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Abstract. In this paper, we propose a theory for linear time fractional PDEs on
L2(Rd). The order of the time derivatives under consideration is less than 1. We
study well-posedness, regularizing effects and dissipative properties. In particular,
we give a necessary and sufficient condition for well-posedness. Regarding regular-
izing effects, we describe quite precisely the equations that have this effect or not.
We highligth that, in purely fractional settings, the regularizing effect acts always
only up to finite order; unlike to the standard case.

1. Introduction

Time fractional differential equations have been the subject of many research in
the recent years, both in terms of applications ([GARGBA+12], [Las00], [BGTM10])
and mathematical studies ([Kos15], [GKMR14]).

The aim of this paper is to built a theory for linear time fractional PDEs on L2(Rd).
It is about to extend the well-known theory of first order time derivative equations.
Surprisingly, to our knowledge, such extension has not been made yet. However,
there are many results regarding abstract time fractional equations: see for instance
[Kos14], [Baz98], [KLW16].

For first order time derivative equations of the form

ut = P (D)u, (1.1)

where u = u(x, t) and P (D) is a differential operator acting on the space variable x,
the well posedness is equivalent to the condition

sup
ξ∈Rd

ReP (ξ) <∞,

where P is the symbol of P (D) (see Subsection 2.3 for notation and definitions).
For time fractional equations of the form

Dα
0,tu = P (D)u, (1.2)

with α ∈ (0, 1), the above condition is sufficient (see [ER17]) but no more necessary
(see Example 4.3 below). In this paper, we give a quite simple necessary and sufficient
condition, namely (4.1), for the above fractional problem to be well posed in L2(Rd).
See Theorem 4.2.

Roughly speaking, our results state that the critical angle for equation (1.2) is π
2
α

in a similar fashion that π/2 is the critical angle for (1.1). Indeed, if | argP (ξ)| < π
2
α

then the Cauchy problem corresponding to (1.2) is generally ill-posed. If | argP (ξ)| >
π
2
α then the problem is well-posed, has regularizing effects and dissipative properties.
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If | argP (ξ)| = π
2
α then the problem is well-posed in L2(Rd) but, has no regularizing

and dissipative properties.
For instance, the fractional Schrödinger equation

Dα
0,tu = −i∆u, (1.3)

is hyperbolic for α = 1 in the sense that it has a conservation law and no regularizing
effect. In this case, argP (ξ) = π/2.

When α ∈ (0, 1), the critical angle is π
2
α. Since π/2 > π

2
α, there results that

(1.3) has regularizing effect and dissipative properties (see Theorem 6.3). In order to
recover a hyperbolic behaviour for α ∈ (0, 1), Equation (1.3) may be modified into

Dα
0,tu = −iα∆u,

see Example 4.6 for details. This equation appears in the poineer work of Naber
dedicated to fractional extensions of Schrödinger’s equation ([Nab04]). It seems
that the proper way time fractional Schrödinger’s equation should be formulated is
still discussed ([NAYH13]). Let us notice that the same issue holds for transport
equations. We hope that the systematic analysis we have made in this paper will be
useful for modeling processes using fractional time derivatives.

Regarding the regularizing effect of (1.2), we would like to emphasize that, contrary
to the standard case, it acts only up to a finite order even if the right hand side of
(1.2) is the Laplacian operator (see Proposition 6.7 and Example 6.8).

In [ER17], we introduce some “no-initial” value problems. These problems are
interesting since (1.2) can by no means be considerated as an autonomous equation
if α ∈ (0, 1) (see [ER17] for details). In this paper, we continue the study of this
kind of problems. To our knowledge, this study has also not be made at that time.

The paper is organised as follow. In the next section we introduce some prelimi-
naries which are essential in our forthcoming discussions. This includes the definition
of fractional derivatives, mild and strong solutions and Fourier multiplier results.

The third section is devoted to analyse some asymptotic properties of Mittag-
Leffler functions. Sections 4 and 6 are devoted to the study of quantitative and
qualitative properties of the solutions to

Dα
τ,tu = P (D)u, u(s) = v,

where τ and s are real number satisfying τ ≤ s. It has to be noticed that the
analysis of the above problem differs whether τ = s or not. In the case τ = s,
we give existence and uniqueness results when the initial condition v lies in L2(Rd).
That extends the results of [ER17] where v was supposed to be smoother− i.e. lying
in the domain of the operator P (D). Our qualitative results concern regularizing
effects and dissipative properties of the solutions.

In Section 5, we study the three time variable solution operator corresponding to
the above equation.

2. Preliminaries

2.1. Fractional derivatives. In this subsection, we recall the required background
on Caputo’s fractional derivatives. Let us introduce the convolution of functions
defined on semi-infinite intervals.
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Definition 2.1. For each τ ∈ R, let g be a function of L1
loc([0,∞)) and f be an

element of L1
loc([τ,∞), X). Then the convolution of g and f is the function of

L1
loc([τ,∞), X) defined by

g ∗τ f(t) =

∫ t

τ

g(t− y)f(y)dy, a.e. t ∈ [τ,∞).

Remark 2.2. (i) If τ = 0 then we will write g ∗ f instead of g ∗τ f .
(ii) A function f belongs to L1

loc([0,∞), X) iff for each positive T , f lies in L1(0, T,X).

The following kernel is of fundamental importance in the theory of fractional
derivatives.

Definition 2.3. For β ∈ (0,∞), let us denote by gβ the function of L1
loc([0,∞))

defined for a.e. t > 0 by

gβ(t) =
1

Γ(β)
tβ−1.

Let us notice that g1 = 1 and for each α ∈ [0, 1), we have

g1−α(t) =
1

Γ(1− α)
t−α, a.e. t > 0.

Moreover, for each α, β ∈ (0,∞), the following identity holds.

gα ∗ gβ = gα+β, in L1
loc

(
[0,∞)

)
. (2.1)

Then we are able to introduce the well known fractional derivative of a function
in the sense of Caputo.

Definition 2.4. Let α ∈ (0, 1), τ ∈ R and f ∈ C([τ,∞), X). We say that f admits
a (fractional) derivative of order α in L1

loc([τ,∞), X) or that f is α-differentiable in
L1
loc([τ,∞), X) if

g1−α ∗τ f ∈ W 1,1
loc ([τ,∞), X).

In that case, its (fractional) derivative of order α is the function of L1
loc([τ,∞), X)

defined by

Dα
τ,tf :=

d

dt

{
g1−α ∗τ (f − f(τ))

}
.

If α = 1 then D1
τ,t will denote the usual first order time derivative and f is said to

be 1-differentiable in L1
loc([τ,∞), X) if f belongs to W 1,1

loc ([τ,∞), X).

Above, the vector space W 1,1
loc ([τ,∞), X) is the set of functions u in L1

loc([τ,∞), X)
whose time-derivative (in the sense of distributions) belongs to L1

loc([τ,∞), X).

Remark 2.5. (i) If f ∈ C([τ,∞), X), α ∈ (0, 1) and

g1−α ∗τ f ∈ W 1,1
loc ([τ,∞), X)

then clearly,
g1−α ∗τ

(
f − f(τ)

)
∈ W 1,1

loc ([τ,∞), X).

Hence Definition 2.4 makes sense.
(ii) It is well known that the space W 1,1

loc ([τ,∞), X) is a subset of C([τ,∞), X).
(iii) Analog definition of fractional derivative in C([τ,∞), X) can be given; see

[ER17, Definition 3.3] for a precise statement.
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The following results will be useful in the sequel. The statement of Proposition
2.6 is closed to [ABHN11, Proposition 1.3.6] and can be proved in a same way.

Proposition 2.6. For any T > 0, let f ∈ W 1,1(0, T,X) and g ∈ L1(0, T ). Then
g ∗ f lies in W 1,1(0, T,X) and

d

dt

{
g ∗ f

}
= g ∗ d

dt
f + g(·)f(0), in L1(0, T,X). (2.2)

By combining (2.2) and (2.1), we prove easily the well known following result.

Corollary 2.7. Let α ∈ (0, 1], τ ∈ R and f ∈ C([τ,∞), X) be a α-differentiable
function in L1

loc([τ,∞), X). Then

gα ∗τ Dα
τ,tf = f − f(τ) in L1

loc([τ,∞), X).

2.2. Abstract linear fractional Problems. Let A : D(A) ⊆ X → X be a closed
linear operator on a complex Banach space X, whose norm will be denoted by ‖ ·‖X .
The domain D(A) is equipped with the standard graph norm, so that it is a Banach
space. For α ∈ (0, 1] and any real number τ , we consider the following homogeneous
linear fractional problem

Dα
τ,tu = Au, u(τ) = v. (2.3)

Following [Prü93], we introduce the definition of strong and mild solutions .

Definition 2.8. Let α ∈ (0, 1], τ ∈ R and v be in D(A). We say that a function u
is a strong solution to (2.3) on [τ,∞) if
(i) u belongs to C([τ,∞), D(A)) and u(τ) = v;
(ii) u admits a derivative of order α in C([τ,∞), X);
(iii) Dα

τ,tu = Au in C([τ,∞), X).

Similarly to the case where α = 1, the fractional differential equation (2.3) can
be transformed into an integral equation. More precisely, we have the following well
known result, easily proved via Corollary 2.7.

Proposition 2.9. Let α ∈ (0, 1], τ ∈ R and v be in D(A). Then the following
propositions are equivalent.
(i) u is a strong solution to (2.3) on [τ,∞).
(ii) u belongs to C([τ,∞), D(A)), and

u = v + gα ∗τ Au, in C
(
[τ,∞), X

)
.

