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Solving a wind turbine maintenance scheduling problem

Driven by climate change mitigation efforts, the wind energy industry has significantly increased in recent years. In this context, it is essential to make its exploitation cost-effective. Maintenance of wind turbines therefore plays an essential role reducing breakdowns and ensuring high productivity levels. In this paper we discuss a challenging maintenance scheduling problem rising in the onshore wind power industry. While the research in the field primarily focuses on condition-based maintenance strategies, we aim to address the problem on a short-term horizon considering wind predictions and fine-grained resource management.

The objective is to find a maintenance plan that maximizes the revenue from the electricity production of the turbines while taking into account multiple task execution modes and task-technician assignment constraints. To solve this problem, we propose a constraint programming-based large neighborhood search (CPLNS) approach. We also propose two integer linear programming formulations that we solve using a commercial solver. We report results on randomly generated instances built with input from wind forecasting and maintenance scheduling software companies. The CPLNS shows an average gap of 1.2% with respect to the optimal solutions if known, or to the best upper bounds otherwise. These computational results demonstrate the overall efficiency of the proposed metaheuristic.

Introduction

With a 63-Gigawatts (GW) increase in the global installed capacity in 2015 (and a total of about 432 GW), wind energy is currently the world's fastest-growing source of electricity1 . Boosted by the ever-increasing environment awareness and the constantly-decreasing cost of turbines, wind power is expected to account for up to 20% of the global electricity production by 2050 1 (vs. 2.4% in 2015). The Paris Agreement (resulting from the 2015 United Nations Climate Change Conference -COP21) is in this respect a clear evidence that the renewable energy sector will keep growing in order to reduce greenhouse gas emissions. In this context, efficient wind turbine maintenance planning and scheduling becomes a critical tool to prevent unnecessary downtime and excessive operational costs.

Maintenance planning and scheduling has been widely studied in different industrial contexts (see for example [START_REF] Budai | Maintenance and Production: A Review of Planning Models[END_REF] for a survey). In general, however, solutions remain sector-specific. In the particular case of traditional electricity generation plants, the problem is concerned with the definition of time intervals for preventive maintenance of generating units under financial (cost minimization, profits maximization) and/or reliability (leveling, maximization of the net reserves) considerations. By now, the literature reports on a number of solution approaches to tackle these problems. We refer the reader to [START_REF] Froger | Maintenance scheduling in the electricity industry: A literature review[END_REF] for a comprehensive review. Unfortunately, these approaches are inapplicable to the wind power industry. One of the main reasons is that wind farms are usually owned by investment funds, and the operation and the maintenance of the turbines are often outsourced to a third party. As it stands, the stakeholders and the contractors may potentially face conflicting objectives: maximize energy production vs. minimize maintenance costs. Therefore, service contracts are set between these two entities. They include incentives and penalties if some target values (on the production and/or the availability factor 2 of wind turbines) are reached or not. Another specificity of the wind power industry is that maintenance decisions are not correlated with the electricity demand, since producers are mostly not required to satisfy production goals fixed in advance. The objective then tends to be the maximization of the efficiency of the wind turbines. Last but not least, the wind power production is inherently volatile, and the meteorological conditions have a great impact on the maintenance plan and can induce last-minute adjustments. In summary, the aim of maintenance companies is to schedule the maintenance in order to meet their contract commitments. Although sometimes it is not their top priority, producing maintenance plans for which the production of the turbines is maximized, while taking into consideration their internal constraints, is a meaningful strategy to avoid interference with the stakeholders and to potentially increase their revenue. If the maintenance is not outsourced, this objective is all the more relevant.

Maintenance optimization for wind turbines has only recently started to received attention in the literature (we refer the reader to [START_REF] Ding | Maintenance modeling and optimization for wind turbine systems: A review[END_REF] for a survey). This stream of research primarily focuses on the definition of maintenance policies according to failure models or/and condition monitoring. Although existing studies precisely define time intervals during which the maintenance has to be performed in order to reduce the loss of energy production, they do not consider a fine-grained resource management. Therefore, the obtained results are used more as guidelines to define maintenance time windows, than as an actual maintenance plan.

