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Abstract

Driven by climate change mitigation efforts, the wind energy industry has significantly increased in recent

years. In this context, it is essential to make its exploitation cost-effective. Maintenance of wind turbines

therefore plays an essential role reducing breakdowns and ensuring high productivity levels. In this paper

we discuss a challenging maintenance scheduling problem rising in the onshore wind power industry. While

the research in the field primarily focuses on condition-based maintenance strategies, we aim to address

the problem on a short-term horizon considering wind predictions and fine-grained resource management.

The objective is to find a maintenance plan that maximizes the revenue from the electricity production

of the turbines while taking into account multiple task execution modes and task-technician assignment

constraints. To solve this problem, we propose a constraint programming-based large neighborhood search

(CPLNS) approach. We also propose two integer linear programming formulations that we solve using a

commercial solver. We report results on randomly generated instances built with input from wind forecasting

and maintenance scheduling software companies. The CPLNS shows an average gap of 1.2% with respect

to the optimal solutions if known, or to the best upper bounds otherwise. These computational results

demonstrate the overall efficiency of the proposed metaheuristic.
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1 Introduction

With a 63-Gigawatts (GW) increase in the global installed capacity in 2015 (and a total of about 432 GW),

wind energy is currently the world’s fastest-growing source of electricity1. Boosted by the ever-increasing

environment awareness and the constantly-decreasing cost of turbines, wind power is expected to account for

up to 20% of the global electricity production by 20501 (vs. 2.4% in 2015). The Paris Agreement (resulting

from the 2015 United Nations Climate Change Conference - COP21) is in this respect a clear evidence that the

renewable energy sector will keep growing in order to reduce greenhouse gas emissions. In this context, efficient

wind turbine maintenance planning and scheduling becomes a critical tool to prevent unnecessary downtime

and excessive operational costs.

Maintenance planning and scheduling has been widely studied in different industrial contexts (see for ex-

ample Budai et al. (2008) for a survey). In general, however, solutions remain sector-specific. In the particular

case of traditional electricity generation plants, the problem is concerned with the definition of time inter-

vals for preventive maintenance of generating units under financial (cost minimization, profits maximization)

and/or reliability (leveling, maximization of the net reserves) considerations. By now, the literature reports

on a number of solution approaches to tackle these problems. We refer the reader to Froger et al. (2016) for a

comprehensive review. Unfortunately, these approaches are inapplicable to the wind power industry. One of the

main reasons is that wind farms are usually owned by investment funds, and the operation and the maintenance

of the turbines are often outsourced to a third party. As it stands, the stakeholders and the contractors may

potentially face conflicting objectives: maximize energy production vs. minimize maintenance costs. Therefore,

service contracts are set between these two entities. They include incentives and penalties if some target values

(on the production and/or the availability factor2 of wind turbines) are reached or not. Another specificity of

the wind power industry is that maintenance decisions are not correlated with the electricity demand, since

producers are mostly not required to satisfy production goals fixed in advance. The objective then tends to

be the maximization of the efficiency of the wind turbines. Last but not least, the wind power production is

inherently volatile, and the meteorological conditions have a great impact on the maintenance plan and can

induce last-minute adjustments. In summary, the aim of maintenance companies is to schedule the mainte-

nance in order to meet their contract commitments. Although sometimes it is not their top priority, producing

maintenance plans for which the production of the turbines is maximized, while taking into consideration their

internal constraints, is a meaningful strategy to avoid interference with the stakeholders and to potentially

increase their revenue. If the maintenance is not outsourced, this objective is all the more relevant.

Maintenance optimization for wind turbines has only recently started to received attention in the literature

(we refer the reader to Ding et al. (2013) for a survey). This stream of research primarily focuses on the

definition of maintenance policies according to failure models or/and condition monitoring. Although existing

studies precisely define time intervals during which the maintenance has to be performed in order to reduce the

loss of energy production, they do not consider a fine-grained resource management. Therefore, the obtained

results are used more as guidelines to define maintenance time windows, than as an actual maintenance plan.

In this regard, they can be used to set the service contracts (e.g., preventive maintenance has to be performed

every six months on each turbine).

Fine-grained resource management implies, among others, considering a multi-skilled workforce, coping

with individual or global resource unavailability time periods (e.g., vacations), and taking into account resource

location-based constraints. Dealing with these issues requires considering a short-term planning horizon. In

this context, existing studies allow planners to define the tasks to be performed during the planning horizon

1The Global Wind Energy Council - Global wind report annual market update 2015 - http://www.gwec.net/wp-

content/uploads/vip/GWEC-Global-Wind-2015-Report April-2016 22 04.pdf, last accessed: 2016-09-15
2The ratio of the duration that a generating unit is available to provide energy to the grid, for the time considered, to the

duration of the same time period
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and to set the maintenance time window constraints. Nonetheless, the maintenance scheduling problem still

contains a degree of operational flexibility. Considering fine-grained resource management then aims to build

detailed maintenance plans that can be used on a daily or weekly basis. These latter provide more accurate

estimates of turbine downtimes and loss of production; two metrics that can otherwise be underestimated,

which may lead to significant prediction errors. Indeed, producing a maintenance plan in which no operations

generate a loss of production (e.g., is scheduled during time periods where the wind speed is below 4 m.s�1,

which is too low to produce electricity) can almost never be achieved in practice, since human resources are a

major bottleneck.

To our knowledge, (Kovács et al., 2011) is the only study considering fine-grained resource management

while scheduling maintenance operations in onshore wind farms on a one-day time horizon. These authors aimed

to minimize lost production due to maintenance and failures. They introduced incompatibilities between pairs

of tasks and managed the assignment of teams of skilled workers to tasks. They modeled the problem as an

integer linear program and solved it using a commercial solver. They performed experiments on instances with

up to 50 tasks.

In this paper, we introduce a maintenance scheduling problem with resource management rising in the

onshore wind power industry. Our problem differs from that introduced by Kovács et al. (2011) in several

ways. First, we manage resources (i.e., technicians) individually rather than by teams. Second, we consider

multiple task execution modes that impact the task duration as well as the resource requirements (De Reyck

et al., 1998). Third, we present an alternative way to consider technician transfer times by introducing location-

based incompatibility constraints between tasks. The objective of this new problem is to maximize the revenue

generated by the total power production of the wind turbines. The work targets a short-term horizon as wind

predictions can only be reliably established few days in advance.

The contributions of this paper are twofold. First, we introduce a new maintenance scheduling problem that

is especially relevant to the onshore wind power industry. We formally define our problem using two different

programming paradigms, namely, integer linear programming (ILP) and constraint programming (CP). Second,

we introduce a constraint programming-based large neighborhood search to efficiently tackle the problem. The

proposed approach uses destruction operators either specifically conceived for the problem or adapted from

the literature. The repair operator consists in solving a CP model with some fixed variables using branching

strategies specially tailored for the problem. We report computational results on randomly generated instances

with up to 80 tasks, 3 different skills and 40-period time horizons.

The remainder of this paper is organized as follows. In Section 2 we describe the problem. In Sections 3 and

4, we introduce two integer linear programming formulations and a constraint programming formulation for the

problem. In Section 5 we present our constraint programming-based large neighborhood search approach. In

Section 6 we report and discuss computational experiments. In Section 7 we describe the handling of corrective

tasks. Finally in Section 8 we present our conclusions and outline research perspectives.

2 Problem statement

The maintenance scheduling problem we consider consists in scheduling a set I of tasks during a finite time

horizon T in order to maximize the revenue from the electricity production of a set W of wind turbines. These

wind turbines are geographically distributed over a set L of locations. We denote lw P L the location of wind

turbine w PW. Each task i P I is also associated with a specific location, denoted as li.

The time horizon is partitioned in periods of identical length and spans over several days from a set D. We

denote Td the set of time periods covered by day d P D. Moreover, since the execution of a task can impact

the production during non-working hours, we introduce a special time period (hereafter referred to as a rest

time period) between two consecutive days to represent, for example, a night or a weekend. Maintenance tasks
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are non-preemptive but, obviously, they are interrupted during rest time periods when overlapping consecutive

days (e.g., a technician can start a task at the end of one day and complete it at the beginning of the next

day).

Although we do not include rest time periods in T , we count in the objective function the loss of revenue

generated by tasks overlapping these specific time periods. More specifically, tasks may have different impact

on the availability of the turbines. Some tasks shut down one (or more) turbine(s) since the task starts until

the task ends. For instance, during the maintenance of a wind farm’s substation3 no turbines in the farm can

produce electricity. It should be noted, however, that tasks that shut down more than one turbine are very rare

in practice. Some tasks shut down the turbines when the technicians are effectively working on the task, but

not necessarily during the rest time periods they overlap. This is the case for the majority of the preventive

maintenance jobs, as well as for wind turbines retrofit. Other tasks do not have any impact on electricity

production (e.g., some wind farm inspections). We model the impact on power production of the tasks using

two parameters. Parameter bwi takes the value 1 if task i P I shuts down turbine w PW when technicians are

effectively working on the task, and 0 otherwise. Parameter rbwi takes the value of 1 if task i additionally shuts

down turbine w during the rest time periods it overlaps, and 0 otherwise. It must be noted that parameters

bwi and rbwi are equal to 0 if turbine w is not located at wind farm li.

To execute the maintenance tasks, we have a finite set R of technicians. To avoid time-consuming traveling

between distant locations, during a single day technicians can only perform tasks at compatible locations.

Compatible locations are simply those that can be reached from each other in travel times that are negligible

with respect to the duration of a time period in T . Let us assume that tmax is the maximum travel time

between two locations that we can consider “negligible” with respect to the duration of a time period. The

top of Figure 1 then shows the locations that are compatible with l1 (i.e., l2 and l3). To model these daily

location-based incompatibilities, we introduce binary parameter σll1 taking the value of 1 if and only if locations

l and l1 are compatible (naturally σll1 � σl1l). The bottom of Figure 1 shows the 4 sets of compatible locations

in our example. During a single day, one should observe that a technician can only execute tasks at l1 and l2

or l3 but not both. It is worth mentioning that wind turbine maintenance tasks usually span along hours (if

not days), and therefore technicians tend to travel between very few locations during a single working day.

Compatible locations with l1

Sets of compatible locations

Figure 1: Illustration of the daily location-based incompatibilities

3A wind farm substation collects the electricity produced by all the turbines of the farm and distributes it through the grid
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We assume that all the technicians work the same shift, which is a common practice in this industry.

Nonetheless, each technician r P R has an individual availability schedule expressed by a binary vector πr,

with πtr � 1 if r is available during time period t P T , and πtr � 0 otherwise. The availability schedule of

every technician is related to training time, personal holiday time, and assignments to tasks (not part of the

optimization) that have been already started or that are performed along with external companies. When a

technician r is not available during a time period t, his or her location is fixed to ltr P L. Notice that for

technician personal holidays and training sessions, this parameter is set to a dummy location l� such that

@l P L, σl�l � 1.

Technicians master specific skills from a set S. Technician skills are expressed by a binary vector λr over

S such that λrs � 1 if technician r P R masters skill s P S, and λrs � 0 otherwise. Each task i P I has a set

Mi of execution modes. For each mode m PMi, there is an associated task duration dim and a number qim

of required technicians. Switching modes after starting the execution of a task is forbidden. Additionally, only

technicians mastering a specific skill si P S can work on task i. For the sake of clarity, we denote as Ri the set

of technicians that can perform task i. Note that Ri � tr P R|λrsi � 1u. We consider that a technician cannot

perform more than one task during a given time period. Moreover, a technician assigned to a task has to work

on it from the beginning to the end, even if the task is interrupted during one or multiple rest time periods.

Tasks can only be executed during some specific time periods. These take into account maintenance peri-

odicity time windows, spare parts availability, safety work conditions (e.g., a technician cannot perform certain

tasks on a turbine when the wind is too strong), and external restrictions imposed by the operator and/or the

wind farms owners. To model these restrictions, we introduce parameter γti that takes the value 1 if task i P I
can be performed during time period t P T , 0 otherwise. Additionally, some subsets of tasks cannot overlap

due, for instance, to the use of disjunctive resources, an interference (e.g., two tasks cannot be executed on the

same turbine at the same time), or managerial preferences. We define ov pIq the set containing all subsets of

tasks that should not overlap.

