14).



degϕ class of L ε⋆ L

10 L0,1 8.31e− 2 0.313 + 0.339u2

1
+ 0.348u2

2

14 L0,1 4.36e− 2 0.323 + 0.338u2

1
+ 0.339u2

2

10 L0,2 0 (1− u2

1
− u2

2
)2

10 L2,2 0 (1− u2

1
− u2

2
)2

12 L1,1 1e− 1 m1(x)⊺Cx

1
m1(x) + 0.31u2

1
+

0.35 + 0.33u2

2
, ‖Cx

1
‖ = O(1e− 2)

TABLE IV

SOLUTION (L, ε⋆) OF THE PROBLEM (IOCP ) ASSOCIATED WITH THE

PROBLEM V-B.4.

• Problem V-B.1: Table I gives the couple (ε⋆, L) part

of the solution of the inverse problem (IOCP) for

several values of the degree of the polynomial ϕ and

several classes of polynomials for the Lagrangian L.

The value function J⋆
L̄

associated with the Lagrangian

L̄ given in Problem V-B.1 is quadratic in x, but it

depends also on the time t and we don’t know, a

priori, if the dependance with respect to t of J⋆
L̄
(t, x)

is polynomial. This provides a reason why L is not a

good approximation of L̄ when ϕ is of degree 4 in t, x.

Contrary to the method presented in [17], increasing

the degree of ϕ up to 10, we are able to get exactly

L = L̄ with ε⋆ = 0, provided that the monomial basis

for L contains the monomials u2, x1x2, x
2
1, x

2
2. If we

remove some of these monomials, ε⋆ is bigger. Thus it

provides a way to test whether the class La,b chosen

for L is relevant. The smaller is the optimal value ε⋆

the more relevant is La,b.

• Problem V-B.2: The Lagrangian L̄(x, u) is polynomial

in x, u and the value function JL̄(x) is a polynomial of

degree 2 in x. Numerically, from Table II taking ϕ as a

polynomial of degree 2 in x, the Lagrangian L solution

of (IOCP) corresponds exactly to L̄ provided that the

basis of L contains the monomials u2i , x
2
i , i = 1, 2. As

soon as one of these monomials is removed, the error

ε⋆ increases, indicating that the (smaller) class La,b for

the Lagrangian L is not relevant.

• Problem V-B.3: The control associated with an optimal

trajectory satisfies the algebraic equation u21 + u22 = 1.

The Lagrangian L = a (1 + u21 + u22), a 6= 0 is

equivalent to L̄ = 1. From Table III, if the basis of

the Lagrangian L contains the monomials 1, ui, u
2
i , i =

1, 2, we recover the minimum time problem V-B.3 with

a reasonable value of ε⋆ which decreases if the degree

of ϕ increases. Note also that due to the singularity

of the value function J⋆
L̄

= 1 − ‖x‖2 at x = 0, J⋆
L̄

is hard to approximate by a polynomial near (0, 0),
hence the objective value ε⋆ of (IOCP) with sample

from SD = B2 \ (1/2B2) is smaller.

Due to the fact that the optimal control u = (u1, u2)
satisfies 1− u21 − u22 = 0, a natural Lagrangian is L =
(1− u21 − u22)

2 associated with the zero value function

and obtained by our numerical procedure when the

dictionary La,b contains the monomials 1, u2i , u
4
i , i =

1, 2. This “natural” Lagrangian is purely mathematical

with no physical meaning.

Note that Problem V-B.3 corresponds to (P )L0
, L0 =

1 = L̄ which is defined in Section III-C and has the

same optimal control law than problems (P )Lp
, p ∈ N.

Consider the problems (P )L1
and (P )L2

. Note that,

in these two problems, one function among Lp and

J⋆
Lp
, p = 1, 2 is a polynomial while the other is not

differentiable at 0.