In this regard, they can be used to set the service contracts (e.g., preventive maintenance has to be performed every six months on each turbine).

Fine-grained resource management implies, among others, considering a multi-skilled workforce, coping with individual or global resource unavailability time periods (e.g., vacations), and taking into account resource location-based constraints. Dealing with these issues requires considering a short-term planning horizon. In this context, existing studies allow planners to define the tasks to be performed during the planning horizon and to set the maintenance time window constraints. Nonetheless, the maintenance scheduling problem still contains a degree of operational flexibility. Considering fine-grained resource management then aims to build detailed maintenance plans that can be used on a daily or weekly basis. These latter provide more accurate estimates of turbine downtimes and loss of production; two metrics that can otherwise be underestimated, which may lead to significant prediction errors. Indeed, producing a maintenance plan in which no operations generate a loss of production (e.g., is scheduled during time periods where the wind speed is below 4 m.s ¡1 , which is too low to produce electricity) can almost never be achieved in practice, since human resources are a major bottleneck.

To our knowledge, [START_REF] Kovács | A system for the detailed scheduling of wind farm maintenance[END_REF] is the only study considering fine-grained resource management while scheduling maintenance operations in onshore wind farms on a one-day time horizon. These authors aimed to minimize lost production due to maintenance and failures. They introduced incompatibilities between pairs of tasks and managed the assignment of teams of skilled workers to tasks. They modeled the problem as an integer linear program and solved it using a commercial solver. They performed experiments on instances with up to 50 tasks.

In this paper, we introduce a maintenance scheduling problem with resource management rising in the onshore wind power industry. Our problem differs from that introduced by [START_REF] Kovács | A system for the detailed scheduling of wind farm maintenance[END_REF] in several ways. First, we manage resources (i.e., technicians) individually rather than by teams. Second, we consider multiple task execution modes that impact the task duration as well as the resource requirements [START_REF] De Reyck | Local search methods for the discrete time/resource trade-off problem in project networks[END_REF]. Third, we present an alternative way to consider technician transfer times by introducing locationbased incompatibility constraints between tasks. The objective of this new problem is to maximize the revenue generated by the total power production of the wind turbines. The work targets a short-term horizon as wind predictions can only be reliably established few days in advance.

The contributions of this paper are twofold. First, we introduce a new maintenance scheduling problem that is especially relevant to the onshore wind power industry. We formally define our problem using two different programming paradigms, namely, integer linear programming (ILP) and constraint programming (CP). Second, we introduce a constraint programming-based large neighborhood search to efficiently tackle the problem. The proposed approach uses destruction operators either specifically conceived for the problem or adapted from the literature. The repair operator consists in solving a CP model with some fixed variables using branching strategies specially tailored for the problem. We report computational results on randomly generated instances with up to 80 tasks, 3 different skills and 40-period time horizons.

The remainder of this paper is organized as follows. In Section 2 we describe the problem. In Sections 3 and 4, we introduce two integer linear programming formulations and a constraint programming formulation for the problem. In Section 5 we present our constraint programming-based large neighborhood search approach. In Section 6 we report and discuss computational experiments. In Section 7 we describe the handling of corrective tasks. Finally in Section 8 we present our conclusions and outline research perspectives.

Problem statement

The maintenance scheduling problem we consider consists in scheduling a set I of tasks during a finite time horizon T in order to maximize the revenue from the electricity production of a set W of wind turbines. These wind turbines are geographically distributed over a set L of locations. We denote l w L the location of wind turbine w W. Each task i I is also associated with a specific location, denoted as l i .

The time horizon is partitioned in periods of identical length and spans over several days from a set D. We denote T d the set of time periods covered by day d D. Moreover, since the execution of a task can impact the production during non-working hours, we introduce a special time period (hereafter referred to as a rest time period ) between two consecutive days to represent, for example, a night or a weekend. Maintenance tasks are non-preemptive but, obviously, they are interrupted during rest time periods when overlapping consecutive days (e.g., a technician can start a task at the end of one day and complete it at the beginning of the next day).

