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Abstract The last deglaciation was marked by intervals of rapid climatic fluctuations accompanied by
glacial advances and retreats along the eastern margin of the Laurentide Ice Sheet. One of these climatic
events, the Younger Dryas cold reversal, was accompanied by a detrital carbonate event referred to as
“Heinrich event 0” (H0) that deposited ice-rafted debris and especially detrital carbonate-rich (DC)
sediment layers in the western and southern Labrador Sea. The precise age, duration, source, and
geographical distribution of the H0 DC event, however, are not entirely clear. A high-sedimentation rate
sequence cored off southern Newfoundland yielded an age of ~11.5–11.3 calibrated kyr B.P. for this layer,
thus pointing to its deposition directly following the Younger Dryas termination, likely associated with rapid
ice retreat and warming at the onset of the Holocene. At the study site, the H0 layer contains increased
concentrations of detrital carbonates (calcite/dolomite ratio~ 2.5:1) and a mature biomarker composition,
similar to that found in Heinrich Layers 1, 2, 4, and 5, which together suggest an origin fromHudson Strait. Grain
size analysis indicates that the H0-sediments were transported to the study site mostly through shallow plumes
along the Labrador Shelf, with some hyperpycnal dispersal, deeper, along the slope and rise. Our data
thus point to a large meltwater release caused by retreat of the ice margin in the Hudson Strait area. The
relvatively short duration of the H0 layer, and its timing right after a major climatic transition, combined with its
ubiquitous regional occurrence makes it valuable for correlating different sediment records from the
western Labrador Sea.

1. Introduction

The North Atlantic marine sediment record of the last glacial period is characterized by the occurrence of
sediment layers of (1) increased ice rafted debris (IRD), (2) enhanced detrital carbonate (DC) content, and
(3) low abundances of planktonic foraminifera, dominated by polar species (Neogloboquadrina pachyderma s.)
and have been designated “Heinrich layers” [Heinrich, 1988; Andrews and Tedesco, 1992; Broecker et al., 1992;
Hemming, 2004; Naafs et al., 2013]. Although the precise mechanisms driving the Heinrich events are still
a subject of research, they are believed to have mainly originated from instability of the Laurentide Ice Sheet
(LIS), resulting in large-scale iceberg and glacial meltwater discharge [Hesse, 1992; Hesse and Khodabakhsh,
1998; Hesse et al., 2004] with a near-global impact on the climate system [Broecker, 1994; Hemming, 2004;
Naafs et al., 2013]. Due to their large geographical extent, Heinrich layers in the North Atlantic also have an
important stratigraphic value, as they can be used for regional correlation between different records during
the (late) Quaternary [Rasmussen et al., 2003; Hodell et al., 2008; Channell et al., 2012; Naafs et al., 2013].

Deposition of Heinrich layers during the last glacial period occurred in discrete periods, originally labeled
from the youngest Heinrich 1 (H1) to the oldest H6 [Bond et al., 1992; Broecker et al., 1992]. Other Heinrich
events were defined later, e.g., H0 [Andrews et al., 1994, 1995; Hillaire-Marcel et al., 1994] and H5a [Rashid
et al., 2003], originally named Detrital Carbonate layer 6 [Stoner et al., 1996]. Sediment layers of increased
detrital carbonate content in the northwestern Labrador Sea named DC layers were found by Andrews
and Tedesco [1992] to be coeval with the iceberg rafting Heinrich events 1 and 2, suggesting the eastern
Laurentide Ice Sheet as source for the icebergs. Although the origin of these events has often been identified
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as the Hudson Strait region [Bond
et al., 1992; Hemming, 2004], there
are other potential sources of carbo-
nate along the eastern/northeastern
flank of the Laurentide Ice Sheet,
including extensive Paleozoic out-
crops in the Gulf of St. Lawrence,
on Newfoundland, and on the islands
and channels at the head of Baffin
Bay (Figure 1). Baffin Bay detrital car-
bonate layers have, however, been
shown to be generally not corre-
lative with North Atlantic Heinrich
events [Andrews et al., 2012]. The
Baffin Bay detrital carbonates are
characterized by a much higher dolo-
mite content, i.e., a calcite-dolomite
ratio of ~0.25:1 compared to ≥2.5:1
for Hudson Strait sourced carbonates
[Andrews et al., 2012, 2013; Simon
et al., 2012].