When v is no more restricted to live in D(A), we are led to consider solutions in
a weaker sense, the so-called mild solutions .

Definition 2.10. Let α ∈ (0, 1], τ ∈ R and v be in X. We say that a function u is
a mild solution to (2.3) on [τ,∞) if
(i) u belongs to C([τ,∞), X);
(ii) gα ∗τ u belongs to C([τ,∞), D(A));
(iii) u = v + A(gα ∗τ u) in C([τ,∞), X).

Clearly, A being closed, any strong solution to (2.3) is a mild solution to (2.3).
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Definition 2.11. Let α ∈ (0, 1] and τ ∈ R. We say that (2.3) is well posed on X
if for each v in X, (2.3) has a unique mild solution u on [τ,∞) and for all positive
time T ,

‖u(t)‖X ≤ CT‖v‖X , ∀t ∈ [τ, τ + T ],

where CT is a real constant independent of t and v.

When the two time parameters problem
Dα
τ,tu = Au, u(s) = v (2.4)

is considered, we will use Definition 2.12 for solutions to (2.4). Problem (2.4) is a
“no-initial” value problems that is generally ill-posed when α = 1 and τ < s. We
refer to [ER17] for a first approach to (2.4).

Definition 2.12. Let α ∈ (0, 1], s, τ ∈ R with τ ≤ s and v be in X. We say that a
function u ∈ C([τ,∞), X) is a solution to (2.4) on [τ,∞) if
(i) u belongs to L1

loc([τ,∞), D(A)) and u(s) = v;
(ii) u admits a derivative of order α in L1

loc([τ,∞), X);
(iii) Dα

τ,tu = Au in L1
loc([τ,∞), X).

Let us notice that Definition 2.12 encapsulates a regularity effect when s = τ .
Indeed, the initial condition v belongs to X whereas u(t) lies in D(A) for almost
every t larger than τ .

By considering Problem (2.4), it appears that a time shift simplifies the situation
by reducing the study to the case τ = 0. More precisely, for τ ≤ s, let us consider
the problem

Dα
0,tw = Aw, w(s− τ) = v. (2.5)

Then we have the following result.

Proposition 2.13. Let α ∈ (0, 1], τ ≤ s, v ∈ X, u ∈ C([τ,∞), X) and w ∈
C([0,∞), X). We suppose that

u(t+ τ) = w(t), ∀t ≥ 0.

Then u is a solution to (2.4) on [τ,∞) if and only if w is a solution to (2.5) on
[0,∞).

The proof of Proposition 2.13 is easy and analog to the one of [ER17, Proposition
4.2], so we omit it. Notice that the latter is concerned with smoother solutions since
the initial condition is supposed to belong to D(A).

Remark 2.14. Statements analog to Proposition 2.13 hold for strong and mild
solutions.

When τ = 0 and A = P (D) is a differential operator with constant coefficients on
X := L2(Rd), the strong solution to (2.3) has a representation of the form

u(t) = Sα(t)v,

where the Fourier multiplier of the solution operator Sα(t) : D(P ) → D(P ) is
explicitly computed (see [ER17]). From this computation, it is clear that Sα(t) can
be extended into a bounded operator on L2(Rd)− see (5.3).

Since, for v in L2(Rd), Sα(t)v does not belong generically to D(P ), Sα(·)v cannot
be a strong solution. Thus the issue is to find an equation whose solution is Sα(·)v.
Proposition 2.13 below brings an answer by means of mild solutions .



6 HASSAN EMAMIRAD AND ARNAUD ROUGIREL

Proposition 2.15. Let A : D(A) ⊆ X → X be a closed densily defined linear
operator on X. Let us assume that
(i) for each v in D(A), there exists a unique strong solution to

Dα
0,tu = Au, u(0) = v; (2.6)

(ii) for each T > 0, there exists a constant CT such that for all v in D(A) and t in
[0, T ], the solution u to (2.6) satisfies

‖u(t)‖X ≤ CT‖v‖X . (2.7)
Then for each τ ∈ R and v in X, (2.3) has a unique mild solution u on [τ,∞).
Moreover, if (vn)n≥0 ⊂ D(A) converges toward v in X then for each positive time T ,

un(· − τ)→ u in C
(
[τ, τ + T ], L2(Rd)

)
, (2.8)

where un denotes the strong solution to (2.6) with initial condition vn.

Proof. It relies on (2.1), Proposition 2.13 and on arguments developed in [Prü93]
after Definition 1.2. Let us notice that we do not need to use Titchmarsh’s Theorem
(see for instance [Dos88]) here. We use (2.1) instead. �

2.3. Pseudo-differential operators on L2(Rd). The Fourier transform on L2(Rd),
denoted by F , is defined for f ∈ L1(Rd) ∩ L2(Rd), by

Ff(ξ) = f̂(ξ) :=

∫
Rd
f(x)e−iξ·xdx, a.e. ξ ∈ Rd.

Then its inverse F−1 satisfies

F−1(f)(x) := (2π)−d
∫
Rd
f(ξ)eiξ·xdξ, a.e. x ∈ Rd.

Moreover, according to Plancherel’s identity, we have for all f, g ∈ L2(Rd),∫
Rd
f̂(ξ)ĝ(ξ)dξ = (2π)d

∫
Rd
f(x)g(x)dx. (2.9)

For any function P : Rd → C continuous on Rd, let
D(P ) := {u ∈ L2(Rd) | P (·)û ∈ L2(Rd)}

and P (D) : D(P ) ⊆ L2(Rd) → L2(Rd), the so-called pseudo-differential operator
with constant coefficients, defined for all u ∈ D(P ) by

P (D)u := F−1
(
P (·)û

)
.

The continuous function P is called the symbol of the pseudo-differential operator
P (D). In the literature, the symbol of a pseudo-differential operator is supposed
to be a smooth function on Rd. In this paper, we extend this definition to any
continuous symbol P . That allows us to encapsulate the case of fractional Laplacian
operators, nowaday extensively studied− see Example 2.16 below.

The domainD(P ) contains F−1(D(Rd)), where D(Rd) is the space of C∞-functions
on Rd with compact support. Since F−1(D(Rd)) is dense in L2(Rd) (see the proof of
Lemma 2.17), there results that P (D) is a closed and densely defined linear operator
on L2(Rd).

If P is a complex polynomial on Rd i.e.

P : Rd → C, ξ 7→
∑
|β|≤M

pβξ
β,
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with
β = (β1, . . . , βd) ∈ Nd, |β| = β1 + · · ·+ βd, M ∈ N, pβ ∈ C,

then P (D) is a differential operators with constant coefficients. More precisely, let us
introduce Hörmander’s notation for partial derivatives, that-is-to-say for k = 1, . . . , d,
put

Dk :=
1

i
∂xk , D := (D1, . . . , Dd),

where i2 = −1 and ∂xk denotes the usual partial derivative in the direction xk. Then

P (D) :=
∑
|β|≤M

pβD
β.

Also
D(P ) = {u ∈ L2(Rd) | P (D)u ∈ L2(Rd)} (2.10)

= {u ∈ L2(Rd) |
∫
Rd
|P (ξ)û(ξ)|2 dξ <∞}.

In (2.10), P (D)u is understood in the sense of distributions.

Example 2.16. let β ∈ (0,∞) and

P2β : Rd → C, ξ = (ξ1, . . . , ξd)→ −|ξ|2β := −
( d∑
k=1

ξ2k

)β
.

If β = 1 then −P2(D) is the Laplacian operator, i.e.

−P2(D) =
d∑

k=0

D2
k = −

d∑
k=0

∂2xk = −∆.

If β ∈ (0, 1) then the pseudo-differential operator −P2β(D) is called the fractional
Laplacian operator and is denoted by (−∆)β. See for instance [DNPV12]. Its domain
is the fractional Sobolev space H2β(Rd) = W 2β,2(Rd), and

D
(
− (−∆)β

)
= D(P2β) = H2β(Rd) = {u ∈ L2(Rd) |

∫
Rd
|ξ|4β|û(ξ)|2 dξ <∞}.

2.4. A Fourier Multiplier Result. We will use the following classical result in
Fourier multiplier Theory. Recall that D(Rd) denotes the space of C∞-functions
on Rd with compact support. Then F−1(D(Rd)) is the space of L2-functions whose
Fourier transform is in D(Rd). Also, for X a complex Banach space, we denote by
L(X) the space of linear continuous maps from X into X.

Lemma 2.17. Let a : Rd → C be a continuous function on Rd and

A : F−1(D(Rd))→ L2(Rd), v 7→ Av := F−1(av̂).

Then the following propositions are equivalent.
(i) A has a unique extension in L2(Rd), still labelled A.
(ii) There exists C ≥ 0 such that ‖Av‖L2(Rd) ≤ C‖v‖L2(Rd) for all v in F−1(D(Rd)).
(iii) The Fourier multiplier a(·) belongs to L∞(Rd).
Moreover, if one of the above properties holds then

‖A‖L(L2(Rd)) = sup
ξ∈Rd
|a(ξ)|. (2.11)



8 HASSAN EMAMIRAD AND ARNAUD ROUGIREL

Proof. It is clear that (i) implies (ii), with C := ‖A‖L(L2(Rd)). By [BTW75, Theorem
I.2.2 and proof], (ii) implies (iii) and supξ∈Rd |a(ξ)| ≤ C. Finally, (iii) implies (i) and
‖A‖L(L2(Rd)) ≤ supξ∈Rd |a(ξ)|. That follows from the fact that F−1(D(Rd)) is dense
in L2(Rd). Indeed, if a function f in L2(Rd) satisfies∫

Rd
F−1ϕ(x)f(x) dx = 0, ∀ϕ ∈ D(Rd).