The objective of the problem is to determine a schedule that maximizes the revenue generated by the

electricity production of the wind farms while meeting the constraints described above. We denote gtw the

revenue generated by wind turbine w PW if it can produce electricity during time period t P T . Similarly, we

denote rgdw the revenue generated by wind turbine w if it can produce electricity during the rest time period

following day d P D. The revenue values are estimated according to the forecasted wind speed. In this study we

do not consider other maintenance costs: we assume that, as it is common in practice, technicians earn a fixed

salary, and we disregard travel costs as they are insignificant. One particularity of this problem is the possibility

to postpone the scheduling of some tasks until the next planning horizon. To model the postponement of task

i P I, we create an additional execution mode m0
i and we add it to Mi (we have qim0

i
� 0 and dim0

i
� 0).

When task i is postponed, we apply to the objective a penalty of ci ¥ 0. In practice, the value of this penalty

is fixed according to multiple factors. It takes into account the relative degree of priority of the tasks. This

priority depends on reliability consideration (the more a maintenance operation is delayed, the higher is the

probability of failure) and contract commitments. Moreover, when a task is postponed, it obviously does not

impact the production of any wind turbines, and thus the value of the revenue. Therefore, if a task needs to be

scheduled during the time horizon, this penalty is fixed in connection to the revenue in order to ensure that the

postponement of this task is non-profitable. This penalty includes an estimation of the loss of revenue induced

by the schedule of the corresponding task, to which may be added outsourcing costs (the decision maker then

being responsible for the choice of outsourcing a task rather than postponing it). Notice that if the penalties

are high enough, postponing a task is just triggered to overcome a possible lack of technicians. In short, the

objective function to be maximized in the problem always corresponds to the difference between the revenue

and the postponing penalties. Appendix A summarizes the notation used in this paper.
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3 Integer linear programming formulations

In the following subsections, we present two integer linear programming models for the problem. The first

formulation is an immediate natural formulation, whereas the second one aggregates some decision variables

leading to a more compact formulation.

3.1 Natural formulation

Let us introduce the following decision variables:

xim �

#
1 if task i P I is executed in mode m PMi,

0 otherwise.

sti �

#
1 if task i P I starts at the beginning of time period t P T ,

0 otherwise.

yri �

#
1 if technician r P R is assigned to task i P I,

0 otherwise.

cti �

#
1 if task i P I ends at the end of time period t� 1 P T ,

0 otherwise.

eti �

#
1 if task i P I is executed during time period t P T ,

0 otherwise.

udi �

#
1 if task i P I is executed during day d P D,

0 otherwise.

f tw �

#
1 if turbine w PW can produce electricity during time period t P T ,

0 otherwise.

rfdw �
#

1 if turbine w PW can produce electricity during the rest time period following day d P D,

0 otherwise.

ztri �

#
1 if technician r P R is assigned to task i P I during time period t P T ,

0 otherwise.

vtrl �

#
1 if technician r P R is at location l P L during time period t P T ,

0 otherwise.

An intuitive formulation is defined as the following integer linear program rP1s:

rP1s max
¸
wPW

�¸
tPT

gtwf
t
w �

¸
dPD

rgdw rfdw
�
�
¸
iPI

oixim0
i

(1)

subject to:¸
mPMi

xim � 1 @i P I, (2)

e0
i � 0 @i P I, (3)

eti � et�1
i � sti � cti @i P I,@t P T zt0u, (4)¸

tPT
sti � 1 @i P I, (5)¸

tPT
cti � 1 @i P I, (6)

eti ¤ γti @i P I,@t P T , (7)¸
iPB

eti ¤ 1 @B P ov pIq ,@t P T , (8)
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¸
tPTd

eti ¤ |Td|udi @i P I,@d P D, (9)

f tw � bwie
t
i ¤ 1 @w PW,@i P I,@t P T , (10)

fdw �
rbwi �udi � ud�1

i

�
¤ 2 @w PW,@i P I,@d P D, (11)¸

tPT
eti �

¸
mPMi

dimxim @i P I, (12)

¸
rPRi

yri �
¸

mPMi

qimxim @i P I, (13)

eti � yri � ztri ¤ 1 @i P I,@r P Ri,@t P T , (14)

ztri ¤ yri @i P I,@r P Ri,@t P T , (15)

ztri ¤ eti @i P I,@r P Ri,@t P T , (16)¸
iPIlXRi

ztri ¤ πtrv
t
rl @r P R,@l P L,@t P T , (17)

¸
lPL

vtrl � 1 @r P R,@t P T , (18)

vtrltr � 1 @r P R,@t P T s.t.πtr � 0, (19)

vtrl �
¸

l1PL|σll1�0

vt
1

rl1 ¤ 1

@r P R,@d P D,@pt, t1q P Td � Td, t � t1,@l P L, (20)

eti, s
t
i, c

t
i P t0, 1u @i P I,@t P T , (21)

udi P t0, 1u @i P I,@d P D, (22)

f tw P t0, 1u @w PW,@t P T , (23)

fdw P t0, 1u @w PW,@d P D, (24)

yri P t0, 1u @i P I,@r P Ri, (25)

ztri P t0, 1u @i P I,@r P Ri,@t P T , (26)

vtrl P t0, 1u @r P R,@l P L,@t P T . (27)

The objective in (1) is defined as the difference between the revenue generated by the turbines and the

penalties induced by the postponement of some tasks. Constraints (2) guarantee that exactly one execution

mode is selected for each task. For each task, constraints (3)-(6) ensure consistency between the starting

time, ending time, and execution time period variables. Constraints (7) prevent a task to be scheduled during

forbidden time periods. Constraints (8) are the non-overlapping constraints. Constraints (9) couple the time

periods during which each task is performed to the execution days of this task. Constraints (10) and (11)

compute the impact of the tasks on the availability of the turbines to produce electricity. Constraints (12)

connect the duration of each task to its selected execution mode. Constraints (13) ensure that the technician

requirements are fulfilled. Constraints (14) force technicians to be assigned to a task from its beginning to

its end. For each technician, constraints (15)-(16) ensure consistency between the global assignment and the

time-indexed assignment variables. Constraints (17) couple the locations of the technicians to the tasks they

perform. Constraints (18) prevent technicians to perform multiple tasks during the same time period. When

technicians are not available, constraints (19) ensure compliance with their known locations. Constraints (20)

define the daily location-based incompatibilities for each technician. Finally, (21)-(27) state the binary nature

of the decision variables.
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3.2 Compact formulation

In order to restrict the number of constraints involved in the formulation rP1s, we propose a second model

based on the concept of plans. A plan associated with task i P I defines a feasible schedule for i by setting

an execution mode, a consistent starting date, and, by induction, a duration and a resource requirement. For

example, consider a task i with two execution modes m1 and m2. Let dm1
and dm2

denote the corresponding

durations and qm1
and qm2

the corresponding number of required technicians. Assume that task i can be

executed during the whole time horizon. For each t P T such that t ¤ |T | � dm1 , a feasible plan is created

to represent the planning of task i� within mode m1 from period t to period t � dm1 with a requirement

of qm1
technicians. The same procedure is applied for mode m2. Obviously, we take into consideration the

impossibility of preempting tasks when building plans.

All the plans are generated a priori. Since in practice the planning horizon is short (because of weather

predictions) and there are only a few execution modes, the total number of plans is not so large. We denote

by P the set of plans, ip the task involved in plan p P P, and Pi the set of all plans involving task i (i.e.,

Pi � tp P P|ip � iu). For each task i, we also create a plan p0
i P Pi representing the postponement of the task.

For a plan p, execution periods of ip are expressed by a binary vector ap where atp � 1 if ip is executed during

time period t P T , and atp � 0 otherwise. Similarly, we introduce binary vector rap where radp � 1 if ip overlaps

the rest time period following day d P D, and radp � 0 otherwise. With a slight abuse of notation, we introduce

parameters bwp, rbwp, and Rp respectively equal to bwip , rbwip and Rip . Moreover, we define qp as the number of

technicians required when selecting plan p P P. Finally, parameter op is the penalty if plan p is selected (note

that @i P I,@p P Piztp0
i u, op � 0 and op0i � oi).

Scheduling the tasks becomes rather implicit as it simply requires to select a plan for each task. Never-

theless, we still need to manage the technician-to-task assignments that should meet the daily location-based

incompatibilities and cope with technician availability. We use the decision variables f tw, rfdw, and vtrl defined

in Section 3.1. We also introduce the following decision variables:

x̄p �

#
1 if plan p P P is selected,

0 otherwise.

ȳrp �

#
1 if technician r P Rp is assigned to plan p P P,

0 otherwise.

As a result, we obtain the following integer linear program, denoted as rP2s .

rP2s max
¸
wPW

�¸
tPT

gtwf
t
w �

¸
dPD

rgdw rfdw
�
�
¸
pPP

opx̄p (28)

subject to:¸
pPPi

x̄p � 1 @i P I, (29)

¸
iPB

¸
pPPi

atpx̄p ¤ 1 @B P ov pIq ,@t P T , (30)

f tw �
¸
pPPi

bwpa
t
px̄p ¤ 1 @w PW,@i P I,@t P T , (31)

rfdw � ¸
pPPi

rbwpradpx̄p ¤ 1 @w PW,@i P I,@d P D, (32)

¸
rPRp

ȳrp � qpx̄p @p P P, (33)

¸
iPIl|rPRi

¸
pPPi

atpȳrp ¤ πtrv
t
rl @r P R,@l P L,@t P T , (34)

(18), (19), (20),
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x̄p P t0, 1u @p P P, (35)

ȳrp P t0, 1u @p P P,@r P Rp, (36)

(23), (24), (27).

The objective in (28) is defined as the difference between the revenue generated by the turbines and the

penalties induced by the postponement of some tasks. Constraints (29) ensure that exactly one plan is selected

for each task. Constraints (30) are the non-overlapping constraints. Constraints (31) and (32) couple turbine

availability variables to plan selection variables. Constraints (33) ensure that the technician requirements

are fulfilled. Constraints (34) couple the locations of the technicians to the tasks they perform. This new

formulation rP2s uses the same constraints as formulation rP1s to manage the availability calendars of the

technicians and the daily location-based incompatibilities. Finally, (35)-(36) state the binary nature of the new

decision variables.

4 Constraint programming formulation

The previous section presents two ILP formulations of the problem. Motivated by the successful implementation

of CP models for solving other hard, and to some extend, related optimization problems (Baptiste et al., 2001;

Rodriguez, 2007; Malapert et al., 2012), we also decided to approach our problem using CP.

First of all, note that defining for each task: i) an execution mode, ii) a starting time, and iii) the technicians

assigned to it, is enough to obtain a solution to our problem. Therefore, for each task i P I, we introduce the

variables Mi PMi and Si P T to represent its execution mode and starting time period, and we use the binary

variables pyriqrPRi
introduced in Section 3.1 to decide if technician r performs or not task i. To make some

constraints easier to model, we introduce integer variables Ci P T , Di P tdimumPMi
, Qi P tqimumPMi

, and set

variables Ei � T defining for task i its completion time period, its duration, its number of assigned technicians,

and its set of execution time periods, respectively.

Execution time periods of each task are coupled to their starting and ending time periods with constraints

(37)-(38).

Si �Di � 1 � Ci @i P I, (37)

t P Ei ô t P rSi, Cis XN @i P I (38)

The duration of each task (39) as well as the number of assigned technicians (40) are coupled with the

selected execution mode.

Di � diMi
@i P I, (39)

Qi � qiMi
@i P I (40)

Constraints (41) are the non-overlapping constraints.£
iPB

Ei � H @B P ov pIq (41)

Constraints (42) ensure that the technician requirements are fulfilled for each task.¸
rPRi

yri � Qi @i P I (42)

To express the constraints related to the technician-to-task assignments, we introduce set variables Y tr �

I Y ti0u defining the set of tasks that technician r could potentially perform during time period t P T . Index

i0 represents a dummy task, created in order to prevent a technician to work when he or she is unavailable.
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Constraints (43) couple these variables to the global assignment variables pyriqiPI|rPRi
. Restrictions imposed

on the locations visited by a technician within each day lead to the introduction of set variables V tr � L defining

the set of potential locations for technician r during time period t. Constraints (44) and (45) restrict the set

of tasks that a technician can possibly execute according to his or her potential locations. Set LpÎq defines the

set of locations of the tasks in set Î. Note that LpÎq � tl P L | Di P Î s.t. li � lu.

yri � 1 ñ
�
Y tr � tiu @t P Ei

�
@i P I,@r P Ri, (43)

V tr � LpY tr q @r P R,@t P T , s.t. πtr � 1, (44)

V tr � tltru ^ Y tr � ti0u @r P R,@t P T , s.t. πtr � 0 (45)

Denoting dt as the day to which time period t belongs, constraints (46) ensure that the daily location-based

incompatibilites are not violated for each technician.