The most recent of the Heinrich
events, Heinrich 0 (H0), is character-
ized by a calcite-rich DC event in
Resolution Basin, and the eastern limit
of Hudson Strait [Andrews et al., 1995],
which is more or less synchronous to
a dolomite-rich DC event recorded in
sediments within Baffin Bay [Andrews
et al., 1996, 2013]. Heinrich 0 is gen-
erally associated with a northward
ice readvance in Hudson Strait, which
occured during the Younger Dryas
cold period [Andrews et al., 1994,
1995; Hillaire-Marcel et al., 1994; Kirby,
1998; Rashid et al., 2011], although
both Cumberland Sound [Kirby, 1998]
and Baffin Bay [Andrews et al., 2012]
have been proposed as an alternative
primary source for H0 sediments.
The original definition of H0 [Andrews

et al., 1995] was based on sediment cores from Resolution Basin and uses the terms Heinrich 0 or H0 and
DC-0 equivalently. In that study, sediments in core HU90023-030 (Figure 1) showed a dramatic rise in DC
between (uncalibrated) radiocarbon dates of 13160±115 14C years B.P. (736 cm depth) and 11,065±105 14C
years B.P. (441 cm) with a calcite/dolomite ratio during H0 of 2.5:1 compared to <1:1 for the ratio of coeval
sediments sourced from Baffin Bay (Figure 1) [Andrews et al., 1995, 2012].

Subsequently, sediment units associated with H0 have been identified in several marine sediment cores,
which indicate that its sediment signature is generally restricted to the western and southern Labrador Sea
[Hillaire-Marcel et al., 2007; Stevenson et al., 2008; Rashid et al., 2011; Jennings et al., 2015; Li and Piper,
2015]. However, in contrast to Andrews et al. [1995], where the H0 layer was found to be approximately time
equivalent to the entire Younger Dryas cold period, the sediment records from farther south in the Labrador
Sea seem to correspond to only the very end of the event [Hillaire-Marcel et al., 2007; Stevenson et al.,
2008; Pearce et al., 2013; Jennings et al., 2015]. Based on reassessment of the marine reservoir offset (ΔR)

Figure 1. Map of Labrador Sea and surroundings with bathymetry; surface
ocean currents (cold currents in blue, warm in red), redrawn from Pearce
et al. [2014]; and distribution of carbonate bedrock (brick pattern) redrawn
from Bond et al. [1992], Kirby [1998], and MacLean [2001]. All cores mentioned
in the text are shown as green dots on the map. The gray-shaded areas
show the extent of the Laurentide Ice Sheet at Younger Dryas age, the
10.5 14C ka margins from Dyke et al. [2003]: AI, Anticosti Island; LT, Laurentian
Trough; CWS, Cartwright Saddle; RB, Resolution Basin; HS, Hudson Strait; CS,
Cumberland Sound. References for sediment cores are as follows: HU94035-008,
HU90023-030 [Andrews et al., 1995], HU91045-06, HU2003033-011 (as P19)
[Hillaire-Marcel et al., 2007], HU91045-94 [Hillaire-Marcel et al., 1994], MD99-2236
[Jennings et al., 2015], HU96018-006, HU96018-008 [Li and Piper, 2015], and
MD95-2033 [Stevenson et al., 2008].
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and calibration of a radiocarbon date at the top of the carbonate layer in HU84035-008 (Figure 1) from the
original H0 study [Andrews et al., 1995], Jennings et al. [2015] determined the end of the H0 interval to be
at 11,708 ± 219 calibrated (cal) years B.P., using the marine calibration curve Marine09 [Reimer et al., 2009].
This range encompasses the age of the Younger Dryas (YD)-Holocene transition at 11,653 ± 99 cal years B.P.
as defined from the NGRIP Greenland ice core based on the GICC05 time scale [Rasmussen et al., 2006] and
may indicate a link between the retreat of the H0 ice advance and the period of rapid climatic warming.

Recent studies of marine sediment core AI07-14G from Placentia Bay off southern Newfoundland (Figure 1)
revealed a 40 cm thick layer of increased detrital carbonate content, characterized by an abrupt onset of
deposition at ~11.5 cal kyr B.P., hence linked to H0 [Pearce et al., 2013, 2014]. The hydrography of Placentia
Bay is dominated by the coastal branch of the Labrador Current, which flows southeastward along the
Labrador Shelf (Figure 1) and is a mixture of cold, low salinity waters from the Baffin Current and warmer,
more saline waters of the West Greenland Current, as well as outflow from Hudson Strait [Petrie and
Anderson, 1983; Lazier and Wright, 1993]. There is, however, also some input of Gulf Stream-derived waters
coming into the bay from the south, the influence of which has been variable throughout the Holocene
and the last deglaciation [Shaw et al., 2013; Sheldon et al., 2015]. Sea ice in Placentia Bay may be present from
late winter-early spring, while icebergs carried by the Labrador Current from Baffin Island or West Greenland
are rare [Catto et al., 1999; Vale Inco, 2008].