Then by Plancherel’s identity, we have∫
Rd
ϕ(ξ)f̂(ξ) dξ = 0.

Thus f = 0 and F−1(D(Rd)) is dense in L2(Rd).
There results that the equivalences hold. Then (2.11) follows easily. �

3. Mittag-Leffler functions

In fractional differential problems, Mittag-Leffler functions play the role of expo-
nential functions in differential equations. In this section, we will give all the material
on Mittag-Leffler functions needed to solve the time fractional problems under con-
sideration in this paper. For further information, we refer the reader to [Pod99] or
[GKMR14].

3.1. Definition and classical results.

Definition 3.1. For α > 0 and β ∈ R, we define the generalised Mittag-Leffler
function, Eα,β by

Eα,β(z) =
∞∑
k=0

zk

Γ(kα + β)
, ∀z ∈ C.

If β = 1 then we put Eα := Eα,1 and Eα is called the Mittag-Leffler function of order
α.

For all α > 0 and λ ∈ C, the Mittag-Leffler function Eα satisfies

Dα
0,tEα(tαλ) = λEα(tαλ), ∀t ≥ 0 (3.1)

d

dt
Eα(tαλ) =

1

t
Eα,0(t

αλ). (3.2)

Moreover, the function Eα is increasing and positive on R (see [Pol48]). Also we
have the following deep result that will be extensively used in this paper.

Theorem 3.2. [Pod99, Theorem 1.3 and 1.4] Let α ∈ (0, 1], β ∈ R and α′ ∈ (α, 2).
Then

Eα,β(z) = − 1

Γ(β − α)

1

z
+O

( 1

z2
)
, as |z| → ∞, | arg(z)| ≥ π

2
α′. (3.3)

Moreover, if α′ < 2α then

Eα,β(z) =
1

α
z

1−β
α exp

(
z1/α

)
+O

(1

z

)
, as |z| → ∞, | arg(z)| < π

2
α′. (3.4)

In this paper, it is understood that the function arg(·) ranges in (−π, π].
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3.2. Estimates of the Mittag-Leffler functions. For any continuous function
P : Rd → C and α ∈ (0, 1], let us consider the following property: there exists
MP ≥ 0 such that for each ξ ∈ Rd satisfying P (ξ) 6= 0, the following implication
holds:

if | argP (ξ)| < π

2
α then Re

(
P (ξ)1/α

)
≤MP . (3.5)

Of course, for z ∈ C, we have set

z1/α :=

{
|z|1/α exp

(
iarg z
α

)
if z 6= 0

0 if z = 0
,

and Re (P (ξ)1/α) denotes the real part of P (ξ)1/α.

Lemma 3.3. Let P : Rd → C be a continuous function on Rd and α ∈ (0, 1]. If
(3.5) holds then, for each T > 0,

sup
t∈[0,T ]

sup
ξ∈Rd

∣∣Eα(tαP (ξ)
)∣∣ <∞. (3.6)

If for each ξ ∈ Rd satisfying P (ξ) 6= 0, one has

| argP (ξ)| ≥ π

2
α

then
sup
t≥0

sup
ξ∈Rd

∣∣Eα(tαP (ξ)
)∣∣ <∞. (3.7)

Proof. Let t ∈ [0,∞) and α′ ∈ (α, 2α). By (3.3), (3.4), there exist R1 > 0 and C > 0
such that for each ξ ∈ Rd,

|tαP (ξ)| > R1, | argP (ξ)| < π

2
α′ =⇒

∣∣Eα(tαP (ξ)
)∣∣ ≤ C

∣∣ exp
(
tP (ξ)1/α

)∣∣+
C

tα|P (ξ)|
(3.8)

and
|tαP (ξ)| > R1, | argP (ξ)| ≥ π

2
α′ =⇒

∣∣Eα(tαP (ξ)
)∣∣ ≤ C

tα|P (ξ)|
. (3.9)

We will consider four cases.
(i) If |tαP (ξ)| > R1 and | argP (ξ)| ≥ π

2
α′ then by (3.9), one has∣∣Eα(tαP (ξ)

)∣∣ ≤ C

R1

.

(ii) If |tαP (ξ)| > R1 and | argP (ξ)| ∈ [π
2
α, π

2
α′) then∣∣ exp

(
tP (ξ)1/α

)∣∣ = exp
(
t|P (ξ)|1/α cos

(argP (ξ)

α

))
.

However,
π

2
≤
∣∣∣argP (ξ)

α

∣∣∣ ≤ π

2

α′

α
< π,

thus ∣∣ exp
(
tP (ξ)1/α

)∣∣ ≤ 1.

Going back to (3.8), we get ∣∣Eα(tαP (ξ)
)∣∣ ≤ C +

C

R1

.
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(iii) If |tαP (ξ)| ≤ R1 then by continuity of the Mittag-Leffler function, we may find
a constant C(R1) such that

|Eα
(
tαP (ξ)

)
| ≤ C(R1).

Hence (3.7) follows from (i), (ii) and (iii).
(iv) Finally, if t ∈ [0, T ], |tαP (ξ)| > R1 and | argP (ξ)| < π

2
α then, according to (3.5),∣∣ exp

(
tP (ξ)1/α

)∣∣ = exp
(
tRe

(
P (ξ)1/α

))
≤ exp(TMP ).

Hence, with (3.8),

|Eα
(
tαP (ξ)

)
| ≤ C exp(TMP ) +

C

R1

.

Hence (3.7) follows from (i)−(iv). �

It turns out that (3.5) and (3.6) are equivalent if P is continuous. In that case,
the following result is the converse of Lemma 3.3.

Lemma 3.4. Let P : Rd → C be continuous on Rd and α ∈ (0, 1]. Suppose that
there exists a sequence (ξn)n≥0 ⊂ Rd such that for each n ≥ 0, one has P (ξn) 6= 0,

| argP (ξn)| < π

2
α and Re

(
P (ξn)1/α

)
−−−→
n→∞

∞.

Then for each t > 0,
sup
ξ∈Rd

∣∣Eα(tαP (ξ)
)∣∣ =∞. (3.10)

Proof. We have ∣∣ exp
(
tP (ξn)1/α

)∣∣ = exp
(
tRe

(
P (ξn)1/α

))
−−−→
n→∞

∞.

Moreover, Re (P (ξn)1/α)→∞ implies |P (ξn)| → ∞. Thus, with (3.4), we deduce∣∣Eα(tαP (ξn)
)∣∣→∞.

That proves (3.10). �

Remark 3.5. (i) If α = 1 then (3.5) is equivalent to

sup
ξ∈Rd

Re
(
P (ξ)

)
<∞. (3.11)

That is the usual assumption on symbols of differential operators with constant
coefficients.
(ii) If α ∈ (0, 1) then (3.11) implies (3.5). Indeed, for each ξ ∈ Rd with P (ξ) 6= 0,
assuming

Re
(
P (ξ)

)
≤M and | argP (ξ)| < π

2
α,

we deduce

|P (ξ)| ≤M

√
1 + tan2(

π

2
α).

Thus, for some finite constant MP ,

Re
(
P (ξ)1/α

)
≤MP .

(iii) In general, (3.5) does not imply (3.11): see Example 4.3 below.
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In order to obtain a polynomial decay of Fourier multipliers at infinity, we will
assume instead of (3.5), that P satisfies the following stronger assumption: for each
α in (0, 1], there exist R0 ≥ 0 and α′ ∈ (α, 2) such that for each ξ ∈ Rd, one has the
following implication:

if |P (ξ)| > R0 then | argP (ξ)| ≥ π

2
α′. (3.12)

Lemma 3.6. Let P : Rd → C be continuous on Rd, α ∈ (0, 1] and β ∈ R. If (3.12)
holds then for all T > 0, there exists a constant CT such that

|Eα,β
(
tαP (ξ)

)
| ≤ CT

1 + tα|P (ξ)|
, ∀t ∈ [0, T ], ∀ξ ∈ Rd. (3.13)

Moreover, if R0 = 0 in (3.12) then there exists a constant C such that

|Eα,β
(
tαP (ξ)

)
| ≤ C

1 + tα|P (ξ)|
, ∀t ≥ 0, ∀ξ ∈ Rd. (3.14)

Proof. We start to prove (3.13). Let T > 0 be fixed. If t ∈ [0, T ] and ξ ∈ Rd are
such that tα|P (ξ)| > R0T

α then (3.12) implies

| argP (ξ)| ≥ π

2
α′.

Then, by (3.3), there exists a positive number R1,T larger than R0T
α such that for

tα|P (ξ)| > R1,T , one has

|Eα,β
(
tαP (ξ)

)
| ≤ C

tα|P (ξ)|
.

Besides, if tα|P (ξ)| ≤ R1,T then, for some constant C(R1,T ),

|Eα,β
(
tαP (ξ)

)
| ≤ C(R1,T ).

Combining the two above estimates, we get (3.13) by choosing

CT := max
(
C(

1

R1,T

+ 1), (1 +R1,T )C(R1,T )
)
.