V tr � tlu ñ
�
l1 R V t

1

r @l1 P L s.t. σll1 � 0,@t1 P Tdt s.t. t1 � t
	

@r P R,@t P T ,@l P L (46)

In order to define the objective function of our problem, we introduce two set variables. Variables F dayw �

t1, . . . , |T |u define the set of all periods during which turbine w PW can produce electricity. Variables F restw �

t1, . . . , |D|u define the set of days for which turbine w can produce electricity during the corresponding rest

time periods. More specifically, a day d belongs to this set if w can produce electricity during the rest time

period between d and d � 1. Additionally, we denote by trestd the last time period t P T before the rest time

period following day d P D.

We introduce constraints (47), (48), (49), and (50) which state that a turbine is available to produce

electricity during a time period if and only if no tasks requiring its shutdown are scheduled during this period.

t P Ei ñ t R F dayw @w PW,@i P I s.t. bwi � 1,@t P T , (47)

t R
¤

iPI|bwi�1

Ei ñ t P F dayw @w PW,@t P T , (48)

trestd P Ei ^ ptrestd � 1q P Ei ñ d R F restw @w PW,@i P I, s.t. rbwi � 1,@d P D, (49)©
iPI|rbwi�1

�
ttrestd , trestd � 1u � Ei

�
ñ d P F restw @w PW,@d P D (50)

Constraint (51) defines the objective function variable obj P R of our problem.

obj �
¸
wPW

�� ¸
tPFday

w

gtw �
¸

dPF rest
w

rgdw
�� ¸

iPI|Mi�m0
i

oi (51)

To remove some symmetries, we add constraints (52) to impose the starting time of a postponed task to be

equal to 0.

Mi � m0
i ô Si � 0 @i P I (52)

5 A CP-based large neighborhood approach

We use the CP model introduced in Section 4 as the main building block of a CP-based large neighborhood

search (CPLNS) approach.

This method is based on the large neighborhood search metaheuristic (LNS) originally proposed by Shaw

(1998) for a vehicle routing problem. In the LNS, the current solution is successively partially destroyed

and repaired in order to improve its quality. Our implementation randomly selects the operators with equal

probability as suggested in (Pisinger and Ropke, 2010)4.

4We also implemented the adaptive layer as proposed in (Ropke and Pisinger, 2006), but after some preliminary experimentation

we concluded that the contribution of this component to the accuracy of the method did not payoff the loss of simplicity and the

effort needed to fine tune the additional parameters. We therefore limit the discussion in the paper to the basic LNS version.
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Algorithm 1 outlines the general structure of the method. To compute the initial solution, we use the CP

model and we stop its execution as soon as we find a feasible solution. The algorithm then enters an iterative

process. In every iteration, it randomly selects a destroy operator o1 and a repair operator o2. First, it partially

destroys the current solution using o1 (see Section 5.1). Then, it builds a potential alternative solution sol
1

using o2 (see Section 5.2). In the case where sol
1

meets the acceptance criterion (see Section 5.3), the solution

sol
1

replaces the current solution sol for the next iteration. If appropriate, the algorithm updates the best

solution sol� found so far. Then, the search moves to the next iteration. The whole procedure is repeated until

it reaches a time limit. The optimization returns solution sol�.

Algorithm 1: Script of the CPLNS algorithm

1 solÐ initial solution

2 sol� Ð sol

3 repeat

4 Select a destroy operator o1 and a repair operator o2 from the operators pool

5 sol
1

Ð repair po2,destroy po1, sq , solq

6 if sol
1

is accepted then

7 solÐ sol
1

8 end

9 if fpsol
1

q ¡ fpsol�q then

10 sol� Ð sol
1

11 end

12 until the time limit is reached ;

13 return sol�

5.1 Destroy operators

At each iteration, the algorithm selects Γ tasks to remove from the current solution. The value of Γ is randomly

fixed in the interval rmax pn�, n� p�q ; min pn�, n� p�qs, where n� and n� denote the minimal and maximal

number of tasks that are allowed to be removed during an iteration; similarly, p� and p� denote the minimal and

maximal proportion of tasks that could be removed. The parameters p� and p� allow the algorithm to adapt

to all instances independently of their size. We use the following settings: pn�, n�, p�, p�q � p5, 20, 0.1, 0.4q.

We also always consider postponed tasks in the current solution as tasks to be removed. However, we do not

count them among the Γ tasks to remove.

After setting Γ, the algorithm selects the tasks using one of the following six removal operators:

• Operator A: random removal

This operator randomly removes Γ tasks from the current solution. The intention behind this operator

is to diversify the search.

• Operator B: worst removal

This operator removes the tasks which penalize the most the objective function of the current solution.

Let f be the current value of the objective function, f�i its value if task i is removed, and ∆fpiq � f�f�i.

The Γ tasks with the greatest values of ∆fpiq are removed from the current solution in order to insert

them at better positions.

• Operator C: technicians duties removal

This operator is based on the following procedure. First, it randomly selects a skill s�. Second, as long as
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the number of removed tasks is lower than Γ, it randomly selects a technician mastering s� and remove

from the current solution those tasks in which the selected technician uses skill s�. The operator then

switches to another skill if it has not removed Γ tasks yet. Freeing up a pool of technicians along the

whole time horizon may allow the reinsertion of possibly misplaced tasks during more convenient time

periods (i.e, periods where they penalize less the revenue).

• Operator D: similar tasks removal

This operator removes similar tasks. More specifically, the operator aims to remove non-overlapping tasks

(or tasks that overlap as little as possible) having similar duration and skill requirements. The similarity

between two tasks i, j P I in a solution sol is formally defined as: φpi, j, solq � α1�|d̄i�d̄j |�α2�1psi�sjq
5�

α3 � ovpi, j, solq, where d̄i is the average duration of task i (i.e., d̄i �
1

|Miztm0
i u|

°
mPMiztm0

i u
dim) and

symbol 1psi�sjq is equal to 1 if si � sj , 0 otherwise. Function ovpi, j, solq computes the number of

overlapping time periods between i and j in the current solution sol. Coefficients α1, α2, and α3 weight

the three components of the similarity function, namely, task duration, skill requirements, and task

overlapping. In our experiments, pα1, α2, α3q � p1, 3, 5q. To select the tasks to remove, the operator first

initializes a set rI with a random task. While |rI| ¤ Γ, the procedure randomly selects a task i� fromrI, and it then adds to rI the task j P IzrI with the minimal value of φpi�, j, solq. The intuition behind

this operator is that removing and re-inserting similar tasks that are scheduled in non-overlapping time

periods increases the likelihood of a solution improvement.

• Operator E: task maximal regret

This operator removes the tasks having the largest difference between the loss of revenue they currently

generate and the minimal loss of revenue they can induce (we called this difference regret). LetWi denote

the set of turbines shut down by the execution of a task i (clearly,Wi � tw PW|bwi � 1_rbwi � 1u). The

loss induced by task i is equal to the sum over all the turbines in Wi of the revenue directly lost due to

its scheduling. Notice that if multiple tasks impact a turbine during a specific time period, the loss is set

proportionally to the number of these tasks. Prior to the optimization, the operator computes for each

task i a metric called lossbesti equal to the smallest loss of revenue that can be achieved when one only

considers the scheduling of this task. Then, during the optimization, the operator first computes the loss

of revenue losssoli generated by task i in the current solution sol. Afterwards, the operator computes the

regret ∆losspiq � losssoli � lossbesti for each scheduled task i. The operator then removes from the current

solution sol the Γ tasks associated with the largest value of ∆losspiq. Removing tasks that currently

generate considerably more loss of revenue than they could may allow the algorithm to schedule those

tasks in better positions in the next iterations. It is then plausible to assume that this operator increases

the probability of fining better-quality solutions.

• Operator F: turbine maximal regret

This operator works almost in the same way as operator E. Instead of reasoning by task, we focus on

each turbine. Prior to the optimization, the procedure computes for each turbine w PW a metric called

lossbestw , estimating the smallest loss of revenue that can be achieved when one only considers the set Iw of

tasks that prevent turbine w to produce electricity when scheduled (i.e., Iw � ti P I|bwi � 1_rbwi � 1u).

The value of lossbestw is computed by running the CP formulation presented in Section 4 on an instance

containing only the tasks belonging to Iw. The solution time is most of the time insignificant, but

nevertheless we impose a time limit of 1 second. It is noteworthy that, if we find a smaller loss of

revenue during the execution of the CPLNS, we update the value of lossbestw . Our tests, however, suggest

that this is a very rare event. During the optimization, the procedure starts by computing the lost

revenue losssolw generated by the tasks in Iw if they are executed as scheduled in the current solution.
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Notice that the penalties related to postponed tasks are included in the computation of lossbestw and

losssolw . Afterwards, the operator initializes a set �W with all the turbines in W and compute the regret

∆losspwq � losssolw � lossbestw associated with each turbine w P �W. While �W is not empty and Γ tasks are

not removed, the operator removes from �W the turbine w� associated with the largest value of ∆losspwq

and removes from the current solution sol all the scheduled tasks belonging to Iw� .

We work with randomized versions of operators B, D, E, and F to explore the search space more broadly.

Indeed, an operator can destroy different parts of the same solution each time it is applied to it. This can then

lead to building different solutions. Although the randomization strategy we use is relatively simple, we explain

it here for the sake of completeness. The strategy is based on the one proposed in (Cordeau et al., 2010). Let

%o denote the randomization factor of operator o. When selecting tasks for removal, the operator first sorts

a list L containing all the tasks using its selection criterion (i.e., largest penalization for operator B, largest

similarity with a specified task for operator D, largest regret for operators E and F). The first positions of L

contains the tasks that the destroy operator has to target first according to its criterion. Then the operator

draws a random number y P r0; 1q and it selects for removal task i in position ty%o � |L|u in L (positions in

L are indexed from 0). A randomization factor %o � 1 makes the operator completely random, while higher

values of %o make the operators more deterministic. In our experiments we set ρB � ρD � ρE � ρF � 3 and

we use only the randomized versions of these four operators.

Although it is very simple, Algorithm 2 presents the general structure of a destroy operator used as a

subroutine in Algorithm 1.

Algorithm 2: Destroy(o,sol)

Data: a solution sol

a destroy operator o

Result: a set of tasks to remove from sol

1 F ÐH

2 F ÐApply destroy operator o to sol

3 return F

5.2 Repair operators

We use the CP formulation introduced in Section 4 to repair partially destroyed solutions. More specifically, if

F denotes the set of tasks that have been removed, we fix for each task i P IzF the value of the variables Mi,

Si, and pyriqrPRi
to their value in the current solution, and we solve the resulting model.

A solution to the CP model is found as soon as the decision variables Mi, Si, and pyriqrPRi
are instantiated

for every task i P I. Therefore, the branching strategy should focus only on these variables. It is worth noting

that a CP solver can make meaningful deductions for a task when the domain of the variable related to its

executing mode not longer contains the postponement mode. Moreover, fixing the starting time period of a

task before knowing its execution mode leads to a weak propagation on the bound of the revenue variable and

on the possible starting time periods and execution modes of other tasks. Furthermore, since variables yri

have an impact only on the feasibility of a solution but not on its quality, fixing last these variables (i.e., after

having fixed the variables Mi and Si for each task i P I) implies that the solver has to explore a large sub-tree

before reconsidering a bad decision. Based on these observations we adopt a task-by-task scheduling strategy

in which the technicians assignment is made after having chosen an execution mode and a starting time period

for the current task.

It is well-known that quickly reaching a good-quality solution increases the efficiency of the search. It is,

however, not clear if fixing the execution mode of a task i P I (i.e., Mi) to a specific execution mode and
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then exploring all its potential starting time periods before setting Mi to another value is the best searching

strategy. This observation suggests that simultaneously setting variables Mi and Si may lead to achieve a

greater flexibility during the search. We therefore choose to reuse the notion of plans introduced in Section

3.2. For each task i P I, we introduce variable Xi P Pi that defines the plan selected for task i. We add the

constraints (53)-(54) to couple these variables to the variables Mi and Si.