To investigate the provenance of the detrital carbonate and further characterize the H0 layer from AI07-14G,
sediments were analyzed using quantitative X-ray diffraction (qXRD) and organic geochemical methods,
complementing previously published data of the sediment core. The aim of the present study is to investi-
gate the H0 event in more detail, to identify its source and the mechanisms responsible for its deposition,
and study its regional distribution on the Labrador Shelf and Grand Banks of Newfoundland. As the event
is relatively well constrained in age from several sediment cores, we also explore its potential as a stratigra-
phical marker in the southwestern Labrador Sea.

2. Materials and Methods
2.1. Coring and Chronology

Gravity core AI07-14G (46.98878°N 54.70077°W; Figure 1) was retrieved from 239m water depth near the
southward opening of Placentia Bay, Newfoundland, during a research cruise on R/V Akademik Ioffe in
2007. The core was cut into 1m sections, split in half lengthwise and stored at 2°C, after which it was
subsampled for further analyses. The chronology of AI07-14G is based on six radiocarbon dates, indicating
an age span from ~10 to 13 calibrated kyr B.P.; a detailed description of the age-depth model is given in
Pearce et al. [2014]. Radiocarbon measurements were calibrated using the Marine13 calibration curve
[Reimer et al., 2013] and a marine reservoir offset ΔR of 139 ± 61 years [Reimer and Reimer, 2001; Solignac
et al., 2011; Pearce et al., 2014], using the age modeling software Oxcal v.4.2 [Ramsey, 2009]. The marine
reservoir offset (ΔR) is defined as the contemporaneous 14C offset from the marine calibration curve.

2.2. Sedimentological and Inorganic Geochemical Analyses

The core sections were photographed using an ITRAX core scanner at the Department of Geoscience of
Aarhus University. Gray scale values were calculated at 5mm resolution as the average of the RGB values
retrieved from the core photograph. The elemental composition of the sediment core was analyzed
through X-ray fluorescence (XRF) on the ITRAX scanner equipped with a Molybdenum anode tube
[Croudace et al., 2006]. Using this non-destructive method, semiquantitative multi-element measurements
were made at high resolution, with the data obtained for calcium (Ca) and strontium (Sr) abundances
presented here at 5mm resolution. The grain size distribution was determined at ~5 cm resolution at the
Department of Geoscience, Aarhus University, using the methods described in Nørnberg and Dalsgaard
[2005]. The calcium carbonate (CaCO3) content was measured at ~5 cm resolution using a Metrohm
855 Robotic Titrosampler by sodium hydroxyde titration until a neutral pH was reached using 1M HCl
and 1M NaOH, at the Department of Geography and Geology, University of Copenhagen. The above
sedimentological data have previously been reported by Pearce et al. [2013, 2014]. Total organic carbon
(TOC) measurements were also presented in Pearce et al. [2014], but for this study additional samples
were measured at different sampling resolution (varying from 5 to 50 cm step size) focusing on the DC
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interval. TOC content was determined
using a continuous flow EuroVector
elemental analyser coupled to an
IsoPrime stable isotope ratio mass
spectrometer at the Department of
Physics and Astronomy of Aarhus
University. Samples where pretreated
with 1MHCl at 60°C for 1 h and subse-
quently rinsed to neutral pH, freeze
dried, and packed into tin capsules.

2.3. Mineralogical Analysis

The quantitative X-ray diffraction
(qXRD) method used for this study
to determine the calcite and dolo-
mite concentrations is fully docu-
mented in Eberl [2003] and its
application to Quaternary marine
geology outlined in Andrews et al.
[2010, 2012]. The method derives
wt % estimates for the <2mm sedi-
ment fraction. Replicate measure-
ments of several known mixtures of
nonclay and clay minerals indicate
that the method error is in the range
of ±1%. Comparisons of calcite wt %
made by qXRD and other methods
resulted in highly significant corre-
lations [Eberl, 2004; Andrews and
Eberl, 2007].