– (P )L1
: The Lagrangian to recover is L1(x) =

‖x‖2 associated with the value function J⋆
L1
(x) =

1/2 (1− ‖x‖22).
From Table III, in the case degϕ = 2 and L ∈
L1,1, the numerical solution (ϕ,L) of the (IOCP)

is ϕ(x) = 1/2 (1 − x21 − x22) and L(x, u) =
0.337u21 + 0.339u22 + 0.741x21 + 0.738x22 that we

identify to L(x, u) = 0.34 + 0.74 (x21 + x22) since

u21 + u22 = 1. L corresponds to an approximation

on X = B2 of the Lagrangian L1. Indeed, using

MATLAB’s routine fminunc, a numerical solution of

min
a∈R6

∫

X

| a1 + a2x1 + a3x2 + a4x
2
1 + a5x1x2 + a6x

2
2

−
√

x21 + x22 | dx1dx2

is a⋆ = (0.317, 0, 0, 0.7321, 0, 0.7321) whose val-

ues are close to the coefficients of L.

– (P )L2
: The Lagrangian to recover is L2(x) =

‖x‖22 associated with the value function J⋆
L2
(x) =

1/3 (1− ‖x‖32).
From Table III, in the case degϕ = 12 and L ∈
L1,1, the numerical solution L of the (IOCP) is

L(x, u) = x21 + x22. In this case, L corresponds

to the Lagrangian L2 associated with the value

function J⋆
L2

.

• Problem V-B.4: The optimal control satisfies 1− u21 −
u22 = 0. From Table IV, if the basis contains of La,b the

monomials 1, u2i , i = 1, 2, we recover the Lagrangian of

the minimum time since the Lagrangian L = 1 + u21 +
u22 is equivalent to the Lagrangian 2L̄. If we remove

some monomials among 1, u2i , i = 1, 2, the value of

ε⋆ increases, which again invalidates the choice of the

smaller class La,b for L.

If the basis contains the monomials 1, u2i , u
4
i , i = 1, 2

we recover the Lagrangian L = (1 − u21 − u22)
2

associated with the zero value function (see Section

III-C).

It is important to point out that we are able to recover the

Lagrangian L̄ without adding a regularization parameter

which was necessary in [18]. Indeed in [18] the authors

adopted a more general point of view where L =
R[x, u]d with d relatively large. They minimize a trade-

off between the error ε⋆ and the value of a regularization

parameter controlling the sparsity of the polynomial L:

the more one asks for sparsity, the larger is the resulting

optimal error ε⋆ and vice versa. From an applicative

point of view, the main drawback of this method is that



we do not know an a priori value of the regularization

parameter for which the Lagrangian L̄ is recovered. In

this sense, the method described in this paper – where

a particular a class of Lagrangian functions is imposed

– seems more suitable for applications.

VI. CONCLUSION

Hamilton-Jacobi-Bellman conditions provide a global-

optimality certificate which is a powerful and ideal tool for

solving inverse optimal control problems. While intractable

in full generality, it can be implemented when data of the

control system are polynomials and semi-algebraic sets, in

the spirit of [18]. Indeed powerful positivity certificates

from real algebraic geometry allow to implement a relaxed

version of HJB which imposes (i) positivity constraints on

the unknown value function and Lagrangian, and (ii) a

guaranteed ε-global optimality for all the given trajectories of

the database D. In doing so we can solve efficiently inverse

optimal control problems of relatively small dimension.

Compared to [17], our method is less general as the

search of an optimal Lagrangian is done on some (restricted)

class of Lagrangians defined a priori. On the other hand,

the search is more efficient with no need of a regularizing

parameter to control the sparsity. When considering the same

examples as in [18], we obtain more accurate estimations

on Lagrangians without a sparsity constraint on the La-

grangian. Finally, as an additional and interesting feature of

the method, in a way a small resulting optimal value ε⋆

validates the choice of the class of Lagrangians considered,

while a relatively large ε⋆ is a strong indication that the class

is too small.

Future investigations will try to determine if our numer-

ical scheme provides interesting results on practical inverse

problems, especially those coming from humanoid robotics,

an important field of application [15] for inverse optimal

control.
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