Mi � modeXi
@i P I, (53)

Si � startXi
@i P I (54)

For a plan p P P, modep is the selected execution mode for the task ip and startp � min
tPT |atp�1

t represents

the starting time of ip. In summary, task by task, we first define its execution mode along with its starting

time by fixing variable Xi, and we finally assign the required technicians by fixing the variables pyriqrPRi
.

To reach feasible solutions faster, we maintain arc consistency on constraints (53) and (54). We also designed

customized propagators to try to keep, during the search, the domain of Xi consistent with the availability of

the technicians. More specifically, these propagators rely on a comparison between the task requirements and

the number of technicians available during each time period of the planning horizon considering the required

skills and the daily location-based incompatibilities. They also take into account that technicians have to work

on a task from its beginning to its end. For instance, if during a time period t� no more than 2 technicians

mastering a specific skill s� are available, then for each task i such that si � s� we can remove from the domain

of Xi all the plans overlapping t� and requiring more than 2 technicians.

The most critical part of the procedure is the selection of the next task to be considered by the branching

strategy. We select the next task to schedule using a look-ahead regret heuristic that operates as follows. Let

I0 denote the set of tasks which have not yet been processed at the current node of the search. We denote ∆fki

the k-th smallest value of the loss of revenue that task i can generate when scheduled using one of its possible

plans. The procedure regret-q chooses task i� � arg max
iPI0

°k�q
k�2

�
∆fki �∆f1

i

�
to be considered for scheduling.

The algorithm computes ∆fki according to the values of Ψpi, pq, a function representing the loss of revenue if

task i uses plan p P Pi (i.e., the task is performed in mode modep and starts at the beginning of time period

startp). Function Ψpi, pq is computed using functions Ψdaypi, pq and Ψrestpi, pq which represent, if task i uses

plan p P Pi, the loss of revenue during the time periods from T and during the rest time periods. These

functions are defined as follows:

Ψpi, pq � Ψdaypi, pq �Ψrestpi, pq,

Ψdaypi, pq �

$'&'%
op if p � p0

i ,°
wPW|bwi�1

t startp�dimodep°
t�startp

gpw, tq otherwise.
,

Ψrestpi, pq �

$'&'%
0 if p � p0

i ,°
wPW|rbwi�1

°
dPDp

rgpw, dq otherwise. ,

where Dp is the set of days that task ip of plan p P P overlaps. Functions gpw, tq and rgpw, dq are defined as:

@w PW,@t P T , gpw, tq �

#
gtw if t P EnvpF dayw q,

0 otherwise.
,

@w PW,@d P D, rgpw, dq � # rgdw if d P EnvpF restw q,

0 otherwise.
,
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where EnvpZq denotes the set of elements that may belong to the set variable Z in a solution at the current

node of the search tree.

Let Dompzq denote the domain of variable z (i.e., all the possible values that z can take). We have

∆f1
i � min

pPDompXiq
Ψpi, pq. More generally, ∆fki is the k-th smallest value of Ψpi, pq. Once task i� has been

selected, it is scheduled using plan p� � arg min
pPDompXi� q

Ψpi�, pq.

During our preliminary experiments we observed that sometimes our regret-q heuristic is unable to lead

the search to good solutions. It is indeed possible that a task with a small regret at a given point of the

search is not chosen to be scheduled, but that this decision leads to a large loss of revenue later when exploring

the associated subtree. To overcome this potential issue, we designed another branching strategy that selects

the task i� � arg max
iPI0

�
min
pPPi

Ψpi, pq



for which the minimal loss of revenue is maximal. Again, once task i�

has been selected, it is scheduled using plan p� � arg min
pPDompXi� q

Ψpi�, pq. We refer to this branching strategy as

MinMaxLoss.

The resources assignment is then done technician by technician as long as the request is not fulfilled. We

choose with priority the compatible technician which is already working during the days that belong to Dp� .

Since the daily location-based incompatibilities are very restrictive, it should be preferable to use technicians

that are already working at the same location or at compatible locations. Otherwise, the number of technicians

that will be available for other tasks, especially those at incompatible locations, may be drastically restricted.

If during the days d P Dp� multiple technicians work the same number of time periods, we choose first the

technician that could perform the least number of tasks among those remaining. If several technicians can still

be selected, we select one randomly.

Exploring the whole neighborhood of a solution is time-consuming; therefore we only allow a certain number

$max of backtracks (we set $max � 200 in our experiments). Thus, different solutions can be obtained

using different branching strategies. Different repair operators are therefore defined using different branching

strategies. In our experiments, we use regret-2 and regret-3 branching strategies, as well as a randomized

version of MaxMinLoss, where the probability of selecting a task is inversely proportional to the minimal loss

of revenue it generates at this point of the search.

Algorithm 3 presents the general structure of a repair operator used as a subroutine in Algorithm 1.

Algorithm 3: Repair(o,F ,s)

Data: a solution sol

a set F of tasks

a repair operator o (branching strategy)

Result: a new solution sol1

1 foreach i P IzF do

2 Fix the values of Mi, Si, pyriqrPRi
as in solution sol in the CP model

3 end

4 Solve the CP model applying repair operator o, yelding sol1

5 return sol1

5.3 Acceptance criteria

The original version of LNS proposed by Shaw (1998), uses an elitist strategy to accept solutions (i.e., it accepts

only improving solutions). On the other hand, the ALNS by Pisinger and Ropke (2007) uses the Metropolis

criterion to accept solutions. According to this criterion, solutions are accepted with a given probability. If

the newly found solution sol1 improves the current solution sol the probability equals to one. Otherwise, the
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probability is computed using the Boltzmann expression: e�pfpsolq�fpsol
1qq{Υ. Parameter Υ is commonly known

as the temperature. It is updated after each iteration using what is commonly known as the geometric cooling

schedule: Υ � Υ � c̄, where c̄ P r0, 1q. Then, the probability of accepting non-improving solutions decreases

over the iterations. We tested the two approaches in our experiments.

We also tested a mix of them: we apply an elitist strategy during the first k iterations, and then we activate

the Metropolis criterion. We based our choice in two observations. First, using the elitist strategy, the search is

often trapped in local optima after a certain amount of iterations, and then it struggles to improve the solution.

Second, as we do not ensure that our algorithm starts from a good-quality solution, reaching a good solution

can be time-consuming.

In our experiments, k is set to 300 and c̄ to 0.9975. The initial temperature is fixed to �
0.25

ln0.5
fpsol0q where

fpsol0q is the value of the objective function of the initial solution sol0. Therefore, in the first iteration our

approach accepts solutions that are 2.5% worse than the current solution with a probability of 0.5.

6 Computational experiments

6.1 Instances

Since our problem is new to the maintenance scheduling literature, no publicly available benchmarks exists.

We therefore took advantage of our close collaboration with companies specializing on wind predictions, wind

turbine maintenance, and maintenance scheduling software, to get inside knowledge on how real-data for the

problem looks like. Based on this knowledge, we built an instance generator that we believe captures reality

with a good degree of accuracy.

We used our generator to build a 160-instance testbed (hereafter referred to simply as G1). For each

instance, we consider time horizons of different lengths (10, 20 or 40), different number of time periods per

day (2 or 4), different number of tasks (20, 40 or 80), and different number of skills (1 or 3). Each task can

be executed in several modes (1 to 3). Note that |S| � 1 simply means that no skills are considered. For each

combination of parameters, we generate two categories of instances: 5 instances with a tight technicians-to-

work ratio (i.e., technicians can perform the majority of the tasks during the planning horizon, but they are

not guaranteed to be enough to perform all the tasks), and 5 instances with a regular technicians-to-work ratio

(i.e., technicians can perform all the tasks during the planning horizon). We refer to the former as Type A and

to the latter as Type B. We also refer to each family of instance with symbol ”a b c d e” where a, b, c, d, and

e refer to the number of time periods in the planning horizon, time periods within a day, skills, tasks, and to

the technicians-to-work ratio, respectively. For a thorough discussion on the instance generation process the

reader is referred to Appendix C. Notice that in all our instances postponing a task is always non-profitable

and therefore heavily penalized.

6.2 Results

We implemented our algorithms using Java 8 (JVM 1.8.0.25). We rely on Gurobi 6.5.1 for solving the ILP

models rP1s and rP2s and Choco 3.3.1 for solving the CP formulation (see Prud’homme et al. (2014)). We ran

our experiments on a Linux 64 bit-machine, with an Intel(R) Xeon(R) X5675 (3.07Ghz) and 12GB of RAM.

Unless another formula is given (as for the results described in Tables 11 and 13), all gaps reported in the

article are computed as: gap � pzUB � zq{|z|, where z is the objective function of the computed solution and

zUB is the objective function of the optimal solution or the minimal upper bound computed by Gurobi after 3

hours of branch-and-bound when solving the two ILP formulations.
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6.2.1 ILP formulations

First, we observe that the compact formulation rP2s contains on average 1.5 times more variables (50k vs

86k) than the natural formulation rP1s, but 5 times less constraints (129k vs 25k). As shown below, this

significantly impacts the performance of the solver. For reference, we point out that the set P contains 2,400

plans on average.

Table 1 reports the average, over all the instances belonging to the same family, of: the gap (Gap), the

solution time (Time), and the percentage of tasks scheduled (i.e., not-posponed) in the best solution (%S).

The table also reports the number of optimal solutions found within the 3-hour time limit (#Opt). In order to

have a meaningful comparison, the average solution time only takes into account those instances for which an

optimal solution has been found within the time limit. Similarly, the average gap and percentage of scheduled

tasks takes into account only the instances which are not optimally solved. This allows a better understanding

of the results. Indeed, since in our instances postponing a task is heavily penalized, a large gap is often related

to a low percentage of tasks scheduled during the time horizon. Notice that on average 99% of the tasks

are scheduled in the optimal or best-known solutions for our testbed. To provide the reader with a different

perspective, Table 2 presents the same results grouped by instance characteristic rather than by family of

instances.

Table 1: Computational results when solving the two ILP models (testbed G1 - 3-hour time limit)

Family
[P1] [P2]

Gap %S #Opt Time Gap %S #Opt Time

10 2 1 20 A 1.4% 97% 0/5 - 1.8% 95% 4/5 1,979

10 2 1 20 B 0.01% 100% 4/5 744 - - 5/5 46

10 2 1 40 A 7.1% 95% 0/5 - 0.2% 100% 1/5 395

10 2 1 40 B 0.00% 100% 3/5 6,015 - - 5/5 343

10 2 3 20 A 2.0% 96% 1/5 326 0.9% 100% 4/5 1,845

10 2 3 20 B 0.02% 100% 3/5 305 - - 5/5 58

10 2 3 40 A 9.6% 96% 0/5 - 0.01% 100% 4/5 6,477

10 2 3 40 B 0.00% 100% 4/5 2,857 - - 5/5 159

20 2 1 40 A 42% 76% 0/5 - 1.8% 99% 0/5 -

20 2 1 40 B 1.6% 99% 0/5 - 0.01% 100% 3/5 2,888

20 2 1 80 A 28% 87% 0/5 - 436% 0% 0/5 -

20 2 1 80 B 6.2% 96% 0/5 - 67% 67% 2/5 4,087

20 2 3 40 A 6.2% 93% 0/5 - 1.2% 99% 1/5 8,149

20 2 3 40 B 0.02% 100% 2/5 2,561 - - 5/5 1,213

20 2 3 80 A 23% 89% 0/5 - 48% 79% 0/5 -

20 2 3 80 B 4.3% 97% 0/5 - 196% 50% 3/5 2,082

20 4 1 20 A 5.3% 93% 0/5 - 1.6% 95% 0/5 -

20 4 1 20 B 0.2% 100% 3/5 6,264 - - 5/5 666

20 4 1 40 A 161% 46% 0/5 - 264% 0% 0/5 -

20 4 1 40 B 12.8% 91% 0/5 - 131% 50% 1/5 1,428

20 4 3 20 A 7.9% 92% 0/5 - 2.6% 96% 0/5 -

20 4 3 20 B 1.2% 98% 2/5 2,152 - - 5/5 1,276

20 4 3 40 A 416% 33% 0/5 - 514% 39% 0/5 -

20 4 3 40 B 204% 56% 0/5 - 162% 50% 3/5 5,877

40 4 1 40 A 147% 54% 0/5 - 309% 18% 0/5 -

40 4 1 40 B 157% 73% 0/5 - 430% 40% 0/5 -

40 4 1 80 A 49% 80% 0/5 - 4,948% 0% 0/5 -

40 4 1 80 B 39% 83% 0/5 - 331% 0% 0/5 -

40 4 3 40 A 170% 43% 0/5 - 924% 39% 0/5 -

40 4 3 40 B 13% 88% 0/5 - 87% 78% 0/5 -

40 4 3 80 A 48% 77% 0/5 - 2,813% 0% 0/5 -

40 4 3 80 B 24% 84% 0/5 - 3,899% 0% 0/5 -

At a first glance, we observe that the compact formulation rP2s outperforms the natural formulation rP1s

for small and medium-sized instances. For the large-sized instances, the two formulations struggle reaching

optimal solutions, but the compact formulation performs worst than the natural one (rP2s fails more often

than rP1s to schedule a large proportion of the tasks). We believe these results can be explained as follows.
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Table 2: Aggregated computational results when solving the two ILP models (testbed G1 - 3-hour time limit)

Characteristic
[P1] [P2]

Gap %S #Opt Time Gap %S #Opt Time

|S| �

#
1

3

47% 83% 10/80 3,981 636% 44% 26/80 1,225

68% 81% 12/80 1,841 937% 54% 35/80 2,252

|T |
|D|

�

#
2

4

10% 94% 17/80 2,283 92% 75% 27/80 1,743

97% 73% 5/80 4,619 1113% 35% 14/80 2,055

Type �

#
A

B

71% 78% 1/80 326 777% 52% 14/80 3,553

39% 88% 21/80 2,932 763% 42% 47/80 1,297

All 57% 82% 22/160 2,814 773% 48% 61/160 1,815

The compact formulation contains far less constraints than the natural formulation, and the value of the LP

relaxation is around 2% smaller on average, which leads to tighter upper bounds computed by the ILP solver.