If R0 = 0 in (3.12) then R1,T can be choosen independently of T . Hence, CT
becomes independent of T and (3.14) follows. �

4. Mild Solutions and well-posedness on L2(Rd)

For P : Rd → C, a continuous function on Rd, we consider the pseudo-differential
operator P (D) whose symbol is the function P as defined in Subsection 2.3. The
fundamental hypothesis on P is (3.5) i.e. there existsMP ≥ 0 such that for all ξ ∈ Rd

with P (ξ) 6= 0, one has

if | argP (ξ)| < π

2
α then Re

(
P (ξ)1/α

)
≤MP . (4.1)

Theorem 4.1. Let α ∈ (0, 1], s ∈ R and P : Rd → C be a continuous function on
Rd. Then for each v ∈ L2(Rd), the problem

Dα
s,tu = P (D)u, u(s) = v, (4.2)

has a unique mild solution u. Moreover, u admits the following representation for
all t in [s,∞),

u(t) = F−1
(
Eα
(
(t− s)αP (ξ)

)
v̂(ξ)

)
, in L2(Rd). (4.3)
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Proof. Let us start to show that, for each v in D(P ), the function u defined by

u(t) = F−1
(
Eα
(
tαP (ξ)

)
v̂(ξ)

)
, (4.4)

is the unique solution on [0,∞) to{
u ∈ C([0,∞), D(P ))

u = v + gα ∗ P (D)u, in C
(
[0,∞), L2(Rd)

)
.

(4.5)

The uniqueness can be established as in the proof of [ER17, Theorem 6.1]. Regarding
the existence of solution to (4.5), we may prove with Lemma 3.3 that the function u
defined by (4.4), belongs to C([0,∞), D(P )). In order to show that

u = v + gα ∗ P (D)u, in C
(
[0,∞), L2(Rd)

)
,

we introduce for each ξ ∈ Rd, the function w : [0,∞)→ C defined for all t ≥ 0 by

w(t) := F(u(t))(ξ) = Eα
(
tαP (ξ)

)
v̂(ξ).

With (3.1) and Proposition 2.9, we have

w(t) = v̂(ξ) +
(
gα ∗ P (ξ)w

)
(t), ∀t ≥ 0.

Then the issue is to pass from the above equality which holds in [0,∞) to an equality
in C

(
[0,∞), L2(Rd)

)
. This is done by using the facts that

•w(t)− v̂(ξ) =
(
F(u(t))− v̂

)
(ξ)

•
(
gα ∗ P (ξ)w

)
(t) =

{
gα ∗ PF(u(·))

}
(t)(ξ)

•F(u(·))− v̂ ∈ C
(
[0,∞), L2(Rd)

)
• gα ∗ PF(u(·)) ∈ C

(
[0,∞), L2(Rd)

)
.

Hence we deduce

F(u(·))− v̂ = gα ∗ PF(u(·)), in C
(
[0,∞), L2(Rd)

)
.

Consequently, u satisfies (4.5).
Then Proposition 2.9 implies that the function u defined by (4.4) is the unique

strong solution to
Dα

0,tu = P (D)u, u(0) = v.

Moreover, the estimate (3.6) in Lemma 3.3 implies that u satisfies the assumption
(2.7) in Proposition 2.15. The later proposition gives existence and uniqueness of
the mild solution u to (4.2) on [s,∞). Finally, the estimate (3.6), (4.4) and the limit
process (2.8) yield (4.3). �

In the case where P is continuous, the assumption (4.1) is necessary to have a well
posed problem in the sense of Definition 2.11.

Theorem 4.2. Let α ∈ (0, 1], s ∈ R and P : Rd → C be a continuous function on
Rd. Then (4.2) is well posed if and only if (4.1) holds.

Proof. W.l.o.g. we may assume that s = 0. Let us assume that (4.1) holds. Then
Theorem 4.1 yields that (4.2) has a unique mild solution. The estimate for well-
posedness follows from (4.3) and (3.6).
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Conversely, for any v ∈ F−1(D(Rd)), we obtain by Fourier transform that the mild
solution u to (4.2) satisfies for all t > 0,

u(t) := F−1
(
Eα
(
tαP (ξ)

)
v̂(ξ)

)
, in L2(Rd).

By the estimate for well-posedness and Lemma 2.17, we deduce that Eα(tαP (·)) is
bounded on Rd. Then, by Lemma 3.4, we must have (4.1). Recall that for convinence
of reading, (4.1) is just a rewriting of (3.5). �

Example 4.3. For d = 1, a > 0 and θ ∈ R, let us put

P (ξ) := iaeiθξ, ∀ξ ∈ R.

Then, in view of Subsection 2.3, the polynomial P is the symbol of the operator
P (D) with domain D(P ) = H1(R) and defined by

P (D) = iaeiθD = aeiθ∂x.

We claim that if
|θ| ≤ π

2
(1− α) and α ∈ (0, 1]

then the problem

Dα
0,tu = iaeiθDu = aeiθ∂xu, u(0) = v ∈ L2(Rd), (4.6)

has a unique mild solution u whose Fourier transform satisfies

F
(
u(t)

)
(ξ) = Eα

(
tαiaeiθξ

)
v̂(ξ), ∀t ≥ 0, ∀ξ ∈ Rd.

Indeed, by Theorem 4.1, it is enough to check (4.1). For, we observe that

argP (ξ) =

{
θ + π

2
if ξ > 0

θ − π
2

if ξ < 0
.

Thus we deduce easily that

| argP (ξ)| ≥ π

2
α, ∀ξ 6= 0.

Hence (4.1) holds.
Let us notice that if α = 1 and θ = 0 then we recover the usual transport equation

on L2(Rd), namely
ut = iaDu = a∂xu.

More generally, if α ∈ (0, 1] and θ = −π
2
(1− α) then the equation in (4.6) reads

Dα
0,tu = aiαDu = aiα−1∂xu.

Besides, if α ∈ (0, 1) then

Re P (ξ) = a cos
(π

2
α
)
ξ −−−→

ξ→∞
∞.

Thus (3.11) does not hold. That shows that (4.1) (or (3.5)) and (3.11) are not
equivalent− see Remark 3.5 (iii). Also let us notice that, in view of Lemma 2.17, the
problem

ut = aiα−1∂xu, u(0) = v.

is not well posed on L2(Rd) in the sense of Definition 2.11.
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In the standard case α = 1, linear hyperbolic equations like transport equations or
Schrödinger equations induce conservation laws. The symbol P of these equations
satisfies | argP (ξ)| = π/2. This is the critical angle since, roughly speaking, if
| argP (ξ)| < π/2 then the problem is generally ill-posed. If | argP (ξ)| > π/2 then the
problem is well-posed, has regularizing effects and dissipative properties i.e. u(t)→ 0
as t→∞. If | argP (ξ)| = π/2 then the problem is well-posed in L2(Rd) but, has no
regularizing and dissipative properties; in particular t 7→ u(t) oscillates.

When α ∈ (0, 1], we will highlight that the critical angle is π
2
α. Indeed, we

have seen in Theorem 4.2 that this angle characterizes the well posedness. Also, if
| argP (ξ)| = π

2
α, Theorem 4.4 below states that the solution oscillates at infinity,

like in the case α = 1.
For simplicity, we will consider w.l.o.g. the problem

Dα
0,tu = P (D)u, u(0) = v ∈ L2(Rd). (4.7)

Theorem 4.4. Let α ∈ (0, 1], v ∈ L2(Rd) and assume that
(i) P is continuous on Rd;
(ii) for almost every ξ ∈ Rd, one has P (ξ) 6= 0 and

| argP (ξ)| = π

2
α. (4.8)

Then the mild solution u to (4.7) satisfies

u(t)− w(t) −−−→
t→∞

0 in L2(Rd), (4.9)

where w : [0,∞)→ L2(Rd) is the function with Fourier transform

F
(
w(t)

)
(ξ) =

1

α
exp

(
tP (ξ)1/α

)
v̂(ξ), ∀ξ ∈ Rd. (4.10)

In particular,

‖u(t)‖L2(Rd) −−−→
t→∞

1

α
‖v‖L2(Rd). (4.11)

Let us notice that the function w above is the mild solution to
d

dt
w = P 1/α(D)w, w(0) =

1

α
v.

Also, combining (4.8) and (4.10), we may write

F
(
w(t)

)
(ξ) =

1

α
exp

(
± it|P (ξ)|1/α

)
v̂(ξ), ∀ξ ∈ Rd.

Proof. According to Theorem 4.1, we know that (4.7) has a unique mild solution
given by (4.3) with s = 0. Let us first show that

û(t)− ŵ(t) −−−→
t→∞

0 in L2(Rd). (4.12)

For, let ξ ∈ Rd, with P (ξ) 6= 0. Then

û(t)(ξ)− ŵ(t)(ξ) =
(
Eα
(
tαP (ξ)

)
− 1

α
exp

(
tP (ξ)1/α

))
v̂(ξ)

= O
( 1

tαP (ξ)

)
v̂(ξ),
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according to the asymptotic expansion (3.4) and (4.8). Thus, since P (ξ) 6= 0 for a.e.
ξ ∈ Rd, we get

û(t)− ŵ(t) −−−→
t→∞

0 a.e. in Rd.

Moreover, by estimate (3.7) in Lemma 3.3, there exists a constant C such that

|û(t)(ξ)− ŵ(t)(ξ)| ≤ C|v̂(ξ)|, ∀t ≥ 0, a.e. ξ ∈ Rd.