2.4. Organic Geochemical Analysis

Hydrocarbon biomarkers were deter-
mined in selected samples across
the DC layer. The specific choice of
compounds that were analyzed was

based on previously published analysis of biomarkers in Heinrich layers [Nicholl et al., 2012; Naafs et al.,
2013]. Due to the extremely low concentrations of the studied biomarkers, large sediment samples were
necessary for analysis, and therefore, the biomarker composition was only measured for a total of six
samples (sample depths: 123, 203, 283, 288, 323, and 403 cm; 2 samples fromwithin the DC layer and 2 on either
side). Eleven to fifteen grams of freeze-dried sediments were extracted using dichloromethane/methanol
(2:1) and ultrasonication to yield a total lipid extract. Aliphatic and aromatic (≤3 rings) hydrocarbons
were isolated from the total extract on open column chromatography (SiO2) using hexane and analyzed
on an Agilent Technologies 7890 gas chromatograph coupled to an Agilent 262 Technologies 5975C inert
XL mass selective detector equipped with a 30m HP5MS column (0.25mm i.d., 0.25 μm film thickness).
Helium was used as carrier gas. The oven temperature was programmed to rise from 40 to 300°C at
10°C/min and held at the final temperature for 10min. Operating conditions for the mass spectrometer
were 250°C for the ion source temperature and 70 eV for the ionization energy. Individual compound
identification was based on interpretation of their mass spectra and comparison with published data
[Peters and Moldowan, 1993]. Diagnostic ion fragments were used to monitor specific compounds: m/z
133 + 134 (isorenieratane and palaerenieratane), 231 (triaromatic steroids), 253 (C-ring monoaromatic
steroids), 365 (D-ring monoaromatic 8,14-secohopanoids), 191 (17α (H),21β(H)hopanes, and 365 (D-ring
monoaromatic 8,14-secohopanoids) [Rashid and Grosjean, 2006]. Results are shown in Figure 3. Due to the very
low concentrations, absolute concentrations were not precisely determined, and values are semiquantitatively

Figure 2. Proxy data of core AI07-14G: (a) XRF Ca/Sr ratios, (b) qXRD Calcite,
(c) qXRD Dolomite, (d) CaCO3, (e) TOC, (f) gray scale, and a core photograph.
The variables are shown on both the depth and age scale; Figures 2a, 2d, 2e
(black dots), and 2f were previously published in Pearce et al. [2014]. New TOC
measurements from this study are shown in red (Figure 2e). Green markers
indicate position of radiocarbon dates [Pearce et al., 2014]. Shaded area
indicates location of the detrital carbonate layer.
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presented as relative abundances with respect to their maximum concentration, which is sufficient for the
purpose of this study, as it allows comparison of biomarker composition between different samples [Rashid
and Grosjean, 2006; Naafs et al., 2011; Nicholl et al., 2012].

3. Results

The results from the XRF core scanning show a clear peak in the ratio of calcium to strontium counts
(Ca/Sr) just above 300 cm depth in the core (Figure 2a), indicating an increased content of strontium-poor,
detrital carbonate as opposed to strontium-rich biogenic carbonate [Hodell et al., 2008; Channell et al.,
2012]. This ratio shows a very abrupt rise starting around 296 cm and a more gradual return to normal
values around 245 cm depth. Although visual inspection of the core did not directly reveal the position
of the detrital carbonate layer, the high-resolution photographic image and gray scale values clearly
identify the layer as a lighter interval between approximately 240 and 290 cm depth (Figure 2f). Weight
percentages of total organic carbon (TOC) range from 0.9 to 2.3% (Figure 2e). The lowest values, fluctuat-
ing around 1%, are found in the oldest part of the core, from the core bottom up to 300 cm depth. Beyond
this point values increase rapidly to a peak value just over 2% at 280 cm, after which percentages drop
back just as fast, but stay higher than before at around 1.6%. The added TOC data presented here are fully
consistent with the data presented earlier in Pearce et al. [2014], although the concentrations are slightly
higher than previously measured by about ~0.1% on average (Figure 2e). The calcium carbonate (CaCO3)
contents in the sediments (Figure 2d) show the same pattern as the TOC variability, although concentra-
tions were higher and fluctuate between 2.5 and 14.5%. It should be noted here, however, that the
applied method for CaCO3 analysis might have also partly dissolved some dolomite, which may thus have
contributed to the CaCO3 percentages shown in Figure 2e. Again, here there are two long intervals with
minimal variability, with the lowest values in the oldest section, separated by a short-lived maximum
around 280 cm highlighting the detrital layer. Quantitative X-ray diffraction mineralogy analysis shows
clear peaks in dry-weight percentages of both calcite (Figure 2b) and dolomite (Figure 2c) in samples from
within the carbonate layer. Calcite concentrations lie between 1 and 3% and rise up to 7.9% at 276 cm
depth, while dolomite concentrations show the same trend with a 1–2% background and 3.5% peak in
the carbonate layer.