We also observe that, at least in our 3-hour time limit, optimality is only reached for small-sized instances and

that whenever optimality is reached the CPU time is rather long (around 30 minutes on average). It is not very

surprising as the formulations only involve binary variables and their size is quite large. We therefore reach

the following conclusion: solving the ILP formulations using a commercial solver does not yield suitable exact

approaches for the problem.

Our results suggests that the number of skills does not have a significant impact on the difficulty of the

instances (although we observe that instances with 3 skills appear to be easier to solve). This may be a result

of less symmetries among technicians and a shorter number of feasible configurations to schedule the tasks.

On the other hand, the number of tasks seems to have an impact on the difficulty of the instances when the

technicians-to-work ratio is tight. This can be explained by the higher difficulty of finding a maintenance plan

when considering more tasks. It is also worth observing that the ILP formulations perform better on instances

with 2 time periods per day; the solution time is shorter and the number of optimal solutions is larger than in

those with 4 time periods per day. A plausible explanation is that the daily location-based incompatibilities

are more binding on instances with more time periods per day. Indeed, a larger number of periods provides

a wider choice of task starting times and therefore more opportunities to move technicians between locations

during a single day. Instances with 4 time periods per day also have a larger number of plans and patterns;

this may also explain their higher difficulty. In conclusion, according to our experiments, the difficulty of an

instance increases with the number of time periods per day and the tightness of the technicians-to-work ratio.

6.2.2 CP formulation

Table 3 summarizes the aggregated results found solving the CP model. In this experiment, we tested the

resolution of the model with two branching strategies: regret-2 (R) and a randomized version of regret-2

coupled to a geometrical restart policy (we restart the search from the root node) based on the number of

backtracks (R+restart). The columns of the table report the relative average mean gap6 (Gap) and the mean

percentage of tasks scheduled in the solution7 (%S) with 5 minutes of CPU time limit.

The results show that coupling our branching strategy with the restart policy gives the best results: the

average gap is improved approximately by 6%. Jointly using a randomized branching strategy with a restart

policy allows us to explore different parts of the search tree which increases the likelihood of finding better

solutions. Table 4 reports additional results obtained solving the CP model with the R+restart configuration.

We find good quality solutions for instances with 2 time periods per day and near optimal solutions for Type B

instances; the gap is larger for the other instances. We observe that the solutions obtained after a few iterations

are little improved during the search. It seems that the CP model is facing some symmetry issues, especially

on the technicians assignment. This drawback is not overcome with our restart policy. Nonetheless, we can

6average of the mean gap found for each instance over 3 runs
7average of the mean percentage of tasks scheduled in the solution found for each instance over 3 runs
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notice that solving the CP formulation gives better overall results on the largest instances than solving the ILP

formulations. Since the quality of the results are barely improved when increasing the time limit from 1 to 5

minutes, we did not consider necessary to test the model with a 3-hour time limit as for the ILP formulations.

Table 3: Aggregated computational results when solving the CP model (testbed G1 - average over 3 runs - 5

minutes time limit)

Characteristic
R R+restart

Gap %S Gap %S

|S| �

#
1

3

9.2% 94% 2.7% 98%

7.7% 95% 2.4% 98%

|T |
|D|

�

#
2

4

5.5% 97% 1.2% 99%

11.4% 93% 4.0% 97%

Type �

#
A

B

13.3% 92% 4.4% 96%

3.6% 98% 0.8% 100%

All 8.4% 95% 2.6% 98%

Table 4: Detailed computational results when solving the CP model (testbed G1 - R+restart configuration -

average over 3 runs)

Family
1min 3min 5min

Gap %S Gap %S Gap %S

10 2 1 20 A 1.3% 98% 1.3% 98% 1.3% 98%

10 2 1 20 B 0.4% 100% 0.4% 100% 0.4% 100%

10 2 1 40 A 2.4% 99% 2.4% 99% 2.4% 99%

10 2 1 40 B 0.4% 100% 0.4% 100% 0.4% 100%

10 2 3 20 A 2.0% 97% 2.0% 97% 2.0% 97%

10 2 3 20 B 0.3% 100% 0.3% 100% 0.3% 100%

10 2 3 40 A 2.4% 99% 2.3% 99% 1.9% 99%

10 2 3 40 B 0.8% 100% 0.8% 100% 0.8% 100%

20 2 1 40 A 2.5% 99% 2.5% 99% 2.5% 99%

20 2 1 40 B 0.3% 100% 0.3% 100% 0.3% 100%

20 2 1 80 A 3.2% 99% 3.2% 99% 3.2% 99%

20 2 1 80 B 0.2% 100% 0.2% 100% 0.2% 100%

20 2 3 40 A 1.6% 99% 1.6% 99% 1.6% 99%

20 2 3 40 B 0.2% 100% 0.2% 100% 0.2% 100%

20 2 3 80 A 1.2% 100% 1.2% 100% 1.1% 100%

20 2 3 80 B 0.3% 100% 0.2% 100% 0.2% 100%

20 4 1 20 A 2.4% 95% 2.2% 95% 2.1% 95%

20 4 1 20 B 1.0% 100% 0.9% 100% 0.9% 100%

20 4 1 40 A 9.9% 93% 9.6% 93% 9.5% 93%

20 4 1 40 B 2.9% 99% 2.9% 99% 2.9% 99%

20 4 3 20 A 6.3% 94% 5.7% 94% 5.7% 94%

20 4 3 20 B 1.7% 99% 1.7% 99% 1.7% 99%

20 4 3 40 A 6.9% 94% 6.9% 94% 6.9% 94%

20 4 3 40 B 1.9% 99% 1.8% 99% 1.8% 99%

40 4 1 40 A 7.8% 94% 7.8% 94% 7.8% 94%

40 4 1 40 B 0.8% 100% 0.7% 100% 0.5% 100%

40 4 1 80 A 9.7% 94% 8.8% 95% 8.8% 95%

40 4 1 80 B 0.5% 100% 0.5% 100% 0.5% 100%

40 4 3 40 A 5.5% 96% 5.5% 96% 5.4% 96%

40 4 3 40 B 0.6% 100% 0.6% 100% 0.6% 100%

40 4 3 80 A 8.0% 95% 7.9% 95% 7.9% 95%

40 4 3 80 B 0.5% 100% 0.4% 100% 0.4% 100%

All 2.7% 98% 2.6% 98% 2.6% 98%

6.2.3 CPLNS

Our first experiment aimed to select the best acceptance criterion for our CPLNS. To achieve our goal, we

ran our algorithm with three different solution acceptance criteria: elitism (El), Metropolis (MT), and both

(El+MT) and three different time limits: 1, 3, and 5 minutes. Since the neighborhoods are partially randomized,
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we launched the algorithm 10 times for each instance. Table 5 shows that coupling an elitist strategy with the

Metropolis acceptance criterion leads to the best results independently of the time limit. We therefore used

this acceptance criterion in the remainder of our experiments.

Table 5: Average computational results according to the solution acceptance criterion (testbed G1 - average

over 10 runs)

Time limit
Average gap

1min 3min 5min

El 1.54% 1.33% 1.26%

MT 1.58% 1.34% 1.25%

El + MT 1.54% 1.30% 1.21%

We now discuss more thoroughly the performance of the CPLNS algorithm. Table 6 reports the results

delivered by our CPLNS for each family of instances. The columns in the table report the relative average

mean gap8 (Gap) and the mean percentage of tasks scheduled in the solution9 (%S) running with a 1, 3, and

5 minutes of CPU time limit. These experiments aim to enable a decision-maker to define a CPU time limit

according to the trade-off between resolution time and quality of the results he or she is interested in. To provide

the reader with a different perspective, Table 7 presents the same results grouped by instance characteristic

rather than by family of instances.

Since the gap is computed with respect to upper bounds for the largest instances, assessing the intrinsic

quality of the CPLNS using only the gap is sometimes not conclusive enough. However, the overall average

gaps of 1.2% after 5 minutes show the effectiveness of our approach. We might expect to be closer to the

optimal solutions for the largest instances. The algorithm provides near optimal solutions for all the Type B

instances and all the instances where the number of time periods per day is equal to 2, but the performance

is slightly inferior on Type A instances in which the number of time periods per day is equal to 4. This last

observation can be explained by the fact that the number of plans and thus the model to be considered by

the CP model when repairing the solution is larger. Since we only allow a limited number of backtracks, the

quality of the first decisions taken in our branching strategies strongly impacts the capacity of the algorithm

to improve the current solutions. The algorithm may then sometimes fail building better solutions with the

CP model (in the reparation stage), although it could be possible if it explored the whole search space.

Table 8 reports the relative average mean gap (Mean), the average best gap10(Best), and the average worst

gap11(Worst) for the CPLNS with 5 minutes of CPU time limit (detailed results are available in Table 10 in

Appendix B). The CPLNS exhibits a stable behavior: on average the difference between the best and the worst

solution found over the 10 runs is a reduced 0.68%.