Although we do not include rest time periods in T , we count in the objective function the loss of revenue generated by tasks overlapping these specific time periods. More specifically, tasks may have different impact on the availability of the turbines. Some tasks shut down one (or more) turbine(s) since the task starts until the task ends. For instance, during the maintenance of a wind farm's substation 3 no turbines in the farm can produce electricity. It should be noted, however, that tasks that shut down more than one turbine are very rare in practice. Some tasks shut down the turbines when the technicians are effectively working on the task, but not necessarily during the rest time periods they overlap. This is the case for the majority of the preventive maintenance jobs, as well as for wind turbines retrofit. Other tasks do not have any impact on electricity production (e.g., some wind farm inspections). We model the impact on power production of the tasks using two parameters. Parameter b wi takes the value 1 if task i I shuts down turbine w W when technicians are effectively working on the task, and 0 otherwise. Parameter r b wi takes the value of 1 if task i additionally shuts down turbine w during the rest time periods it overlaps, and 0 otherwise. It must be noted that parameters b wi and r b wi are equal to 0 if turbine w is not located at wind farm l i .

To execute the maintenance tasks, we have a finite set R of technicians. To avoid time-consuming traveling between distant locations, during a single day technicians can only perform tasks at compatible locations.

Compatible locations are simply those that can be reached from each other in travel times that are negligible with respect to the duration of a time period in T . Let us assume that t max is the maximum travel time between two locations that we can consider "negligible" with respect to the duration of a time period. The top of Figure 1 then shows the locations that are compatible with l 1 (i.e., l 2 and l 3 ). To model these daily location-based incompatibilities, we introduce binary parameter σ ll I taking the value of 1 if and only if locations l and l I are compatible (naturally σ ll I σ l I l ). The bottom of Figure 1 shows the 4 sets of compatible locations in our example. During a single day, one should observe that a technician can only execute tasks at l 1 and l 2 or l 3 but not both. It is worth mentioning that wind turbine maintenance tasks usually span along hours (if not days), and therefore technicians tend to travel between very few locations during a single working day. We assume that all the technicians work the same shift, which is a common practice in this industry.

Compatible locations with l 1

Sets of compatible locations

Nonetheless, each technician r R has an individual availability schedule expressed by a binary vector π r , with π t r 1 if r is available during time period t T , and π t r 0 otherwise. The availability schedule of every technician is related to training time, personal holiday time, and assignments to tasks (not part of the optimization) that have been already started or that are performed along with external companies. When a technician r is not available during a time period t, his or her location is fixed to l t r L. Notice that for technician personal holidays and training sessions, this parameter is set to a dummy location l ¦ such that dl L, σ l ¦ l 1.

Technicians master specific skills from a set S. Technician skills are expressed by a binary vector λ r over S such that λ rs 1 if technician r R masters skill s S, and λ rs 0 otherwise. Each task i I has a set M i of execution modes. For each mode m M i , there is an associated task duration d im and a number q im of required technicians. Switching modes after starting the execution of a task is forbidden. Additionally, only technicians mastering a specific skill s i S can work on task i. For the sake of clarity, we denote as R i the set of technicians that can perform task i. Note that R i tr R|λ rsi 1u. We consider that a technician cannot perform more than one task during a given time period. Moreover, a technician assigned to a task has to work on it from the beginning to the end, even if the task is interrupted during one or multiple rest time periods.

Tasks can only be executed during some specific time periods. These take into account maintenance periodicity time windows, spare parts availability, safety work conditions (e.g., a technician cannot perform certain tasks on a turbine when the wind is too strong), and external restrictions imposed by the operator and/or the wind farms owners. To model these restrictions, we introduce parameter γ t i that takes the value 1 if task i I can be performed during time period t T , 0 otherwise. Additionally, some subsets of tasks cannot overlap due, for instance, to the use of disjunctive resources, an interference (e.g., two tasks cannot be executed on the same turbine at the same time), or managerial preferences. We define ov pIq the set containing all subsets of tasks that should not overlap.