Then Lebesgue’s convergence Theorem implies (4.12); hence (4.9) follows.
In order to prove (4.11), denoting by 〈·, ·〉2 the inner product of L2(Rd), we observe

that ∣∣‖u(t)‖2L2(Rd)−‖w(t)‖2L2(Rd)

∣∣
=
∣∣〈u(t)− w(t), (u(t)− w(t)) + 2w(t)〉2

∣∣
≤ ‖u(t)− w(t)‖2L2(Rd) + 2‖u(t)− w(t)‖L2(Rd)‖w(t)‖L2(Rd).

By (4.9) and ‖w(t)‖L2(Rd) = 1
α
‖v‖L2(Rd), we obtain (4.11). �

In the critical case where | argP (ξ)| = π
2
α, we cannot expect that the equation in

(4.7) possesses a regularizing effect. More precisely, the following result holds.

Proposition 4.5. Let α ∈ (0, 1] and assume that
(i) P : Rd → C is continuous on Rd and satisfies (4.1);
(ii) there exists a sequence (ξn)n≥1 ⊂ Rd and β ∈ Nd such that

|ξβn | → ∞, |P (ξn)| → ∞ as n→∞
and

|P (ξn)| 6= 0, | argP (ξn)| = π

2
α, ∀n ≥ 1.

Then for each t ≥ 0, there is no finite constant C = C(t, β) satisfying

‖Dβu(t)‖L2(Rd) ≤ C‖v‖L2(Rd), ∀v ∈ F−1(D(Rd)), (4.13)

where u is the mild solution to (4.7) with initial condition v.

Proof. For each t ≥ 0, let us set

at(ξ) := ξβEα
(
tαP (ξ)

)
, ∀ξ ∈ Rd.

Then at(·) is continuous on Rd and, for each v in F−1(D(Rd)), the function ξ 7→
at(ξ)v̂(ξ) belongs to L2(Rd). Moreover, by (4.3),

Dβu(t) = F−1
(
at(·)v̂

)
,

so that ‖Dβu(t)‖L2(Rd) is well defined in (4.13).
Let t > 0. Since | argP (ξn)| = π

2
α, we have thanks (3.4),

at(ξn) =
ξβn
α

(
exp

(
tP (ξn)1/α

)
+O

( 1

tαP (ξn)

))
=
ξβn
α

(
exp

(
± it|P (ξn)|1/α

)
+O

( 1

tαP (ξn)

))
.

Moreover, |P (ξn)| → ∞, hence

|at(ξn)| ∼ |ξ
β
n |
α
, when n→∞.
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Since |ξβn | → ∞ by assumption, we obtain

sup
ξ∈Rd
|at(ξ)| =∞, ∀t ≥ 0,

and the impossibility of (4.13) follows from Lemma 2.17. �

Example 4.6. Let us consider the following fractional Schrödinger equation intro-
duced in [Nab04]

Dα
0,tu = −iα∆u = −iαP2(D)u. (4.14)

By setting P (ξ) = −iαP2(ξ) = iα|ξ|2, we see by Theorem 4.1 that for each v ∈ L2(Rd),
Equation (4.14) supplemented with the initial condition u(0) = v has a unique mild
solution u. Since

argP (ξ) =
π

2
α, ∀ξ 6= 0,

Theorem 4.4 gives

‖u(t)‖L2(Rd) −−−→
t→∞

1

α
‖v‖L2(Rd).

This result was originally stated in [Nab04]. More precisely, Theorem 4.4 yields

u(t)− w(t) −−−→
t→∞

0 in L2(Rd),

where
F
(
w(t)

)
(ξ) =

1

α
exp

(
it|ξ|2/α

)
v̂(ξ), a.e. ξ ∈ Rd.

Moreover, we claim that Equation (4.14) has no regularizing effect, that is, for
each β ∈ Nd, β 6= 0, there is no finite constant C such that

‖Dβu(t)‖L2(Rd) ≤ C‖v‖L2(Rd), ∀v ∈ F−1(D(Rd)).

Indeed, by setting ξn := n(1, . . . , 1) ∈ Rd, we see that (ξn)n≥1 ⊂ Rd satisfies the
assumption (ii) in Proposition 4.5. Then the claim follows by Proposition 4.5.

The results featured in this example are well known and easily proved in the case
α = 1. Thus (4.14) is a suitable generalization of Schrödinger’s equation.

5. Solution operators and regularizing effects

For α ∈ (0, 1], τ ≤ s, a symbol P and v ∈ L2(Rd), we will study the solution
operator of the following fractional problem

Dα
τ,tu = P (D)u, u(s) = v. (5.1)

Our main tool is Fourier multipliers. Regularizing effects are obtained by assuming
(3.12). The study of solution operators to (4.5) differs whether s is equal to τ or not.
We will start with the simpler case τ = s.

5.1. The case where τ = s. In Proposition 4.5 below, D2 denotes the subset of R2

defined by
D2 :=

{
(t, s) ∈ R2 | t > s

}
. (5.2)

Proposition 5.1. Let α ∈ (0, 1] and P be a continuous function on Rd satisfying
(3.12). Then for t, s in R with t ≥ s, the operator Tα(t, s) defined, for each v in
L2(Rd) by

Tα(t, s)v = F−1
(
Eα
(
(t− s)αP (·)

)
v̂(·)
)

(5.3)
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belongs to L(L2(Rd)). Moreover, Tα is continuous on D2 with values in
L(L2(Rd), D(P )), and for each T > 0, there exists a constant CT such that

‖Tα(t, s)‖L(L2(Rd)) ≤ CT , ∀ 0 ≤ t− s ≤ T (5.4)

‖P (D)Tα(t, s)‖L(L2(Rd)) ≤
CT

(t− s)α
, ∀ 0 < t− s ≤ T. (5.5)

Remark 5.2. According to Theorem 4.1, we know that if v ∈ L2(Rd) then Tα(·, s)v
is the unique mild solution to

Dα
s,tu = P (D)u, u(s) = v. (5.6)

For all purposes, we recall that L(L2(Rd)) denotes the complex Banach space of
linear and continuous maps from L2(Rd) into itself.

Estimate (5.5) shows that the solution operator Tα(t, s) has a regularizing effect.
In the case where α = 1 and s = 0, (5.5) holds for (abstract) analytic semi-groups.
Let us notice that when P 6= 0 and α ∈ (0, 1), Sα(·) := Tα(·, 0) is never a semi-group:
see [ER17]. However, by (5.3), Tα is translation invariant for each α ∈ (0, 1] i.e.

Tα(t, s) = Tα(t− s, 0), ∀t ≥ s.

Proof of Proposition 5.1. Estimate (5.4) is a consequence of Lemma 2.17 and (3.6).
Regarding (5.5), we have for v ∈ L2(Rd) and 0 < t− s ≤ T ,

‖P (D)Tα(t, s)v‖L2(Rd) = (2π)−d/2‖P (ξ)Eα
(
(t− s)αP (ξ)

)
v̂‖L2(Rd)

≤ CT
(t− s)α

(2π)−d/2‖v̂‖L2(Rd) (by (3.13))

=
CT

(t− s)α
‖v‖L2(Rd).

Hence (5.5) follows.
There remains to prove that Tα belongs to C(D2,L(L2(Rd), D(P ))). For, we will

first show that P (D)Tα lies in C(D2,L(L2(Rd))). By translation invariance of Tα, it
is enough to show that

P (D)Tα(·, 0) ∈ C
(
( 1
T
, T ),L

(
L2(Rd)

))
,

for each T > 1. For, let t ∈ ( 1
T
, T ) and (tn)n≥0 ⊂ ( 1

T
, T ) be a sequence converging

toward t. Fourier multiplier Theory yields that

‖P (D)
(
Tα(t, 0)− Tα(tn, 0)

)
‖L(L2(Rd)) = sup

ξ∈Rd

∣∣(fξ(t)− fξ(tn)
)
P (ξ)

∣∣,
where for each ξ ∈ Rd, fξ denotes the function

fξ : [0,∞)→ C, t 7→ Eα
(
tαP (ξ)

)
. (5.7)

Thus there remains to prove that

sup
ξ∈Rd

∣∣(fξ(t)− fξ(tn)
)
P (ξ)

∣∣ −−−→
n→∞

0. (5.8)
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For, by the mean value theorem, we have for each ξ ∈ Rd,∣∣(fξ(t)− fξ(tn)
)
P (ξ)

∣∣ ≤ sup
τ∈[ 1

T
,T ]

∣∣f ′ξ(τ)P (ξ)
∣∣|t− tn|

≤ sup
τ∈[ 1

T
,T ]

∣∣Eα,0(ταP (ξ)
)
P (ξ)

∣∣
τ

|t− tn| (by (3.2))

≤ sup
τ∈[ 1

T
,T ]

CT
∣∣P (ξ)

∣∣
τ
(
1 + τα

∣∣P (ξ)
∣∣) |t− tn| (by (3.13))

≤ CTT
1+α|t− tn|.

Hence (5.8) follows. Thus P (D)Tα(·, ·) lies in C(D2,L(L2(Rd))). In the same way,
we may prove that Tα(·, ·) belongs to C(D2,L(L2(Rd)). That completes the proof of
the proposition. �

5.2. The case where τ ≤ s. In that case, the Fourier multiplier is

ξ 7→
Eα
(
(t− τ)αP (ξ)

)
Eα
(
(s− τ)αP (ξ)

) . (5.9)

In order to control this multiplier, we will need the following assumptions.