Biomarker analysis of six samples also indicates a clear difference in composition of the carbonate layer
when compared to the background sediments (Figure 3). There is a predominance of C34 over C33
hopanes in the DC layer, and the concentrations of both aromatic hydrocarbons palaerenieratane and
isorenieratane were measured to be approximately 16 times higher in the DC layer than in the embedding
sediment. Other mature hydrocarbons showing the same trend include aromatic steroids and secohopa-
noids (Figure 3).

Figure 3. Biomarker composition of selected samples in core AI07-14G. The middle two samples fall within the detrital
carbonate layer. All concentrations are normalized; i.e., they are shown as relative values based on their maximum occurrence.
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Grain size measurements indicate
that the sediments consist mostly
of silt (~80 %) and clay (~20%) and
only very small amounts of sand
[Pearce et al., 2014]. The grain size
analyses further show no significant
difference in grain size distribution
between samples within and out of
the DC layer (Figure 4).

4. Discussion
4.1. The Heinrich 0 Detrital
Carbonate Layer in AI07-14G

The elevated Ca/Sr ratios and the
presence of both calcite and dolomite
in the carbonate peak of AI07-14G
point to an increased input of detrital
material [Andrews et al., 1995, 2012;
Channell et al., 2012], which is further
confirmed by the results of the bio-
marker analysis. Samples from within
the detrital layer contain elevated
levels of diagenetic petrogenic com-
pounds, with a biomarker composition
being practically identical to the one
reported in Hudson Strait sourced
Heinrich layers from sediment cores

across the North Atlantic [Rosell-Melé et al., 1997; Naafs et al., 2013]. Of all measured parameters, the ITRAX mea-
surements (XRF and gray scale) were carried out at the highest resolution (5mm) and therefore allow for themost
accurate identification of the boundaries of the detrital layer. At 296 cm depth, Ca/Sr ratios rise sharply and remain
high until they gradually return to lower values around 245 cm. The abrupt onset of the event at 296 cm is dated at
11.51±123 cal kyr B.P. [Pearce et al., 2014], thusmatching the timing of the end of H0 at the onset of the Holocene.

4.2. Source Area and Transport Mechanisms

The results of the qXRD and biomarker analyses are used to investigate the source of the carbonate in
AI07-14G (Figures 2 and 3). The presence of detrital carbonate containing dolomite limits the potential source
of the H0 layer to the Paleozoic carbonate outcrops of eastern Canada [Bond et al., 1992; Kirby, 1998; MacLean,
2001; Naafs et al., 2011]. The main sources include the Hudson Strait region and parts of Baffin Island, although
for core AI07-14G, potential inputs of detrital carbonates from proximal sources such as western Newfoundland
and areas along north shore of the Gulf of St. Lawrence and Anticosti Island should also be considered
(Figure 1). However, as the detrital carbonate dispersal is assumed to be driven by glacial action (meltwater
and iceberg discharges), these more local sources are less likely since during this time interval (YD) the ice
sheet was situated largely north of the Paleozoic outcrops [Richard and Occhietti, 2005; Occhietti, 2007] and
the residual Newfoundland ice cap was limited in size (Figure 1) [Dyke, 2004].

Based on the prevailing current systemwith the dominant influence of the southward flowing Inner Labrador
Current (Figure 1) at our study site [Petrie and Anderson, 1983; Catto et al., 2003], a northern origin for the
carbonates seems likely, despite the greater distance of the corresponding source areas. Based on the
qXRD analyses, calcite to dolomite ratios within the DC layer in our core are between 2 and 3, which is
compatible with a Hudson Strait region source [Parnell et al., 2007] as opposed to a Baffin Bay source, where
this ratio is approximately reversed [Andrews et al., 2012; Simon et al., 2012]. The organic geochemical
signature of the sediments in the DC layer (Figure 3) is nearly identical to that of Heinrich Layers 1, 2, 4,
and 5 originating from Hudson Strait [Rashid and Grosjean, 2006; Naafs et al., 2013], and thus also indepen-
dently suggests a carbonate source in the Hudson Strait area.