8average of the mean gap found for each instance over 10 runs
9average of the mean percentage of tasks scheduled in the solution found for each instance over 10 runs

10average of the best (minimal) gap found for each instance over 10 runs
11average of the worst (maximal) gap found for each instance over 10 runs
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Table 6: Computational results for the CPLNS (testbed G1 - average over 10 runs)

Family
1min 3min 5min

Gap %S Gap %S Gap %S

10 2 1 20 A 0.8% 98% 0.8% 98% 0.8% 98%

10 2 1 20 B 0.0% 100% 0.0% 100% 0.0% 100%

10 2 1 40 A 1.0% 100% 0.5% 100% 0.4% 100%

10 2 1 40 B 0.0% 100% 0.0% 100% 0.0% 100%

10 2 3 20 A 0.8% 99% 0.7% 99% 0.6% 99%

10 2 3 20 B 0.0% 100% 0.0% 100% 0.0% 100%

10 2 3 40 A 1.5% 99% 1.1% 99% 1.0% 99%

10 2 3 40 B 0.1% 100% 0.1% 100% 0.0% 100%

20 2 1 40 A 1.4% 99% 1.0% 99% 0.9% 99%

20 2 1 40 B 0.1% 100% 0.0% 100% 0.0% 100%

20 2 1 80 A 3.1% 98% 2.5% 99% 2.2% 99%

20 2 1 80 B 0.1% 100% 0.1% 100% 0.1% 100%

20 2 3 40 A 0.9% 99% 0.6% 100% 0.6% 100%

20 2 3 40 B 0.0% 100% 0.0% 100% 0.0% 100%

20 2 3 80 A 0.5% 100% 0.4% 100% 0.3% 100%

20 2 3 80 B 0.1% 100% 0.1% 100% 0.1% 100%

20 4 1 20 A 1.1% 95% 1.1% 95% 1.0% 95%

20 4 1 20 B 0.1% 100% 0.1% 100% 0.1% 100%

20 4 1 40 A 6.2% 94% 5.4% 94% 5.3% 94%

20 4 1 40 B 1.2% 99% 0.5% 100% 0.2% 100%

20 4 3 20 A 3.1% 95% 2.6% 96% 2.0% 96%

20 4 3 20 B 0.3% 100% 0.2% 100% 0.2% 100%

20 4 3 40 A 4.7% 95% 4.0% 95% 3.9% 95%

20 4 3 40 B 0.8% 100% 0.6% 100% 0.5% 100%

40 4 1 40 A 4.7% 96% 4.5% 96% 4.4% 96%

40 4 1 40 B 0.2% 100% 0.2% 100% 0.1% 100%

40 4 1 80 A 5.8% 96% 5.4% 96% 5.4% 96%

40 4 1 80 B 0.3% 100% 0.2% 100% 0.2% 100%

40 4 3 40 A 3.8% 97% 3.1% 98% 2.8% 98%

40 4 3 40 B 0.2% 100% 0.2% 100% 0.1% 100%

40 4 3 80 A 6.3% 95% 5.9% 95% 5.6% 96%

40 4 3 80 B 0.2% 100% 0.2% 100% 0.2% 100%

Table 7: Aggregated computational results for the CPLNS (testbed G1 - average over 10 runs)

Characteristic
1min 3min 5min

Gap %S Gap %S Gap %S

|S| �

#
1

3

1.6% 98% 1.4% 99% 1.3% 99%

1.5% 99% 1.2% 99% 1.1% 99%

|T |
|D|

�

#
2

4

0.7% 99% 0.5% 100% 0.4% 100%

2.4% 98% 2.1% 98% 2.0% 98%

Type �

#
A

B

2.9% 97% 2.5% 97% 2.3% 97%

0.2% 100% 0.2% 100% 0.1% 100%

All 1.5% 99% 1.3% 99% 1.2% 99%

Table 8: Behavior of the CPLNS on the 10 runs (testbed G1 - 5 minutes time limit)

Characteristic Mean Best Worst

|S| �

#
1

3

1.32% 1.04% 1.65%

1.12% 0.76% 1.50%

|T |
|D|

�

#
2

4

0.45% 0.25% 0.66%

2.00% 1.55% 2.50%

Type �

#
A

B

2.33% 1.75% 2.93%

0.12% 0.05% 0.22%

All 1.22% 0.90% 1.58%
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For each approach presented in the article to solve the problem, we report in Table 11 of Appendix B the

gap to the best solution (lower bound) that we were able to compute in all the tests presented in this section.

This gap is computed as: gap � pzLB � zq{|z|, where z is the objective function of the computed solution

and zLB is the best solution (i.e., best lower bound) found throughout our tests. For small sized-instances,

the direct resolution of the ILP formulations gives the best solutions. Nonetheless, for those instances, the

solutions obtained from the resolution of the CP model and from the CPLNS are very close. For medium-sized

and large-sized instances, the CPLNS outperforms the other approaches.

7 Particular case: handling of corrective tasks

Up to this point, we have only considered preventive tasks. Sometimes, however, the technicians may also

have to perform corrective tasks. Our models and methods can be easily adapted to deal with corrective tasks

in a number of practical situations. We describe in this section those adaptations. Needless to say, since our

approaches are conceived to work on a static case we only focus on how to handle non-started corrective tasks

that are known with certitude prior to the beginning of the planning horizon.

7.1 Extending models and methods

First, let us introduce new binary parameters. We denote :bwi � 1 if and only if task i is a corrective task that

shuts down turbine w until it is not entirely completed. Our models require the following minor modifications.

We add constraints (55) and (56) to ILP formulation rP1s.

f tw � 1�
¸

t1PT s.t. t1¤t

ct
1

i ¤ 1 @w PW,@i P I s.t. :bwi � 1,@t P T , (55)

rfdw � 1�
¸

t1PT s.t. t1¤trestd �1

ct
1

i ¤ 2 @w PW,@i P I s.t. :bwi � 1,@d P D, (56)

Constraints (55) and (56) state that a turbine w is unavailable during a time period (or a rest time period) if

there are incomplete corrective tasks related to that turbine.

In a similar vein, we add constraints (57) and (58) to ILP formulation rP2s.

f tw �
¸

pPPi s.t. max
t1PT

at1p  t

:bwixp ¤ 1 @w PW,@i P I,@t P T , (57)

rfdw � ¸
pPPi s.t. max

t1PT
at1p ¤t

rest
d

:bwixp ¤ 1 @w PW,@i P I s.t. :bwi � 1,@d P D, (58)

In the CP model, we replace constraints (48) and (50) by the following constraints:

t ¤ Ci ñ t R F dayw @w PW,@i P I s.t. :bwi � 1,@t P T , (59)��t R ¤
iPI|bwi�1

Ei

�^
�� ©
iPI|:bwi�1

pt ¡ Ciq

�ñ t P F dayw @w PW,@t P T , (60)

ptrestd � 1q ¤ Ci ñ d R F restw @w PW,@i P I, s.t. :bwi � 1,@d P D, (61)�� ©
iPI|rbwi�1

�
ttrestd , trestd � 1u � Ei

��^
�� ©
iPI|:bwi�1

�
trestd � 1 ¡ Ci

��ñ d P F restw

@w PW,@d P D (62)

Constraints (59) and (61) state that a turbine w is unavailable during a time period if there are incomplete

corrective tasks related to that turbine. Constraints (60) and (62) ensure that a turbine is available to produce
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electricity during a time period if and only if i) no preventive tasks requiring its shutdown are scheduled during

the time period and ii) if all the corrective tasks are completed. Note that by adapting the CP model to work

with corrective tasks, the CPLNS is also automatically adapted to this new scenario.

7.2 Practical applications

Our adapted models and CPLNS can be used to deal with different practical situations. For illustration

purposes, in the remainder of this subsection we briefly discuss two of them.

S1 - corrective first, preventive second: As mentioned earlier, in the wind energy industry, more often

than not, the maintenance is performed by contractors rather than by the wind farm owners. Therefore, it is

difficult for maintenance companies to delay the execution of corrective tasks without generating a conflict with

their customers (specially if the breakdown impedes energy production). In these situations, corrective tasks

are simply scheduled first and, usually, as soon as possible. Our approaches can easily deal with this situation.

The decision maker only needs to solve two independent problems (one for the corrective tasks followed by one

for the preventive tasks), adjusting on the second the parameters πtr and ltr according to the pre-established

crew assignments. We can also decide to reconsider these assignments when scheduling the preventive tasks.

To this end, for the second stage of the optimization, we add to set I the corrective tasks along with the

preventive tasks, but we enforce the former to be scheduled as found during the first stage of the optimization.

S2 - corrective + preventive: In some cases, scheduling corrective tasks as early as possible tasks may lead

to bad overall decisions. Indeed, if the wind speed is too low to produce electricity for many consecutive days,

there is some flexibility to schedule these tasks latter and use the resources (i.e., technicians) to perform tasks

that would be optimally scheduled at the beginning of the planning horizon. For instance, assume that a given

corrective task has a duration of 3 time periods and induces a very small loss of revenue (or none at all) if we

wait, say, two time periods to perform it (the forecasted wind is very low from the beginning of the time horizon

until the sixth time period). Assume also that there is a preventive maintenance task to perform at another

location where the revenue is very low for the two first time periods but very large after this. If the two tasks

cannot be executed in parallel (e.g., lack of technicians), it is probably more profitable to schedule first the

preventive task and then the corrective task. In this case, the decision maker may want to combine corrective

and preventive tasks and solve a unique problem. This case can be tackled simply by adding both preventive

and corrective tasks to set I and running our models and/or CPLNS with the modifications introduced above.

7.3 Some results

To assess the impact of considering corrective tasks in the performance (quality and speed) of our approaches

we conducted experiments on a new set of instances mixing preventive and corrective tasks. It is worth recalling

that the objective of our research is not to compare managerial practices in maintenance scheduling; therefore

we limited our experiments in this section to practical situation S2. We believe this situation is the most general

and difficult to solve from a purely computational performance perspective. Moreover, to a certain extent, we

have already handled the practical situation S1 in the experiments described in the previous section. Our new

testbed, denoted G2, is composed from the same families than those in G1. In the instance generation process,

the probability of generating a corrective task was set equal to 5%. Nonetheless, we ensured that each instance

in this testbed contains at least one corrective task. If a task is corrective, it can prevent more than one turbine

to produce electricity with a probability of 7.5%. Similarly than for testbed G1, the penalty of postponement is

set in such a way that postponing a task is never profitable. Notice that the penalty is larger than for testbed

G1 as the maximal loss of revenue than can be induced by the scheduling of a corrective task is larger.

In general the results obtained in G2 confirm our findings. Solving directly the ILP formulations is just

suitable for small-sized instances, while solving the CP formulation gives solutions with a reduced gap. However,
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the CPLNS remains the best overall approach. Table 9 summarizes the results. Detailed results for each family

of instances can be found in Appendix B.2.

Table 9: Aggregated computational results for the four different approaches (testbed G2)

Characteristic

[P1] [P2] CP CPLNS

3h 3h 5min 5min

Gap %S #Opt Time Gap %S #Opt Time Gap %S Gap %S

|S| �

#
1

3

150% 81% 9/80 3,976 200% 62% 31/80 1,516 7.0% 98% 4.1% 98%

83% 80% 15/80 3,351 92% 58% 38/80 1,665 7.2% 99% 2.9% 99%

|T |
|D|

�

#
2

4

17% 94% 21/80 3,757 29% 88% 52/80 1,431 1.5% 99% 0.5% 100%

196% 70% 3/80 2,382 205% 48% 17/80 2,109 13% 97% 6.5% 98%

Type �

#
A

B

174% 72% 5/80 5,572 181% 59% 17/80 1,458 13% 97% 6.9% 98%

50% 90% 19/80 3,062 82% 64% 52/80 1,644 1.5% 100% 0.1% 100%

All 118% 81% 24/160 3,585 150% 60% 69/160 1,598 7.1% 98% 3.5% 99%

8 Conclusions and research perspectives

In this study, we introduced a new and challenging maintenance scheduling problem faced by the wind power

industry. Some of the special features of this problem are the existence of alternative execution modes for each

task and the individual management of the technicians through a space-time tracking. We also introduced an

original objective function, far from the classical scheduling concerns, linking the revenue to the periods during

which the maintenance operations are performed.

We proposed three mathematical formulations based on both constraint and integer linear programming.

Computational results indicate that, generally, the models cannot be directly used to solve realistic instances.

ILP models are unable to solve to optimality most of the instances after 3 hours and the gap is still very large

for many families of instances. Nevertheless, we showed that an ILP compact formulation using the notion of

plans outperforms the more natural ILP formulation of the problem. Moreover, results indicate that the CP

model produces high quality solutions for small-sized instances. However, it does not yield very good results,

in general, for the majority of medium and large-sized instances. The performance of our CP model actually

seems to be affected by symmetry issues, especially on the technicians assignment.

To provide an alternative solution approach, we developed a CP-based large neighborhood search. We

successfully adapted some destroy operators to this new problem and proposed some new ones. Moreover, we

designed several branching strategies to effectively repair solutions solving a CP model with fixed variables. The

CPLNS shows an average gap of 1.2% with respect to the optimal solutions if known, or to the best known upper

bounds otherwise. It provides near optimal solutions when the technician-to-work ratio is regular, whereas,

when it is tight, the gap increases as the problem size (number of tasks and number of time periods per day)

grows. Nonetheless, the computational results demonstrate the efficiency of the proposed method. We have

also showed how our method can also handle corrective tasks known prior to the beginning of the planning

horizon.

As a perspective, we could extend the definition of the problem to handle the case of technicians working

different shifts. Two different approaches could be considered: either one allows tasks to be initiated by some

technicians and finished by other technicians (since tasks can last more than the duration of a shift) or one

restricts tasks to be performed by technicians working the same shift. To our knowledge, the former is not

common in practice, so the latter may be more relevant. The second proposition is compatible – with slight

adjustments – with the compact formulation rP2s. Indeed, every plan would be associated to a single shift (we

would not create any plan that overlaps two different shifts) and we would restrict technicians to be assigned

to plans corresponding to their shift. The CPLNS would require a broader change as the duration of a task

would depend on the number of days it overlaps (the duration would become dependent of the starting time
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in addition to the execution mode). Moreover, we could consider the case of tasks requiring technicians with

complementary skills.