The objective of the problem is to determine a schedule that maximizes the revenue generated by the electricity production of the wind farms while meeting the constraints described above. We denote g t w the revenue generated by wind turbine w W if it can produce electricity during time period t T . Similarly, we denote r g d w the revenue generated by wind turbine w if it can produce electricity during the rest time period following day d D. The revenue values are estimated according to the forecasted wind speed. In this study we do not consider other maintenance costs: we assume that, as it is common in practice, technicians earn a fixed salary, and we disregard travel costs as they are insignificant. One particularity of this problem is the possibility to postpone the scheduling of some tasks until the next planning horizon. To model the postponement of task i I, we create an additional execution mode m 0 i and we add it to M i (we have q im 0 i 0 and d im 0 i 0). When task i is postponed, we apply to the objective a penalty of c i ¥ 0. In practice, the value of this penalty is fixed according to multiple factors. It takes into account the relative degree of priority of the tasks. This priority depends on reliability consideration (the more a maintenance operation is delayed, the higher is the probability of failure) and contract commitments. Moreover, when a task is postponed, it obviously does not impact the production of any wind turbines, and thus the value of the revenue. Therefore, if a task needs to be scheduled during the time horizon, this penalty is fixed in connection to the revenue in order to ensure that the postponement of this task is non-profitable. This penalty includes an estimation of the loss of revenue induced by the schedule of the corresponding task, to which may be added outsourcing costs (the decision maker then being responsible for the choice of outsourcing a task rather than postponing it). Notice that if the penalties are high enough, postponing a task is just triggered to overcome a possible lack of technicians. In short, the objective function to be maximized in the problem always corresponds to the difference between the revenue and the postponing penalties. Appendix A summarizes the notation used in this paper.

Integer linear programming formulations

In the following subsections, we present two integer linear programming models for the problem. The first formulation is an immediate natural formulation, whereas the second one aggregates some decision variables leading to a more compact formulation.

Natural formulation

Let us introduce the following decision variables: An intuitive formulation is defined as the following integer linear program rP1s:

x im 5 1 if task i I is executed in mode m M i , 0 otherwise.
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)
The objective in (1) is defined as the difference between the revenue generated by the turbines and the penalties induced by the postponement of some tasks. Constraints (2) guarantee that exactly one execution mode is selected for each task. For each task, constraints (3)-( 6) ensure consistency between the starting time, ending time, and execution time period variables. Constraints (7) prevent a task to be scheduled during forbidden time periods. Constraints (8) are the non-overlapping constraints. Constraints (9) couple the time periods during which each task is performed to the execution days of this task. Constraints (10) and ( 11) compute the impact of the tasks on the availability of the turbines to produce electricity. Constraints (12) connect the duration of each task to its selected execution mode. Constraints (13) ensure that the technician requirements are fulfilled. Constraints ( 14) force technicians to be assigned to a task from its beginning to its end. 

Compact formulation

In order to restrict the number of constraints involved in the formulation rP1s, we propose a second model based on the concept of plans. A plan associated with task i I defines a feasible schedule for i by setting an execution mode, a consistent starting date, and, by induction, a duration and a resource requirement. For example, consider a task i with two execution modes m 1 and m 2 . Let d m1 and d m2 denote the corresponding durations and q m1 and q m2 the corresponding number of required technicians. Assume that task i can be executed during the whole time horizon. For each t T such that t ¤ |T| ¡ d m1 , a feasible plan is created to represent the planning of task i ¦ within mode m 1 from period t to period t d m1 with a requirement of q m1 technicians. The same procedure is applied for mode m 2 . Obviously, we take into consideration the impossibility of preempting tasks when building plans.

All the plans are generated a priori. Since in practice the planning horizon is short (because of weather predictions) and there are only a few execution modes, the total number of plans is not so large. We denote by P the set of plans, i p the task involved in plan p P, and P i the set of all plans involving task i (i.e., P i tp P|i p iu). For each task i, we also create a plan p 0 i P i representing the postponement of the task. 

f t w pPi b wp a t p xp ¤ 1 dw W, di I, dt T , (31) 
r f d w pPi r b wp r a d p xp ¤ 1 dw W, di I, dd D, (32) 
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(33) iI l |rRi pPi a t p ȳrp ¤ π t r v t rl dr R, dl L, dt T , (34) 
(18), ( 19), ( 20), xp t0, 1u dp P,

(35) ȳrp t0, 1u dp P, dr R p , (36) 
(23), ( 24), ( 27).