Figure 4. Grain size distribution (log-scale). Comparison between samples
from in and outside of the detrital carbonate layer in core AI07-14G. The
plots are averages of all the samples (errors bars = 1 standard deviation.).

Paleoceanography 10.1002/2015PA002884

PEARCE ET AL. HEINRICH 0 1618



To investigate the transport mechanism for the DC sediments to our study site, a detailed grain size analysis
was carried out. Results show silt-clay-sized sediments in samples throughout core AI07-14G without any
coarser IRD (Figure 4), ruling out the possibility of iceberg-rafting as the main sedimentation process this
far south. Instead, the dominantly fine-grained sediments would suggest transport of the carbonates as shal-
low meltwater plumes [Hesse et al., 1997] carried southward by the Labrador Current along the shelf. Surface
plume transport has also been found to be responsible for depositing Hudson Strait sourced carbonates over
long distances along the Labrador Shelf during earlier Pleistocene ice advances [Hesse et al., 1997] and later
during the Holocene drainage of Lake Agassiz [Lewis et al., 2012]. Our results thus suggest long-distance
transport of the detrital carbonate mostly as shallow-plumes with the Labrador Current along the shelf
[Hesse et al., 1997], although indication for some dispersal of the H0 detrital carbonates, deeper, along the
slope and upper rise also exists [Stoner et al., 1996; Veiga-Pires and Hillaire-Marcel, 1999]. Additionally, farther
north on the Labrador Shelf (e.g., MD99-2236; Figure 1), there is distinct presence of IRD associated with the
event, indicating ice rafting as an additional transport mechanism for sites closer to the source [Jennings et al.,
2015]. As outlined in the following section, the DC layer in AI07-14G can be correlated to sediment layers in
several other cores, where these horizons have been associated with H0 originating from the Hudson Strait
source area.

4.3. Heinrich 0 Layers on the Labrador Shelf

With a Hudson Strait source, the H0 DC layer should also be present in other marine sediment records from
the Labrador Shelf, i.e., within the Inner Labrador Current trajectory, upstream of core AI07-14G. This is
confirmed in a recent study of marine sediment core MD99-2236 from Cartwright Saddle on the Labrador
Shelf (Figure 1), which shows a high-resolution sequence of detrital carbonate layers occurring in the very
early Holocene [Jennings et al., 2015]. The oldest major carbonate peak in core MD99-2236 is dated at
~11.5 cal kyr B.P., thus coinciding with the AI07-14G H0 event, and is also attributed to the termination of
the H0 glacial event [Jennings et al., 2015]. Cores HU96018-006 and HU96018-008 from Flemish Pass
(Figure 1), just east of the Grand Banks of Newfoundland, also contain carbonate layers of similar age asso-
ciated with H0 [Li and Piper, 2015]. Here the increased carbonate content and input of IRD were preceded
by a strengthening of the Labrador Current indicated by significant changes in the grain size distribution
[Li and Piper, 2015]. Heinrich 0 has also been reported in lower sedimentation rate cores from the western
Labrador Sea: HU91045-06, HU2003033-11 (as P19), and HU91045-94 (Figure 1) [Hillaire-Marcel et al., 1994,
2007; Rashid et al., 2011], although here the chronology lacks the precision for a very robust correlation.
Besides a low number of radiocarbon dates, this is also due to the impact of bioturbation and of variable
fluxes of 14C-carrier foraminifer shells as illustrated in Hillaire-Marcel and de Vernal [2008]. It is noted here
that core HU2003033-011 was erroneously named core P19 in Hillaire-Marcel et al. [2007].

Stevenson et al. [2008] suggested a more local source for the H0 event, based on Sm-Nd and Nd isotopic data
analyzed on sediment record MD95-2033 (Figure 1). Here a small isotopic excursion during the H0 carbonate
event was assumed to be caused by the final melting of the remaining ice sheet covering eastern
Newfoundland and the Grand Banks region [Stevenson et al., 2008]. However, since detrital carbonates from
this source and those from Hudson Strait are of similar age (lower Paleozoic), radiogenic isotope signatures
cannot allow deciphering between the two sources. It is therefore likely that the observed H0 carbonate
event in MD95-2033 is also linked to the Hudson Strait source.