Future works also include the development of efficient exact approaches. One can observe an intrinsic

decomposition of the problem into a scheduling problem on the one hand and a resource management problem

on the other hand. This leads us to investigate a branch-and-check approach as well as cut generation processes.

Last but not least, we have only addressed the deterministic problem, but, as a matter of fact, the wind speed

(and therefore the revenue) is stochastic by nature.
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Malapert, A., Guéret, C., and Rousseau, L.-M. (2012). A constraint programming approach for a batch processing

problem with non-identical job sizes. European Journal of Operational Research, 221(3):533 – 545.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers and Operations Research,

34(8):2403–2435.

Pisinger, D. and Ropke, S. (2010). Large Neighborhood Search. In Gendreau, M. and Potvin, J.-Y., editors, Handbook

of Metaheuristics, volume 146 of International Series in Operations Research & Management Science, pages 399–419.

Springer US.

Prud’homme, C., Fages, J.-G., and Lorca, X. (2014). Choco3 Documentation. TASC, INRIA Rennes, LINA CNRS

UMR 6241, COSLING S.A.S.

Rodriguez, J. (2007). A constraint programming model for real-time train scheduling at junctions. Transportation

Research Part B: Methodological, 41(2):231–245.

Ropke, S. and Pisinger, D. (2006). An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery

Problem with Time Windows. Transportation Science, 40(4):455–472.

Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. Prin-

ciples and Practice of Constraint Programming-CP 1998, pages 417–431.

25



A Notations

Time

– T : time horizon

– D: set of days

– Td: set of time periods that belong to day d P D

– trestd : last time period t P T before the rest time period following day d P D

Locations

– L: set of locations (wind farms and technician home depots)

– δll1 �

#
1 if locations l and l1 are compatible

0 otherwise.

Technicians

– S: set of skills

– R: set of technicians

– λrs �

#
1 if technician r P R masters skill s P S,

0 otherwise.

– πtr �

#
1 if technician r P R is available during time period t P T ,

0 otherwise.

– ltr: location of technician r P R when he or she is not available during time period t P tt1 P T , πt1r � 1u

Tasks

– I: set of tasks to be performed on the turbines

– ovpIq: set of sub-sets of non-overlapping tasks

– li: location where task i P I has to be performed

– Mi: set of execution modes for task i P I

– m0
i : execution mode related to the postponement of task i P I (m0

i PMi)

– qim: number of technicians required during each time period to perform task i P I in mode m PMi

(qim0
i
� 0)

– dim: duration of task i P I if performed in mode m PMi (dim0
i
� 0)

– γti �

#
1 if task i P I can be executed during t P T ,

0 otherwise.

– si: skill required to perform task i P I

– oi: penalty if task i P I is postponed.

Turbines

– W: set of turbines

– bwi �

$''&''%
1 if the execution of task i P I shuts down the turbine w PW

when technicians are effectively working on i,

0 otherwise.
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– rbwi �
$''&''%

1 if the execution of task i P I shuts down the turbine w PW
during the rest time periods it overlaps,

0 otherwise.

– gtw: revenue if turbine w PW can produce electricity during time period t P T

– rgdw: revenue if turbine w PW can produce electricity during the rest time period following day d P D

Plans

– P: set of plans

– Pi: set of plans involving task i P I

– ip: task involved in plan p P P

– atp �

#
1 if task ip is executed during time period t P T
0 otherwise.

– qp: number of required technicians if plan p P P is selected

– Rp � Rip

– bwp � bwip

– rbwp � rbwip
– op � oip

B Detailed computational results

B.1 Testbed G1
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Table 10: Behavior of the CPLNS on the 10 runs (testbed G1 - 5 minutes time limit)

Family Mean Best Worst

10 2 1 20 A 0.75% 0.70% 0.87%

10 2 1 20 B 0.03% 0.00% 0.03%

10 2 1 40 A 0.42% 0.11% 0.95%

10 2 1 40 B 0.02% 0.01% 0.03%

10 2 3 20 A 0.60% 0.37% 0.79%

10 2 3 20 B 0.01% 0.01% 0.03%

10 2 3 40 A 1.05% 0.22% 1.78%

10 2 3 40 B 0.05% 0.01% 0.08%

20 2 1 40 A 0.86% 0.20% 1.68%

20 2 1 40 B 0.04% 0.02% 0.09%

20 2 1 80 A 2.24% 1.49% 2.92%

20 2 1 80 B 0.06% 0.04% 0.08%

20 2 3 40 A 0.58% 0.47% 0.70%

20 2 3 40 B 0.02% 0.01% 0.04%

20 2 3 80 A 0.34% 0.26% 0.43%

20 2 3 80 B 0.07% 0.05% 0.09%

20 4 1 20 A 1.03% 0.96% 1.28%

20 4 1 20 B 0.09% 0.01% 0.21%

20 4 1 40 A 5.30% 4.52% 5.81%

20 4 1 40 B 0.24% 0.09% 0.87%

20 4 3 20 A 2.02% 1.03% 3.52%

20 4 3 20 B 0.23% 0.04% 0.42%

20 4 3 40 A 3.86% 2.78% 4.35%

20 4 3 40 B 0.46% 0.17% 0.71%

40 4 1 40 A 4.37% 4.26% 4.50%

40 4 1 40 B 0.13% 0.07% 0.20%

40 4 1 80 A 5.38% 3.99% 6.67%

40 4 1 80 B 0.23% 0.16% 0.30%

40 4 3 40 A 2.79% 1.71% 3.95%

40 4 3 40 B 0.12% 0.06% 0.19%

40 4 3 80 A 5.62% 4.86% 6.76%

40 4 3 80 B 0.17% 0.12% 0.22%

All 1.22% 0.90% 1.58%
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Table 11: Gap to the best lower bound according to the different approaches (testbed G1)

Family
[P1] [P2] CP CPLNS

3h 3h 5min 5min

10 2 1 20 A 1.1% 0.0% 0.9% 0.4%

10 2 1 20 B 0.0% 0.0% 0.4% 0.0%

10 2 1 40 A 7.0% 0.1% 2.4% 0.4%

10 2 1 40 B 0.0% 0.0% 0.4% 0.0%

10 2 3 20 A 1.4% 0.0% 1.8% 0.4%

10 2 3 20 B 0.0% 0.0% 0.3% 0.0%

10 2 3 40 A 9.6% 0.0% 1.8% 1.0%

10 2 3 40 B 0.0% 0.0% 0.8% 0.0%

20 2 1 40 A 40.9% 1.0% 1.6% 0.1%

20 2 1 40 B 1.6% 0.0% 0.3% 0.0%

20 2 1 80 A 24.9% 432.2% 1.0% 0.0%

20 2 1 80 B 6.2% 40.0% 0.2% 0.0%

20 2 3 40 A 5.7% 0.4% 1.1% 0.1%

20 2 3 40 B 0.0% 0.0% 0.2% 0.0%

20 2 3 80 A 22.4% 47.5% 0.7% 0.0%

20 2 3 80 B 4.2% 78.4% 0.2% 0.0%

20 4 1 20 A 4.3% 0.5% 1.1% 0.0%

20 4 1 20 B 0.1% 0.0% 0.9% 0.1%

20 4 1 40 A 152.2% 256.4% 4.0% 0.0%

20 4 1 40 B 12.6% 104.7% 2.6% 0.0%

20 4 3 20 A 6.2% 0.9% 4.0% 0.4%

20 4 3 20 B 0.7% 0.0% 1.7% 0.2%

20 4 3 40 A 403.6% 497.5% 3.1% 0.2%

20 4 3 40 B 204.1% 64.7% 1.8% 0.4%

40 4 1 40 A 138.0% 295.7% 3.3% 0.0%

40 4 1 40 B 157.0% 429.8% 0.4% 0.0%

40 4 1 80 A 40.6% 4777.1% 3.2% 0.0%

40 4 1 80 B 38.7% 330.1% 0.3% 0.0%

40 4 3 40 A 165.1% 897.5% 2.5% 0.0%

40 4 3 40 B 13.4% 86.9% 0.5% 0.0%

40 4 3 80 A 39.3% 2731.3% 2.1% 0.0%

40 4 3 80 B 23.8% 3893.2% 0.3% 0.0%

All 47.7% 467.7% 1.4% 0.1%
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B.2 Testbed G2

Table 12 reports the results obtained when solving the ILP and CP models and when running the CPLNS. To

assess the quality of the results, it is noteworthy that large values for the gap are essentially associated with

Type A instances. Because the technicians-to-work ratio is tighter, it is more difficult to schedule all the tasks.

Scheduling one additional task would drastically reduce this gap.

From the results, we do not see any significant impact of adding corrective tasks on the difficulty to solve

the instances. It is not so surprising as corrective tasks usually need to be scheduled at the beginning of

the planning horizon in order not to induce too much lost revenue. For our models, this might implies less

symmetry on the scheduling of the tasks. Moreover, we can draw identical conclusions on the efficiency of the

approaches. Solving the ILP formulations does not lead to an efficient exact approach as only the small-sized

instances can be optimally solved, whereas solving the CP formulation yields good results for Type B instances.

The CPLNS gives the overall best results and near optimal solutions for small and medium-sized instances.

Lastly, the difficulty of the instances seems also to be related to the same characteristic as for testbed G1.

Table 12: Computational results for the four different approaches (testbed G2)

Family

[P1] [P2] CP CPLNS

3h 3h 5min 5min

Gap %S #Opt Time Gap %S #Opt Time Gap %S Gap %S

10 2 1 20 A 2.5% 98% 1/5 9,877 4.9% 100% 4/5 991 3.0% 98% 1.8% 99%

10 2 1 20 B 0.01% 100% 4/5 2,082 - - 5/5 110 1.2% 100% 0.01% 100%

10 2 1 40 A 17% 95% 0/5 0.2% 100% 1/5 315 2.9% 99% 1.2% 99%

10 2 1 40 B 2.6% 98% 2/5 6,083 - - 5/5 970 1.8% 99% 0.04% 100%

10 2 3 20 A 0.01% 100% 4/5 4496 - - 5/5 82 0.7% 100% 0.2% 100%

10 2 3 20 B - - 5/5 3,110 - - 5/5 25 1.2% 100% 0.02% 100%

10 2 3 40 A 48% 79% 0/5 0.01% 100% 4/5 4,767 4.0% 99% 0.7% 100%

10 2 3 40 B 0.1% 100% 1/5 738 - - 5/5 2,259 0.7% 100% 0.1% 100%

20 2 1 40 A 20% 91% 0/5 2.5% 99% 0/5 - 3.4% 98% 1.8% 99%

20 2 1 40 B 0.1% 100% 1/5 2,929 - - 5/5 987 0.1% 100% 0.01% 100%

20 2 1 80 A 62% 89% 0/5 70% 78% 0/5 - 2.5% 99% 1.5% 99%

20 2 1 80 B 12% 97% 0/5 0.1% 100% 2/5 1,598 0.4% 100% 0.1% 100%

20 2 3 40 A 6.8% 98% 0/5 1.2% 99% 1/5 353 0.6% 100% 0.1% 100%

20 2 3 40 B 0.04% 100% 3/5 3,776 - - 5/5 732 0.8% 100% 0.03% 100%

20 2 3 80 A 24% 89% 0/5 87% 59% 0/5 - 1.4% 99% 0.8% 100%

20 2 3 80 B 7.4% 97% 0/5 - - 5/5 4,337 0.1% 100% 0.03% 100%

20 4 1 20 A 5.0% 94% 0/5 1.6% 96% 0/5 - 3.9% 95% 2.1% 95%

20 4 1 20 B 0.5% 99% 0/5 - - 5/5 3,166 2.9% 98% 0.1% 99%

20 4 1 40 A 185% 18% 0/5 74% 56% 0/5 - 14% 94% 7.0% 95%

20 4 1 40 B 8.4% 96% 1/5 2,485 0.30% 100% 3/5 3,680 1.8% 99% 0.1% 100%

20 4 3 20 A 3.3% 96% 0/5 3.5% 95% 2/5 334 6.9% 96% 2.2% 97%

20 4 3 20 B 2.2% 100% 2/5 2,331 - - 5/5 183 3.5% 100% 0.7% 99%

20 4 3 40 A 444% 48% 0/5 94% 20% 0/5 - 69% 95% 29% 96%

20 4 3 40 B 47% 75% 0/5 0.7% 99% 1/5 5,078 6.4% 99% 0.2% 100%

40 4 1 40 A 1,308% 30% 0/5 1,368% 0% 0/5 - 15% 95% 9.2% 95%

40 4 1 40 B 66% 73% 0/5 0.4% 100% 1/5 2,325 1.0% 100% 0.1% 100%

40 4 1 80 A 91% 73% 0/5 268% 0% 0/5 - 58% 94% 41% 95%

40 4 1 80 B 355% 84% 0/5 176% 0% 0/5 - 0.5% 100% 0.2% 100%

40 4 3 40 A 249% 16% 0/5 53% 77% 0/5 - 6.3% 97% 2.9% 98%

40 4 3 40 B 55% 77% 0/5 1.5% 99% 0/5 - 1.0% 100% 0.1% 100%

40 4 3 80 A 139% 76% 0/5 256% 0% 0/5 - 11% 95% 9.1% 96%

40 4 3 80 B 60% 88% 0/5 283% 0% 0/5 - 0.9% 100% 0.1% 100%

All 118% 81% 24/160 3,585 150% 60% 69/160 1,598 7.1% 98% 3.5% 99%

For each approach, we also report in Table 13 the gap to the best solution that we were able to compute in

our tests. We find similar results as for testbed G1. Globally, the CPLNS outperforms the other approaches.
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Table 13: Gap to the best lower bound according to the different approaches (testbed G2)