The objective in ( 28) is defined as the difference between the revenue generated by the turbines and the penalties induced by the postponement of some tasks. Constraints ( 29) ensure that exactly one plan is selected for each task. Constraints (30) are the non-overlapping constraints. Constraints ( 31) and ( 32) couple turbine availability variables to plan selection variables. Constraints (33) ensure that the technician requirements are fulfilled. Constraints (34) couple the locations of the technicians to the tasks they perform. This new formulation rP2s uses the same constraints as formulation rP1s to manage the availability calendars of the technicians and the daily location-based incompatibilities. Finally, ( 35)-( 36) state the binary nature of the new decision variables.

Constraint programming formulation

The previous section presents two ILP formulations of the problem. Motivated by the successful implementation of CP models for solving other hard, and to some extend, related optimization problems [START_REF] Baptiste | Constraint-based scheduling: applying constraint programming to scheduling problems[END_REF]Rodriguez, 2007;[START_REF] Malapert | A constraint programming approach for a batch processing problem with non-identical job sizes[END_REF], we also decided to approach our problem using CP.

First of all, note that defining for each task: i) an execution mode, ii) a starting time, and iii) the technicians assigned to it, is enough to obtain a solution to our problem. Therefore, for each task i I, we introduce the variables M i M i and S i T to represent its execution mode and starting time period, and we use the binary variables py ri q rRi introduced in Section 3.1 to decide if technician r performs or not task i. To make some constraints easier to model, we introduce integer variables C i T , D i td im u mMi , Q i tq im u mMi , and set variables E i T defining for task i its completion time period, its duration, its number of assigned technicians, and its set of execution time periods, respectively.

Execution time periods of each task are coupled to their starting and ending time periods with constraints (37)-(38).

S i D i ¡ 1 C i di I, (37) 
t E i ô t rS i , C i s N di I (38) 
The duration of each task (39) as well as the number of assigned technicians (40) are coupled with the selected execution mode.

D i d iMi di I, (39) 
Q i q iMi di I (40) 
Constraints ( 41) are the non-overlapping constraints.

£ iB E i r dB ov pIq (41) 
Constraints (42) ensure that the technician requirements are fulfilled for each task.
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y ri Q i di I (42)
To express the constraints related to the technician-to-task assignments, we introduce set variables Y t r I ti 0 u defining the set of tasks that technician r could potentially perform during time period t T . Index i 0 represents a dummy task, created in order to prevent a technician to work when he or she is unavailable.

Constraints (43) couple these variables to the global assignment variables py ri q iI|rRi . Restrictions imposed on the locations visited by a technician within each day lead to the introduction of set variables V t r L defining the set of potential locations for technician r during time period t. Constraints ( 44) and ( 45) restrict the set of tasks that a technician can possibly execute according to his or her potential locations. Set Lp Îq defines the set of locations of the tasks in set Î. Note that Lp Îq tl L | hi Î s.t. l i lu.

y ri 1 ñ Y t r tiu dt E i ¨di I, dr R i , (43) 
V t r LpY t r q dr R, dt T , s.t. π t r 1, ( 44 
) V t r tl t r u Y t r ti 0 u dr R, dt T , s.t. π t r 0 (45)
Denoting d t as the day to which time period t belongs, constraints (46) ensure that the daily location-based incompatibilites are not violated for each technician.

V t r tlu ñ ¡ l I V t I r dl I L s.t. σ ll I 0, dt I T dt s.t. t I $ t © dr R, dt T , dl L (46) 
In order to define the objective function of our problem, we introduce two set variables. Variables F day w t1, . . . , |T |u define the set of all periods during which turbine w W can produce electricity. Variables F rest w t1, . . . , |D|u define the set of days for which turbine w can produce electricity during the corresponding rest time periods. More specifically, a day d belongs to this set if w can produce electricity during the rest time period between d and d 1. Additionally, we denote by t rest d the last time period t T before the rest time period following day d D.