4.4. Timing and Duration of Heinrich 0

The deposition of the H0 detrital carbonate layer has been linked to the Younger Dryas interval [Andrews
et al., 1995; Veiga-Pires and Hillaire-Marcel, 1999; Rashid et al., 2011], with some suggestion for a temporal
offset [Hillaire-Marcel and de Vernal, 2008]. In most of these earlier records, however, the time resolution
achieved was unable to decipher the precise temporal linkage of H0 with the Younger Dryas cooling event,
adding to the fact that the Younger Dryas is not clearly recorded in the northwest Labrador Sea record [Gibb
et al., 2014], neither at the outlet of the Gulf of St. Lawrence [de Vernal et al., 1996]. In our studied record no
detrital input was recorded during the Younger Dryas cold period itself until the deposition of H0 right after,
very similar to what is observed on the Labrador Shelf in Jennings et al. [2015]. The age of onset of the event
in AI07-14G was dated to approximately 11.500 ± 130 cal years B.P. and carbonate concentrations stayed
elevated for about 100–150 years [Pearce et al., 2014]. The increase of the sedimentation rate due to the
enhanced flux of detrital carbonate during the interval was not more than ~15%, based on the abundance
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percent of calcite and dolomite above background (Figure 2), thus having a negligible impact on the esti-
mated duration. This would indicate input of the detrital carbonate over a longer time period rather than a
short-lived meltwater event. The estimated duration of the event is, however, limited by the uncertainties
of the age model, possible changes in reservoir ages throughout the interval and sediment mixing at the
upper limit of the DC layer (Figure 2) by bioturbation [Smith and Schafer, 1984; Anderson, 2001]. Therefore,
the possibility of an abrupt, more intense meltwater pulse of shorter duration cannot be excluded.

The timing of our DC event, directly following the end of the Younger Dryas cold episode, argues for a link
with the rapid warming at the onset of the Holocene and the associated retreat of the Younger Dryas ice
margin in Hudson Strait, on the shelf and the surrounding landmasses [Stevenson et al., 2008; Jennings
et al., 2015]. This implies that the H0 DC event as found in several records in the western Labrador Sea is in
no way time equivalent to the entire Younger Dryas period, but corresponds to the rapid retreat phase of this
ice advance at the onset of the Holocene. This is supported by Jennings et al. [2015], who assume that the
main discharges of ice and meltwater out of Hudson Strait occur during either the ice advance phase or
during the subsequent retreat (see also Pfeffer [2001]).

An important limitation, however, to the precise age determination of the DC event and correlation with other
cores is the unknown marine radiocarbon reservoir offset, which is time and location dependent. The question
of an appropriate reservoir offset ΔR for the region is fraught with arguments as different authors have used
different values, ranging from ΔR = 0 to an offset of several hundreds of years [Hillaire-Marcel et al., 2007;
Stevenson et al., 2008; Rashid et al., 2011; Hoffman et al., 2012; Jennings et al., 2015; Li and Piper, 2015].
Although some of these large ranges may be explained by the spatial extent of the different study sites,
the variability of reservoir ages within the Labrador Current, from Hudson Strait down to the Grand
Banks of Newfoundland, is expected to be very minimal [Sherwood et al., 2008]. In recent years, several
investigations have aimed to compensate for the potentially increased reservoir age during the early
Holocene, caused by prolonged sea ice cover, by subtracting an additional 200 years from the conventional
radiocarbon ages [Levac et al., 2011; Lewis et al., 2012; Rashid et al., 2014]. However, although the ΔR value
has likely varied through deglacial and glacial periods [Bard et al., 1994; Olsen et al., 2014], differences to
modern reservoir age values such as presented by McNeely et al. [2006] and Reimer and Reimer [2001]
are very difficult to ascertain without the presence of absolute age markers. Volcanic ash markers in marine
sediment cores in the Labrador Sea are extremely rare, although Vedde Ash shards have been recognized
in YD sediments from deeper cores from the Labrador Rise (e.g., Hillaire-Marcel and de Vernal [2008]). In
this context, it should be noted that core AI07-14G has been thoroughly investigated for the presence of
microtephra following the methods described in Turney [1998], but no volcanic ash horizons were found
(see also Pearce et al. [2014]). Nevertheless, the applied ΔR of 139 ± 61 years for core AI07-14G [Solignac
et al., 2011] is consistent with other findings of the modern value for ΔR in this region: 132 ± 23 14C years
for the northwest Labrador Sea [Sherwood et al., 2008], 150 ± 60 14C years for SE Baffin Island [Coulthard
et al., 2010], and 144 ± 38 14C years for the Labrador Shelf [McNeely et al., 2006]. However, as a result of
the earlier mentioned challenges with radiocarbon dates and reservoir ages, the attained ages for H0 are
associated with uncertainties of probably up to a few centuries. Despite this lack of precision, from analysis
of other proxies in Pearce et al. [2013, 2014], where the carbonate layers follow a clear warming of the surface
waters and loss of sea ice, it is clear that the H0 DC layer occurs right at the onset of the Holocene. This has the
important implication that the H0 event itself did not seem to have any significant influence on large-scale
circulation patterns, as it occurred during strengthening of the Atlantic Meridional Overturning Circulation
(AMOC) [McManus et al., 2004; Gherardi et al., 2009].