P : Rd → R is continuous on Rd (5.10)

P (ξ) ≤MP for each ξ ∈ Rd. (5.11)

The fact that P is real valued warrants that the denominator in (5.9) does not vanish.
Under assumptions (5.10) and (5.11), we deduce from (3.3) the following funda-

mental estimates about the Mittag-Leffler function: for each α in (0, 1), there exists
R1 > 0 such that for tαP (ξ) ≤ −R1, one has

1√
2Γ(1− α)

1

tα|P (ξ)|
≤ Eα

(
tαP (ξ)

)
≤

√
2

Γ(1− α)

1

tα|P (ξ)|
. (5.12)

It is essential that α 6= 1 since the latter inequality is obviously false when α = 1.
The following result gives estimates on the Fourier multiplier (5.9).

Lemma 5.3. Let α ∈ (0, 1). Under assumptions (5.10) and (5.11), one has

sup
ξ∈Rd

Eα
(
tαP (ξ)

)
Eα
(
sαP (ξ)

) ≤ C max
((s
t

)α
, 1, Eα(tαMP )

)
, ∀t, s > 0 (5.13)

sup
ξ∈Rd

Eα
(
tαP (ξ)

)
= Eα(tαMP ), ∀t ≥ 0, (5.14)

where the constant C in (5.13) is independent of s and t.

Proof. Equality (5.14) is a straightforward consequence of (5.10), (5.11) and the
monotonicity of Mittag-Leffler’s function on R. Let s and t be positive and ξ ∈ Rd.
In order to establish (5.13), we will consider four cases.
(i) sαP (ξ) ≤ −R1, tαP (ξ) ≤ −R1. Then, by (5.12),

Eα
(
tαP (ξ)

)
Eα
(
sαP (ξ)

) ≤ 2
(s
t

)α
.
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(ii) sαP (ξ) ≤ −R1, tαP (ξ) > −R1. Then, by (5.12),
1

Eα
(
sαP (ξ)

) ≤ √2Γ(1− α)sα|P (ξ)|. (5.15)

Moreover, in the present case, we have −R1t
−α < P (ξ) and

−R1

(s
t

)α
< sαP (ξ) ≤ −R1.

Thus, with (5.15),
1

Eα
(
sαP (ξ)

) < √2Γ(1− α)R1

(s
t

)α
.

Regarding Eα
(
tαP (ξ)

)
, we notice that sαP (ξ) ≤ −R1 implies that P (ξ) ≤ 0. Thus

Eα
(
tαP (ξ)

)
≤ 1. Then

Eα
(
tαP (ξ)

)
Eα
(
sαP (ξ)

) ≤ √2Γ(1− α)R1

(s
t

)α
.

(iii) sαP (ξ) > −R1, tαP (ξ) ≤ −R1. Then, since Eα is increasing on R,

Eα
(
tαP (ξ)

)
≤ Eα(−R1), Eα

(
sαP (ξ)

)
> Eα(−R1).

Thus
Eα
(
tαP (ξ)

)
Eα
(
sαP (ξ)

) ≤ 1.

(iv) sαP (ξ) > −R1, tαP (ξ) > −R1. Then, in view of (5.11),

Eα
(
tαP (ξ)

)
Eα
(
sαP (ξ)

) ≤ Eα
(
tαMP

)
Eα(−R1)

.

By gathering these four cases, we get (5.13). �

By Fourier multipliers Theory and Lemma 5.3, we easily obtain the following
result. In Corollary 5.4 below, D3 is the subset of R3 defined by

D3 :=
{

(t, s, τ) ∈ R3 | t > τ, s > τ
}
∪
{

(t, s, s) ∈ R3 | t ≥ s
}
. (5.16)

Corollary 5.4. Let α ∈ (0, 1) and P satisfy (5.10), (5.11). Then for (t, s, τ) in D3,
the function

ξ 7→
Eα
(
(t− τ)αP (ξ)

)
Eα
(
(s− τ)αP (ξ)

)
is a Fourier multiplier on L2(Rd). Hence the operator T α(t, s, τ) defined by

T α(t, s, τ)v = F−1
(Eα((t− τ)αP (·)

)
Eα
(
(s− τ)αP (·)

) v̂) in L2(Rd), (5.17)

belongs to L(L2(Rd)). Moreover, for some constant C, one has

‖T α(t, s, τ)‖L(L2(Rd)) ≤ C max
((s− τ
t− τ

)α
, 1, Eα((t− τ)αMP )

)
, ∀ t > τ, s ≥ τ

(5.18)

‖T α(t, s, s)‖L(L2(Rd)) ≤ Eα
(
(t− s)αMP )

)
, ∀ t ≥ s. (5.19)
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For α ∈ (0, 1), let us assume that P satisfies (5.10) and (5.11). Then, with (5.12),
we may prove that there exists a constant C > 0 such that for each v in D(P ) and
each (t, s, τ) in D3, we have∣∣∣Eα((t− τ)αP (ξ)

)
Eα
(
(s− τ)αP (ξ)

) v̂(ξ)
∣∣∣ ≤ CEα

(
(t− τ)αMP

)
(s− τ)α

∣∣P (ξ)v̂(ξ)
∣∣, ∀ξ ∈ Rd.

Thus setting

T (t, s, τ)v = F−1
(Eα((t− τ)αP (·)

)
Eα
(
(s− τ)αP (·)

) v̂), ∀v ∈ D(P ), (5.20)

we define a linear and continuous operator T (t, s, τ) from D(P ) into L2(Rd). More-
over,

‖T (t, s, τ)‖L(D(P ),L2(Rd)) ≤ CEα
(
(t− τ)αMP

)
(s− τ)α, (5.21)

where C is independent of t, s and τ .
Of course,

T (t, s, τ)v = T α(t, s, τ)v,

for each (t, s, τ) in D3 and v in D(P ); we refer to Corollary 5.4 for the definition of
T α. Hence

T : D3 ×D(P )→ L2(Rd), T α : D3 × L2(Rd)→ L2(Rd)

and
T = T α on D3 ×D(P ).

Let us also precise that D3 is the closure of D3, that is

D3 =
{

(t, s, τ) ∈ R3 | t ≥ τ, s ≥ τ
}
.

The next result states that the operator T α has no continuous extension on D3

when P (D) is unbounded.

Proposition 5.5. Let us assume that P satisfies (5.10), (5.11) and is unbounded
from below. Then, for α ∈ (0, 1) and s > τ ,

‖T α(t, s, τ)‖L(L2(Rd)) →∞ as t→ τ+. (5.22)

Proof. By translation invariance, it is enough to prove (5.22) for s > 0 and τ = 0.
For any number M greater than |MP | and R1

sα
, where R1 is the positive constant

involved in (5.12), let ξ0 ∈ Rd be such that P (ξ0) = −M (recall that P is continuous
and unbounded from below). Let also t0 > 0 be such that tα0M = 1. Then for each
t ∈ [0, t0], one has

Eα
(
tαP (ξ0)

)
Eα
(
sαP (ξ0)

) ≥ Eα(−1)

Eα
(
− sαM

) .
Since sαM > R1, (5.12) implies that

Eα
(
tαP (ξ0)

)
Eα
(
sαP (ξ0)

) ≥ 1√
2

Γ(1− α)Eα(−1)sαM.

Thus, since s > 0,

sup
ξ∈Rd

Eα
(
tαP (ξ)

)
Eα
(
sαP (ξ)

) →∞ as t→ 0+.

Then (5.22) follows by Fourier multiplier Theory (see Lemma 2.17). �
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The following lemma will be useful in the definition of weak solution to Problem
(5.1).

Lemma 5.6. Under assumptions (5.10) and (5.11), let s, τ ∈ R be such that τ ≤ s.
Then the operator T (τ, s, τ) : D(P ) ⊆ L2(Rd)→ L2(Rd) is self-adjoint.

Proof. In view of the representation (5.20), it is enough to consider the operator
T (0, s, 0) for s > 0. Let us first show that the domain of the adjoint operator
T (0, s, 0)∗ is equal to D(P ). For, let ϕ be in D(T (0, s, 0)∗). Then by Definition of
D(T (0, s, 0)∗), there exists a constant C such that for each v ∈ D(P ), one has

| 〈T (0, s, 0)v, ϕ〉2 | ≤ C‖v‖L2(Rd). (5.23)

In view of (5.20) and Plancherel’s identity (2.9), we get

〈T (0, s, 0)v, ϕ〉2 = (2π)−d
∫
Rd

v̂(ξ)

Eα
(
sαP (ξ)

) ϕ̂(ξ)dξ. (5.24)

Since P is real valued, we deduce from these two later relations that
ϕ̂

Eα
(
sαP (·)

) ∈ L2(Rd). (5.25)

Thus with (5.11), (5.12) and the constant R1 involved in (5.12), we have∫
Rd
|sαP (ξ)ϕ̂(ξ)|2dξ ≤

∫
[−R1≤sαP (ξ)]

max(R1, s
αMP )2|ϕ̂(ξ)|2dξ

+ C

∫
[sαP (ξ)<−R1]

∣∣∣ ϕ̂(ξ)

Eα
(
sαP (ξ)

)∣∣∣2dξ
≤ C(s)‖ϕ̂‖2L2(Rd) + C‖ ϕ̂

Eα
(
sαP

)‖2L2(Rd).