We introduce constraints ( 47), ( 48), ( 49), and ( 50) which state that a turbine is available to produce electricity during a time period if and only if no tasks requiring its shutdown are scheduled during this period. 

t E i ñ t F day w dw W, di I s.t. b wi 1, dt T , (47) t ¤ iI|bwi1 E i ñ t F day w dw W, dt T , (48) 
t rest d E i pt rest d 1q E i ñ d F rest w dw W, di I, s.t. r b wi 1, dd D, (49) 
To remove some symmetries, we add constraints (52) to impose the starting time of a postponed task to be equal to 0.

M i m 0 i ô S i 0 di I (52)

A CP-based large neighborhood approach

We use the CP model introduced in Section 4 as the main building block of a CP-based large neighborhood search (CPLNS) approach.

This method is based on the large neighborhood search metaheuristic (LNS) originally proposed by Shaw (1998) for a vehicle routing problem. In the LNS, the current solution is successively partially destroyed and repaired in order to improve its quality. Our implementation randomly selects the operators with equal probability as suggested in [START_REF] Pisinger | Large Neighborhood Search[END_REF] 4 .

Algorithm 1 outlines the general structure of the method. To compute the initial solution, we use the CP model and we stop its execution as soon as we find a feasible solution. The algorithm then enters an iterative process. In every iteration, it randomly selects a destroy operator o 1 and a repair operator o 2 . First, it partially destroys the current solution using o 1 (see Section 5.1). Then, it builds a potential alternative solution sol I using o 2 (see Section 5.2). In the case where sol I meets the acceptance criterion (see Section 5.3), the solution sol I replaces the current solution sol for the next iteration. If appropriate, the algorithm updates the best solution sol ¦ found so far. Then, the search moves to the next iteration. The whole procedure is repeated until it reaches a time limit. The optimization returns solution sol ¦ .

Algorithm 1: Script of the CPLNS algorithm

1 sol Ð initial solution 2 sol ¦ Ð sol 3 repeat 4
Select a destroy operator o 1 and a repair operator o 2 from the operators pool

5 sol I Ð repair po 2 , destroy po 1 , sq , solq 6 if sol I is accepted then 7 sol Ð sol I 8 end 9 if f psol I q ¡ f psol ¦ q then sol ¦ Ð sol I end until the time limit is reached ;
return sol ¦

Destroy operators

At each iteration, the algorithm selects Γ tasks to remove from the current solution. The value of Γ is randomly fixed in the interval rmax pn ¡ , n ¢ p ¡ q ; min pn , n ¢ p qs, where n ¡ and n denote the minimal and maximal number of tasks that are allowed to be removed during an iteration; similarly, p ¡ and p denote the minimal and maximal proportion of tasks that could be removed. The parameters p ¡ and p allow the algorithm to adapt to all instances independently of their size. We use the following settings: pn ¡ , n , p ¡ , p q p5, 20, 0.1, 0.4q.

We also always consider postponed tasks in the current solution as tasks to be removed. However, we do not count them among the Γ tasks to remove.

After setting Γ, the algorithm selects the tasks using one of the following six removal operators:

• Operator A: random removal This operator randomly removes Γ tasks from the current solution. The intention behind this operator is to diversify the search.

• Operator B: worst removal This operator removes the tasks which penalize the most the objective function of the current solution.

Let f be the current value of the objective function, f ¡i its value if task i is removed, and ∆f piq f ¡f ¡i . The Γ tasks with the greatest values of ∆f piq are removed from the current solution in order to insert them at better positions.

• Operator C: technicians duties removal

This operator is based on the following procedure. First, it randomly selects a skill s ¦ . Second, as long as the number of removed tasks is lower than Γ, it randomly selects a technician mastering s ¦ and remove from the current solution those tasks in which the selected technician uses skill s ¦ . The operator then switches to another skill if it has not removed Γ tasks yet. Freeing up a pool of technicians along the whole time horizon may allow the reinsertion of possibly misplaced tasks during more convenient time periods (i.e, periods where they penalize less the revenue).