4.5. Possible Link to Later Glacial Events

More recently, during the early Holocene, smaller and lesser known ice advances on the LIS in Hudson Strait
(e.g., Noble Inlet and Gold Cove events) and the final Lake Agassiz drainage event are also known to have
deposited detrital carbonate layers in the western Labrador Sea [Hillaire-Marcel et al., 2007; Levac et al.,
2011; Rashid et al., 2014; Jennings et al., 2015; Pearce, 2015]. Therefore, the studied DC layer may, theoretically,
have originated from the earliest of these events, the Gold Cove readvance. The Gold Cove glacial event was a
very rapid expansion and subsequent retreat of an ice stream over the Hudson Strait in the early Holocene
[Miller and Kaufman, 1990; Kaufman et al., 1993; Pfeffer et al., 1997; Manley and Miller, 2001; Andrews and
MacLean, 2003; Dyke, 2004; Pearce, 2015]. The main reason for discarding the Gold Cove event as source
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for the studied DC event, however, is its timing, since the onset of this re-advance occurred after the H0 event.
It is relatively well dated to a maximum calibrated age of ~11.3 cal kyr B.P. (with absolute minimal reservoir
age offset ΔR= 0) [Kaufman et al., 1993; MacLean et al., 2001; Pearce, 2015], which is too young when com-
pared to the AI07-14G DC layer. The unlikelihood of the link with the Gold Cove advance is also confirmed
by the carbonate stratigraphy of Cartwright Saddle [Jennings et al., 2015], in which the Gold Cove and H0
are clearly different events represented by separate DC peaks.

5. Conclusions

Marine sediment core AI07-14G from Placentia Bay, Newfoundland, contains a DC layer, which is dated at
~11.5–11.3 cal kyr B.P. and attributed to the H0 glacial event. Sediments in the H0 layer are slightly lighter in
color; have high Ca/Sr ratios; contain elevated concentrations of calcium carbonate, TOC, calcite and dolomite;
and have a biomarker composition that is characteristic for Heinrich layers. The biomarkers are identical to
those found in older Heinrich events and suggest a Hudson Strait region source, although input from other,
more local, source areas cannot be totally ruled out based on the geochemical signature. However, the phasing
of the H0 event and the sedimentological properties of the corresponding layer in cores from the Hudson Strait,
Labrador, and Newfoundland shelves, as well as from deeper sites, suggest a single Hudson Strait source. The
timing of the H0 DC event at ~11.5–11.3 cal kyr B.P. suggests a link with the rapid warming at the onset of the
Holocene and the associated collapse and retreat of the Younger Dryas glacial ice masses. Grain size analysis
showed no increased presence of coarser IRD during the event. This excludes the possibility of iceberg transport
at our study site, but rather indicates surface water plume transport along the Labrador Shelf. The layer,
observed from Hudson Strait to the SW slope of the Grand Banks, has thus great potential as a correlation tool
between different sediment records in the western and southern Labrador Sea, aside its potential linkage to a
short-duration climate event [Rasmussen et al., 2007]. Another important finding is that the age of themeltwater
event coincides with the timing of the enhancement of the Atlantic Meridional Overturning Circulation (AMOC)
at the very end of the Younger Dryas [Piotrowski et al., 2004; Gherardi et al., 2009]. This is in agreement with
earlier findings by Pearce et al. [2013] from the same sediment core, where the occurrence of H0 followed
immediately after the surface water warming and rapid loss of sea ice associated with a strengthening of
the AMOC. The H0 meltwater event itself thus had no direct measurable impact on the large-scale ocean
circulation, as also suggested for similar scenarios in model experiments [Condron and Winsor, 2012].
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