Family
[P1] [P2] CP CPLNS

3h 3h 5min 5min

10 2 1 20 A 1.0% 0.0% 2.0% 0.8%

10 2 1 20 B 0.0% 0.0% 1.1% 0.0%

10 2 1 40 A 16.8% 0.0% 2.7% 1.0%

10 2 1 40 B 1.6% 0.0% 1.8% 0.0%

10 2 3 20 A 0.0% 0.0% 0.7% 0.2%

10 2 3 20 B 0.0% 0.0% 1.2% 0.0%

10 2 3 40 A 47.7% 0.0% 4.0% 0.7%

10 2 3 40 B 0.1% 0.0% 0.7% 0.1%

20 2 1 40 A 18.0% 0.7% 1.5% 0.0%

20 2 1 40 B 0.0% 0.0% 0.1% 0.0%

20 2 1 80 A 60.0% 68.7% 0.9% 0.0%

20 2 1 80 B 11.8% 0.0% 0.3% 0.0%

20 2 3 40 A 6.8% 0.9% 0.6% 0.0%

20 2 3 40 B 0.0% 0.0% 0.8% 0.0%

20 2 3 80 A 23.2% 86.0% 0.6% 0.0%

20 2 3 80 B 7.4% 0.0% 0.1% 0.0%

20 4 1 20 A 3.5% 0.1% 2.4% 0.6%

20 4 1 20 B 0.5% 0.0% 2.9% 0.1%

20 4 1 40 A 178.6% 68.3% 6.9% 0.0%

20 4 1 40 B 6.7% 0.1% 1.7% 0.0%

20 4 3 20 A 1.2% 0.0% 4.7% 0.1%

20 4 3 20 B 1.3% 0.0% 3.5% 0.7%

20 4 3 40 A 380.8% 90.2% 28.2% 0.0%

20 4 3 40 B 47.2% 0.5% 6.4% 0.1%

40 4 1 40 A 1241.2% 1321.5% 4.5% 0.0%

40 4 1 40 B 65.6% 0.3% 1.0% 0.0%

40 4 1 80 A 74.6% 255.6% 8.6% 0.0%

40 4 1 80 B 353.6% 175.7% 0.3% 0.0%

40 4 3 40 A 243.9% 49.3% 3.3% 0.0%

40 4 3 40 B 55.2% 1.5% 1.0% 0.0%

40 4 3 80 A 115.2% 244.3% 1.8% 0.0%

40 4 3 80 B 60.1% 282.4% 0.7% 0.0%

All 94.5% 82.7% 3.0% 0.1%
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C Instance generation

An instance of the problem is primarily characterized by:

• a finite time horizon (a finite number of time periods)

• a number of time periods per day (yielding the number of days)

• a set of locations (wind farms + home depot)

• a set of wind turbines distributed over the wind farms

• a set of maintenance tasks to perform at the different locations and that impact the availability of the

turbines

• a set of technicians to perform the tasks

• wind speed for each time period and location

• postponing penalties

The generator is based on the following parameters:

• nT , nD, nI , nS (length of time horizon, number of days, number of wind farms, number of tasks, and

number of skills)

• DnL: probability distribution of the number of locations

• Dlxy: probability distribution of the coordinates associated with each location

• DnLW : probability distribution of the number of turbines per location

• DnWI : probability distribution of the number of tasks per turbine

• ∆lmin: minimum distance between two locations

• ∆rmax: maximum distance between two locations such that they can be visited by the a technician during

the same day

• K: set of all types of preventive tasks that we consider

• ppkq: probability of generating a task of type k P K

• Diimpactpkq: probability distribution of the impact of each type of preventive task on the wind turbines

• Didurpkq: probability distribution of the duration of each type of preventive task

• Direqpkq: probability distribution of the number of technicians that can perform each type of preventive

task during any time period

• Dr#skills: probability distribution of the number of skills mastered by a technician

• DrPpunvq: probability that a technician has some unavailability time periods during the time horizon

• Dr#unv: probability distribution of the number of time periods during which a technician is unavailable

• Drdunv : probability distribution of the duration of the unavailability of a technician (in man-hours)

• Dwpower: probability distribution of the nominal power (in kW) of each turbine
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• pφ: average wind speed on each wind farm

• Υsafety
max : maximum wind speed allowed to perform a task

• ∆lmax: maximum distances for the spatial correlation of the wind speed

• δ: number of values used in the moving average for the time-wise dependency between the wind speeds

• α: correlation factor between wind speed

We generate an instance following multiple steps. First of all, the length of time horizon, the number of days,

the number of tasks, and the number of skills are input values. This yields directly the set T of time periods

and the set D of days.

We then start the generation of an instance by building the set L of locations whose cardinality is set by

sampling the DnL distribution. According to the distance ∆lmin, we then generate the coordinates of each

location by sampling the Dlxy distribution. Based on these coordinates and on the distance ∆rmax, we compute

the parameters pδll1qpl,l1qPL2 that enable to define the daily location-based incompatibility constraints.

Afterwards, we built the set W of wind turbines. To this end, according to the target number of tasks,

we start by generating a number of wind turbines per locations by sampling the DnLW distribution. For each

location where there is at least one wind turbine (i.e., this location is a wind farm), we then generate a nominal

power by sampling the Dwpower distribution and we set the nominal power Pw equal to this latter value for

each wind turbine w PW of the wind farm.

After that, we call procedure genTaskspq to create the set I of tasks. Notice that for each task i P I we

build the set Mi of execution modes such that it meets the two following requirements:

• @m,m1 PMi, qim � qim1 ,

• @m,m1 PMi, qim   qim1 Ñ dim ¡ dim1 .

Arbitrarily, we build ovpIq considering that overlapping tasks are forbidden on the same turbine. Notice

that, according to some experts in the field, it is reasonably realistic to only consider these subsets. After the

generation of the tasks, we generate the set R of technicians using procedure genTechnicianspq.

The last part of the generator concerns the parameters related to the objective function. For the sake of

convenience, we introduce the set T � of all time periods formed by the union of set T and the set of rest

time periods that occur between each day. More specifically, we include a rest time period after every
|T |
|D|

consecutive time periods of T .

As it concerns the wind speed at hub height, the main purpose is to use realistic values. First, we generate

wind speed φ̄tl for every location l P L and every time period t P T � using a Rayleigh distribution with a scale

parameter equal to pφc 2

π
(so that the expected wind speed is pφ). Since space correlation can be significant,

we compute a corrected wind speed ¯̄φtl for every location l and every time period t as follows:

¯̄φtl �

°

l1PL
s.t. ∆ll1 ∆lmax

p∆lmax �∆ll1q φ̄
t
l1

°

l1PL
s.t. ∆ll1 ∆lmax

p∆lmax �∆ll1q
.

Wind speeds were generated independently from a time period to another one. However, this time-wise

independence assumption is unlikely to be verified in practice. To smooth out the speed-values, we use a

δ-weighted moving average that yields wind speed φtl according to the following formula:

φtl �

¯̄φtl �
maxp0,t�1q°

t1�maxp0,t�δq

αt�t
1

φt
1

l

1�
maxp0,t�1q°

t1�maxp0,t�δq

αt�t1
.
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Procedure genTasks

1 I ÐH

2 for i P t1, ..., nIu do

; /* Creation of a new task i */

3 Associate randomly a wind turbine to task i by sampling the DnWI distribution

4 Define the type k P K of the task according to the probabilities ppkq

5 Define the impact of the task on the wind turbines by sampling the Diimpactpkq distribution

6 Draw randomly the skill si required by task i from the set S
7 Set the minimal (qMIN

i ) and the maximal (qMAX
i ) numbers of technicians that can perform task i

during any given time period by sampling the Direqpkq Dn
W
I

8 Generate a task duration di by sampling the Didurpkq distribution

9 nMi
Ð qMAX

i � qMIN
i � 1

10 Mi ÐH

; /* dprevi : duration of the last executing mode created for task i */

11 for m P t1, ..., nMiu do

12 Create executing mode m for which task i requires qMi technicians and lasts dMi time periods

with:

13 qMi Ð qMAX �m� 1

; /* We assume that the duration of a working day is 8 hours. */

14 dMi � maxpdprevi � 1, t
di|T |

8|D|qMi
� 0.5u

15 Add the created executing mode to Mi

16 dprevi Ð dMi

17 end

18 Add the created task i to I
19 end

The resulting values are rounded to the nearest tenth. From our perspective, they compare well to realistic

data.

Afterwards, for each task i P I and every time period t P T , we compute the binary parameter rϑti equal to 1

if and only if φtl   Υsafety
max (i.e. the task i can be scheduled during time period t according to safety concerns).

Arbitrarily, we set each parameter ϑti equal to 1 for every task i and every time period t. We point out here

that this choice makes the instances more complicated to solve as there is a wide flexibility to schedule the

maintenance operations. This also matches field observations.

The last step consists in computing the revenue value gtw for every wind turbine w P W during each time

period t P T �. We compute the revenue from the nominal power Pw of the wind turbine and from the wind

speed φtl . We also use an estimation hoursptq of the number of hours during every time period t. More

specifically, we compute the revenue gtw generated by each turbine w PW that is available during time period

t P T as follows:

gtw � 0.08 � Pw � hoursptq � CF pφ
t
lwq.

where

• 0.08: is an approximation to the selling price in euros of 1 kWh of wind energy (this selling price is

guaranteed for the next 10 years in France).

• hoursptq: estimation of the number of hours during time period t P T �
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Procedure genTechnicians

1 Let dunv be the average number of time periods during which a technician is not available according to

Dr#unv and Drdunv .

2 RÐH

3 for s P t1, ..., nSu do

; /* compute the average total request of the tasks RSavgs */

4 RSavgs �
°
iPI
si�s

1

|Mi|

°
mPMi

qim

; /* ns minimum number of technicians mastering skill s */

5 ns Ð ε �
RSavgs

dunv

6 for r P t1, ..., nsu do

7 Create a technician mastering skills s and generate his or her unavailability time periods by

sampling the Dr#unv and Drdunv distributions

8 Add this technician to R
9 end

10 end

11 for r P |R| do

12 Sample the Dr#skills distribution to generate the number of skills mastered by technician r

13 According to the previous value, generate additional skills for technician r

14 end

• Pw: nominal power of wind turbine w PW

• φtlw : wind speed during time period t at the location of turbine w PW

• CF pφq: the ratio of the net electricity generated according to a wind speed equal to φ to the energy

that could have been generated at full-power operation (this ratio is given by a piecewise linear function

estimated from real data)

Finally, we compute a single postponing penalty across all tasks. This penalty is equal to the maximum

loss of revenue that can be generated by the scheduling of a task of I plus one. With this definition, we

almost always (if not always) ensure that postponing a task is non-profitable. With this penalty we therefore

almost ensure to schedule the maximum number of tasks according to the total number of technicians and their

availability. This is quite in line with the practice in the field.

Table 14 presents the detail parameter setting used in the generation process.
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