• Operator D: similar tasks removal This operator removes similar tasks. More specifically, the operator aims to remove non-overlapping tasks (or tasks that overlap as little as possible) having similar duration and skill requirements. The similarity between two tasks i, j I in a solution sol is formally defined as: φpi, j, solq α 1 ¢| di ¡ dj | α 2 ¢1 psi$sjq 5 α 3 ¢ ovpi, j, solq, where di is the average duration of task i (i.e., di

1 |M i ztm 0 i u| °mMiztm 0 i u d im )
and symbol 1 psi$sjq is equal to 1 if s i $ s j , 0 otherwise. Function ovpi, j, solq computes the number of overlapping time periods between i and j in the current solution sol. Coefficients α 1 , α 2 , and α 3 weight the three components of the similarity function, namely, task duration, skill requirements, and task overlapping. In our experiments, pα 1 , α 2 , α 3 q p1, 3, 5q. To select the tasks to remove, the operator first initializes a set r I with a random task. While | r I| ¤ Γ, the procedure randomly selects a task i ¦ from r I, and it then adds to r I the task j Iz r I with the minimal value of φpi ¦ , j, solq. The intuition behind this operator is that removing and re-inserting similar tasks that are scheduled in non-overlapping time periods increases the likelihood of a solution improvement.

• Operator E: task maximal regret This operator removes the tasks having the largest difference between the loss of revenue they currently generate and the minimal loss of revenue they can induce (we called this difference regret). Let W i denote the set of turbines shut down by the execution of a task i (clearly, W i tw W|b wi 1 r b wi 1u). The loss induced by task i is equal to the sum over all the turbines in W i of the revenue directly lost due to its scheduling. Notice that if multiple tasks impact a turbine during a specific time period, the loss is set proportionally to the number of these tasks. Prior to the optimization, the operator computes for each task i a metric called loss best i equal to the smallest loss of revenue that can be achieved when one only considers the scheduling of this task. Then, during the optimization, the operator first computes the loss of revenue loss sol i generated by task i in the current solution sol. Afterwards, the operator computes the regret ∆losspiq loss sol i ¡loss best i for each scheduled task i. The operator then removes from the current solution sol the Γ tasks associated with the largest value of ∆losspiq. Removing tasks that currently generate considerably more loss of revenue than they could may allow the algorithm to schedule those tasks in better positions in the next iterations. It is then plausible to assume that this operator increases the probability of fining better-quality solutions.

• Operator F: turbine maximal regret This operator works almost in the same way as operator E. Instead of reasoning by task, we focus on each turbine. Prior to the optimization, the procedure computes for each turbine w W a metric called loss best w , estimating the smallest loss of revenue that can be achieved when one only considers the set I w of tasks that prevent turbine w to produce electricity when scheduled (i.e., I w ti I|b wi 1 r b wi 1u).

The value of loss best w is computed by running the CP formulation presented in Section 4 on an instance containing only the tasks belonging to I w . The solution time is most of the time insignificant, but nevertheless we impose a time limit of 1 second. It is noteworthy that, if we find a smaller loss of revenue during the execution of the CPLNS, we update the value of loss best w . Our tests, however, suggest that this is a very rare event. During the optimization, the procedure starts by computing the lost revenue loss sol w generated by the tasks in I w if they are executed as scheduled in the current solution.

Notice that the penalties related to postponed tasks are included in the computation of loss best w and loss sol w . Afterwards, the operator initializes a set W with all the turbines in W and compute the regret ∆losspwq loss sol w ¡loss best w associated with each turbine w W. While W is not empty and Γ tasks are not removed, the operator removes from W the turbine w ¦ associated with the largest value of ∆losspwq and removes from the current solution sol all the scheduled tasks belonging to I w ¦ .

We work with randomized versions of operators B, D, E, and F to explore the search space more broadly.

Indeed, an operator can destroy different parts of the same solution each time it is applied to it. This can then lead to building different solutions. Although the randomization strategy we use is relatively simple, we explain it here for the sake of completeness. The strategy is based on the one proposed in [START_REF] Cordeau | Scheduling technicians and tasks in a telecommunications company[END_REF]. Let o denote the randomization factor of operator o. When selecting tasks for removal, the operator first sorts a list L containing all the tasks using its selection criterion (i.e., largest penalization for operator B, largest similarity with a specified task for operator D, largest regret for operators E and F). The first positions of L contains the tasks that the destroy operator has to target first according to its criterion. Then the operator draws a random number y r0; 1q and it selects for removal task i in position ty o ¢ |L|u in L (positions in L are indexed from 0). A randomization factor o 1 makes the operator completely random, while higher values of o make the operators more deterministic. In our experiments we set ρ B ρ D ρ E ρ F 3 and we use only the randomized versions of these four operators.