There results that ϕ ∈ D(P ) since s > 0.
Conversely, let ϕ ∈ D(P ). Then, by the monotonicity of Eα,∫
Rd

∣∣∣ ϕ̂(ξ)

Eα
(
sαP (ξ)

)∣∣∣2dξ ≤ ∫
[−R1≤sαP (ξ)]

|ϕ̂(ξ)|2

Eα(−R1)2
dξ + C

∫
[sαP (ξ)<−R1]

|sαP (ξ)ϕ̂(ξ)|2dξ

≤ 1

Eα(−R1)2
‖ϕ̂‖2L2(Rd) + Cs2α‖Pϕ̂‖2L2(Rd).

Thus (5.25) holds, and then (5.23) too, which yields that ϕ belongs to D(T (0, s, 0)∗).
We have proved that D(T (0, s, 0)∗) = D(P ).

Finally, since P is real valued, (5.24) yields

〈T (0, s, 0)v, ϕ〉2 = 〈v,T (0, s, 0)ϕ〉2 , ∀v, ϕ ∈ D(P ).

Then the proof is complete. �

6. Regularizing effect for solutions

6.1. The case where τ = s. The problem under consideration becomes

Dα
s,tu = P (D)u, u(s) = v ∈ L2(Rd), (6.1)

where P : Rd → C is the symbol of some pseudo-differential operator. In order to get
a regularizing effect, we have to strengthen our assumptions on P (see Proposition
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4.5). So we will replace (4.1) by (3.12). That will allow us to get that u(t) belongs
to D(P ) for t > 0 even if u(0) does not belong to D(P ).

Theorem 6.1. Let α ∈ (0, 1], s ∈ R, v ∈ L2(Rd) and assume that P is continuous on
Rd and satisfies (3.12). Then (6.1) has a unique solution u on [s,∞), in the sense
of Definition 2.12. Moreover, u lies in C((0,∞), D(P )) and admits the following
representation for t ≥ s:

u(t) = F−1
(
Eα
(
(t− s)αP (·)

)
v̂(·)
)
. (6.2)

Proof. By Proposition 2.13, we may assume w.l.o.g. that s = 0. Existence of so-
lution is proved via a continuity argument. More precisely, let (vn)n≥0 ⊂ D(P ) be
a sequence converging toward v in L2(Rd). Recalling the definition of Tα given in
Proposition 5.1, we set

u := Tα(·, 0)v, un := Tα(·, 0)vn, on [0,∞).

By (5.5),
P (D)un −−−→

n→∞
P (D)u, in L1(0, T, L2(Rd)). (6.3)

By [ER17, Theorem 6.2], we know that un is the strong solution to

Dα
0,tun = P (D)un, un(0) = vn ∈ D(P ). (6.4)

Hence un lies in C([0, T ], L2(Rd)). Besides, Lebesgue’s Theorem and (5.4) yield that
u belongs to C([0, T ], L2(Rd)) and

un → u, in C([0, T ], L2(Rd)).

Then
g1−α ∗ (un − un(0))→ g1−α ∗ (u− v), in L1(0, T, L2(Rd)).

Moreover, by (6.4) and (6.3),
d

dt

{
g1−α ∗

(
un − un(0)

)}
= P (D)un → P (D)u, in L1(0, T, L2(Rd)).

Since the operator d
dt

with domain W 1,1(0, T, L2(Rd)) is closed in L1(0, T, L2(Rd)),
the two latter limits yield that g1−α ∗ (u− v) belongs to W 1,1(0, T, L2(Rd)) and

Dα
s,tu = P (D)u, in L1(0, T, L2(Rd)).

There results that u is solution to (6.1) in the sense of Definition 2.12.
Since Tα(·, 0) belongs to C

(
(0,∞),L(L2(Rd), D(P ))

)
by Proposition 5.1, we derive

easily that u lies in C((0,∞), D(P )).
Finally, in view of Corollary 2.7, each solution u to (6.1) satisfies

u = v + gα ∗ P (D)u, in L1
loc([0,∞), L2(Rd)).

Hence uniqueness is proved as in the case where the initial condition belongs to
D(P ), so we refer to the uniqueness part of the proof of Theorem 6.1 in [ER17] for
details. �

Example 6.2. Let α ∈ (0, 1] and p0 ∈ C. Under the notation of Example 2.16, we
set

P (ξ) := P2β(ξ) + p0 = −|ξ|2β + p0, ∀ξ ∈ Rd.

We consider the following fractional heat equation

Dα
0,tu = P (D)u = P2β(D)u+ p0u = −(−∆)βu+ p0u. (6.5)
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Then P satisfies the assumption (3.12). More precisely, it is geometrically clear that
for each α′ ∈ (1, 2), there exists R0 = R0(α

′) such that

|P (ξ)| > R0 =⇒ | argP (ξ)| ≥ π

2
α′.

Also, if p0 is a non positive real number then R0 = 0.
Thus Theorem 6.1 yields that Equation (6.5) supplemented with the initial condi-

tion u(0) = v ∈ L2(Rd) has a unique solution u. Moreover, u belongs to
C((0,∞), H2β(Rd)) and

F
(
u(t)

)
(ξ) = Eα

(
tα(−|ξ|2β + p0)

)
v̂(ξ), ∀t ≥ 0, a.e. ξ ∈ Rd.

If the initial condition is more regular then the corresponding solution gains reg-
ularity. For simplicity we will state this property in the case s = 0, that is we will
consider the problem

Dα
0,tu = P (D)u, u(0) = v. (6.6)

Theorem 6.3. Let α ∈ (0, 1], and P , Q : Rd → C be continuous on Rd. Besides,
assume that P fufills (3.12). Then for each v in D(Q), the solution u to (6.6) belongs
to

C
(
(0,∞), D(PQ)

)
∩ C

(
[0,∞), D(Q)

)
and, for each T > 0, there exists a constant CT independent of v such that for all
t ∈ (0, T ], one has

‖PQ(D)u(t)‖L2(Rd) ≤
CT
tα
‖Qv‖L2(Rd). (6.7)

Moreover, if R0 = 0 in (3.12), that is

| argP (ξ)| ≥ π

2
α′

for each ξ ∈ Rd with P (ξ) 6= 0, then there exists a constant C independent of v such
that

‖PQ(D)u(t)‖L2(Rd) ≤
C

tα
‖Qv‖L2(Rd), ∀t > 0. (6.8)

Proof. By Theorem 6.1, we know that (6.6) has a unique solution u. In particular,
u lies in C([0,∞), L2(Rd)). Let us show that for each T > 1,

PQ(D)u ∈ C
(
( 1
T
, T ),L

(
L2(Rd)

))
, ∀v ∈ D(Q). (6.9)

For, by (3.13), we have∣∣PQ(ξ)Eα
(
tαP (ξ)

)
v̂(ξ)

∣∣ ≤ CT
tα
|Q(ξ)v̂(ξ)| (6.10)

≤ CTT
α|Q(ξ)v̂(ξ)|, ∀t ∈ ( 1

T
, T ), a.e ξ ∈ Rd.

Thus we deduce with Lebesgue’s Theorem, that (6.9) holds. Hence u belongs to
C((0,∞), D(PQ)). In the same way, we prove that u lies in C([0,∞), D(Q)).

Estimate (6.7) is a consequence of (6.10). (6.8) is obtained as (6.7) by using (3.14)
instead of (3.13). That completes the proof of the theorem. �

Example 6.4. Under the notation of Example 6.2, any solution u to (6.5) on [0,∞)
satisfies for each T > 0,

‖P (D)u(t)‖L2(Rd) ≤
CT
tα
‖u(0)‖L2(Rd), ∀t ∈ (0, T ].
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Hence Equation (6.5) has a regularizing effect. Moreover, if p0 is a non positive
real number then R0 = 0 according to Example 6.2; hence the following dissipative
estimate holds.

‖P (D)u(t)‖L2(Rd) ≤
C

tα
‖u(0)‖L2(Rd), ∀t > 0.

That results from Theorem 6.3.

Example 6.5. Let us consider the fractional transport equation

Dα
0,tu = iaeiθDu = aeiθ∂xu, u(0) = v ∈ L2(Rd).

Under the notation of Example 4.3, let α ∈ (0, 1) and α′ ∈ (α, 1]. Regarding the
angle θ, we assume that

|θ| ≤ π

2
(1− α′).

Then the symbol P (ξ) := iaeiθξ satisfies (3.12) with R0 = 0. Thus Theorem 6.3
yields that

‖∂xu(t)‖L2(Rd) ≤
C

tα
‖v‖L2(Rd), ∀t > 0.

Thus the above fractional transport equation has a regularizing effect and fullfils a
dissipative estimate for α ∈ (0, 1). In particular, by choosing α′ = 1, we deduce that
the equation

Dα
0,tu = a∂xu

is dissipative and has regularizing effect. That contrasts with the case α = 1, since
it is well known that the standard transport equation has no regularizing effect.

The following result states that if the order of derivative is small enough, then the
partial derivatives of the solution satisfy some dissipative estimates.

Proposition 6.6. Let us assume that

(i) α ∈ (0, 1]; P is continuous on Rd and satisfies (3.12) with R0 = 0;
(ii) there exist m ∈ N∗ and c > 0 such that

c|ξ|m ≤ |P (ξ)|, ∀ξ ∈ Rd; (6.11)

(iii) the initial data v belongs to L2(Rd) and u denotes the solution to (6.6);
(iv) the multi-integer β = (β1, . . . , βd) ∈ Nd has his length denoted by |β|.
Then, if |β| ≤ m, one has

‖Dβu(t)‖L2(Rd) ≤
C

tα
|β|
m

‖v‖L2(Rd). (6.12)

Moreover, if v ∈ D(P ) and m ≤ |β| ≤ 2m then

‖Dβu(t)‖L2(Rd) ≤
C

tα(
|β|
m
−1)
‖P (D)v‖L2(Rd), ∀t > 0. (6.13)
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Proof. Let us prove (6.12). For a.e. ξ ∈ Rd,

|ξβû(t)| ≤ |ξ||β||Eα
(
tαP (ξ)

)
||v̂(ξ)|

≤ C
|P (ξ)|

|β|
m

1 + tα|P (ξ)|
|v̂(ξ)| (by (6.11) and (3.14)) (6.14)

≤ C

(
tα|P (ξ)|

) |β|
m

1 + tα|P (ξ)|
t−α

|β|
m |v̂(ξ)|

≤ Ct−α
|β|
m |v̂(ξ)| (since |β| ≤ m).

Thus (6.12) follows. In order to prove (6.13), we put m1 := |β| −m. Then in view
of (6.14), we have

|ξβû(t)| ≤ C
|P (ξ)|

m1
m

1 + tα|P (ξ)|
|P (ξ)v̂(ξ)|

≤ Ct−α
m1
m |P (ξ)v̂(ξ)| (since m1 ≤ m).

Hence (6.13) follows. �

Unlike to the standard case α = 1, purely fractional equations lack of regularizing
effect for high order derivatives even if (3.12) holds.

Proposition 6.7. Let us assume that
(i) α ∈ (0, 1);
(ii) P is continuous on Rd and satisfies (3.12);
(iii) there exists a sequence (ξn)n≥1 ⊂ Rd and β ∈ Nd such that

|P (ξn)| → ∞, | |ξ
β
n |

|P (ξn)|
→ ∞ as n→∞.

Then for each time t ≥ 0, there is no finite constant C = C(t) satisfying

‖Dβu(t)‖L2(Rd) ≤ C‖v‖L2(Rd), ∀v ∈ F−1(D(Rd)), (6.15)

where u is the solution to (6.6) with initial condition v.

Notice that the left hand side of (6.15) is well defined since, by applying Theorem
6.3 with Q(ξ) = ξβ, we get that Dβu(·) belongs to C([0,∞), L2(Rd)), since v ∈
F−1(D(Rd)) ⊂ D(Q).

Proof. It relies on the proof of Proposition 4.5. For each t ≥ 0, let us set

at(ξ) := ξβEα
(
tαP (ξ)

)
, ∀ξ ∈ Rd.

Then at(·) is continuous on Rd for each t ≥ 0. Thus, by Lemma 2.17, it is enough to
prove that at(·) is unbounded on Rd.

If t = 0 then at(·) is clearly unbounded since β 6= 0. Thus (6.15) can not hold.
If t > 0 then the sequence (ξn)n≥0 satisfies by hypothesis

|P (ξn)| → ∞, |ξβn |
|P (ξn)|

→ ∞ as n→∞.

Thus recalling that P fullfils (3.12), we may use (3.3), to derive

at(ξn) ∼ Cξβn
tαP (ξn)

→∞, as n→∞.
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Then at(·) is unbounded. Hence (6.15) can not hold, which completes the proof of
the proposition. �

Example 6.8. Let us consider the following time fractional heat equation on Rd,

Dα
0,tu = ∆u, u(0) = v ∈ L2(Rd).

This equation has a regularizing effect up to order two when α ∈ (0, 1). Indeed,
Proposition 6.6 yields that, for all indices i, j in [1, d], one has

‖∂xiu(t)‖L2(Rd) ≤
C

tα/2
‖v‖L2(Rd)

‖∂xixju(t)‖L2(Rd) ≤
C

tα
‖v‖L2(Rd), ∀t > 0.

However, there is no regularizing effect at order three. Indeed, for all indices i, j, k
in [1, d], Proposition 6.7 with ξn := n(1, . . . , 1), yields that

sup
v∈F−1(D(Rd)), v 6=0

‖∂xixjxku(t)‖L2(Rd)

‖v‖L2(Rd)
=∞.

Remark 6.9. The lack of regularizing effect featured in Proposition 6.7 is specific to
time fractional (non integer) derivatives. Indeed, it is well known that the standard
heat equation has a regularizing effect at any order and that the following dissipative
estimate holds.

‖Dβu(t)‖L2(Rd) ≤
Cβ
t|β|/2

‖u(0)‖L2(Rd),

for all multi-integer β.

6.2. The case where τ ≤ s. The problem under consideration becomes

Dα
τ,tu = P (D)u, u(s) = v ∈ L2(Rd). (6.16)

If v belongs to D(P ) then we may prove that T (·, s, τ)v is the solution to (6.16) on
[τ,∞) in the sense of Definition 2.12 (see the proof of [ER17, Theorem 6.1] and use
Lemma 5.3). The issue is to solve (6.16) when v belongs more generally to L2(Rd).
Of course the expected solution is T α(·, s, τ)v (defined in Corollary 5.4).

Because of the behaviour of the Fourier multiplier (5.9) at high frequencies, solu-
tions to (6.16) have to be understood in a weak sense. In this respect, we adapt to
our framework Prüss’ Definition of weak solutions (see [Prü93, Definition 1.1 Chap.
1]).

Definition 6.10. Let α ∈ (0, 1), s, τ ∈ R with τ ≤ s and P be a symbol satisfying
(5.10), (5.11). Let also v ∈ L2(Rd) and u be in L1

loc([τ,∞), L2(Rd)). We say that the
function u is a weak solution to (6.16) on [τ,∞) if

〈u(·), ϕ〉2 = 〈v,T (τ, s, τ)ϕ〉2 + 〈gα ∗τ u, P (D)ϕ〉2 , (6.17)

in L1
loc([τ,∞)), for all ϕ ∈ D(P ).

Remark 6.11. In (6.17), T (τ, s, τ) is defined on D(P ) by (5.20), and in view of
(5.21), T (τ, s, τ)ϕ belongs to L2(Rd) if ϕ ∈ D(P ). It should be clear that, in
general, T (τ, s, τ)ϕ 6= ϕ provided s > τ .

A priori, the adjoints of P (D) and T (τ, s, τ) should appear in (6.17). However,
these operators are self-adjoint since P is real valued (see Lemma 5.6).
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With Corollary 2.7 and Lemma 5.6, we may prove easily that, for each v in D(P ),
the solution to (6.16) in the sense of Definition 2.12, namely T (·, s, τ)v is a weak
solution to (6.16).

Theorem 6.12. Let α ∈ (0, 1), P : Rd → R satisfy (5.10) and (5.11). Let also
τ ≤ s and v ∈ L2(Rd). Then (6.16) has a unique weak solution u. Moreover,

u(t) = T α(t, s, τ)v = F−1
(Eα((t− τ)αP (·)

)
Eα
(
(s− τ)αP (·)

) v̂), a.e t ∈ (τ,∞), (6.18)

and T α(·, s, τ)v belongs to C((τ,∞), L2(Rd)).

Proof. Let us start to prove the existence part. Let T > τ and (vn)n≥0 ⊂ D(P ) be a
sequence converging toward v in L2(Rd). By [ER17, Theorem 6.1], the function un
defined for each t > τ by

un(t) := T (t, s, τ)vn = F−1
(Eα((t− τ)αP (·)

)
Eα
(
(s− τ)αP (·)

) v̂n)
is the solution to (6.16). Thus, by Remark 6.11, un is a weak solution to (6.16); that
is to say

〈un, ϕ〉2 = 〈v,T (τ, s, τ)ϕ〉2 + 〈gα ∗τ un, P (D)ϕ〉2 , ∀ϕ ∈ D(P ), (6.19)

in L1(τ, T ). By (5.18), the function u defined by (6.18) belongs to L1(τ, T, L2(Rd))
and

un → u in L1(τ, T, L2(Rd)). (6.20)

Moreover,

‖gα ∗τ u‖L1(τ,T,L2(Rd)) ≤ ‖gα‖L1(0,T−τ)‖u‖L1(τ,T,L2(Rd)).

Thus we may pass to the limit in (6.19) to get that u is a weak solution.
Regarding uniqueness, by linearity it is enough to show that any function u ∈

L1(τ, T, L2(Rd)) satisfying

〈u, ϕ〉2 = 〈gα ∗τ u, P (D)ϕ〉2 , ∀ϕ ∈ D(P ), (6.21)

vanishes. Since P (D) is self-adjoint, we deduce from (6.21), that gα ∗τ u lies in
L1(τ, T,D(P )) and

u = P (D)
(
gα ∗τ u

)
, in L1

(
τ, T, L2(Rd)

)
.

Taking the Fourier transform, we deduce

û(t, ξ) = P (ξ)gα ∗τ û(·, ξ)(t) a.e t ∈ [τ, T ], a.e ξ ∈ Rd. (6.22)

Since u ∈ L1(τ, T, L2(Rd)), we know that û(·, ξ) lies in L1(τ, T ) for each ξ ∈ Rd.
That fact together with (6.22) allows us to show that u = 0: see [ER17, Proof of
Theorem 6.1] for details.

Finally, by Lebesgue’s Theorem and (5.18), we prove that T α(·, s, τ)v belongs to
C((τ, T ], L2(Rd)). That completes the proof of the Theorem. �
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