Although it is very simple, Algorithm 2 presents the general structure of a destroy operator used as a subroutine in Algorithm 1. 

Repair operators

We use the CP formulation introduced in Section 4 to repair partially destroyed solutions. More specifically, if F denotes the set of tasks that have been removed, we fix for each task i IzF the value of the variables M i , S i , and py ri q rRi to their value in the current solution, and we solve the resulting model.

A solution to the CP model is found as soon as the decision variables M i , S i , and py ri q rRi are instantiated for every task i I. Therefore, the branching strategy should focus only on these variables. It is worth noting that a CP solver can make meaningful deductions for a task when the domain of the variable related to its executing mode not longer contains the postponement mode. Moreover, fixing the starting time period of a task before knowing its execution mode leads to a weak propagation on the bound of the revenue variable and on the possible starting time periods and execution modes of other tasks. Furthermore, since variables y ri have an impact only on the feasibility of a solution but not on its quality, fixing last these variables (i.e., after having fixed the variables M i and S i for each task i I) implies that the solver has to explore a large sub-tree before reconsidering a bad decision. Based on these observations we adopt a task-by-task scheduling strategy in which the technicians assignment is made after having chosen an execution mode and a starting time period for the current task.

It is well-known that quickly reaching a good-quality solution increases the efficiency of the search. It is, however, not clear if fixing the execution mode of a task i I (i.e., M i ) to a specific execution mode and then exploring all its potential starting time periods before setting M i to another value is the best searching strategy. This observation suggests that simultaneously setting variables M i and S i may lead to achieve a greater flexibility during the search. We therefore choose to reuse the notion of plans introduced in Section 3.2. For each task i I, we introduce variable X i P i that defines the plan selected for task i. We add the constraints ( 53)-( 54) to couple these variables to the variables M i and S i .

M i mode Xi di I, (53) 
S i start Xi di I (54)
For a plan p P, mode p is the selected execution mode for the task i p and start p min tT |a t p 1

t represents the starting time of i p . In summary, task by task, we first define its execution mode along with its starting time by fixing variable X i , and we finally assign the required technicians by fixing the variables py ri q rRi .

To reach feasible solutions faster, we maintain arc consistency on constraints ( 53) and ( 54). We also designed customized propagators to try to keep, during the search, the domain of X i consistent with the availability of the technicians. More specifically, these propagators rely on a comparison between the task requirements and the number of technicians available during each time period of the planning horizon considering the required skills and the daily location-based incompatibilities. They also take into account that technicians have to work on a task from its beginning to its end. For instance, if during a time period t ¦ no more than 2 technicians mastering a specific skill s ¦ are available, then for each task i such that s i s ¦ we can remove from the domain of X i all the plans overlapping t ¦ and requiring more than 2 technicians.

The most critical part of the procedure is the selection of the next task to be considered by the branching strategy. We select the next task to schedule using a look-ahead regret heuristic that operates as follows. Let I 0 denote the set of tasks which have not yet been processed at the current node of the search. We denote ∆f k i the k-th smallest value of the loss of revenue that task i can generate when scheduled using one of its possible plans. The procedure regret-q chooses task i ¦ arg max

iI 0 °kq k2 ∆f k i ¡ ∆f 1
i ¨to be considered for scheduling. The algorithm computes ∆f k i according to the values of Ψpi, pq, a function representing the loss of revenue if task i uses plan p P i (i.e., the task is performed in mode mode p and starts at the beginning of time period start p ). Function Ψpi, pq is computed using functions Ψ day pi, pq and Ψ rest pi, pq which represent, if task i uses plan p P i , the loss of revenue during the time periods from T and during the rest time periods. These functions are defined as follows:

Ψpi, pq Ψ day pi, pq Ψ rest pi, pq, where EnvpZq denotes the set of elements that may belong to the set variable Z in a solution at the current node of the search tree.

Ψ
Let Dompzq denote the domain of variable z (i.e., all the possible values that z can take). We have ∆f 1 i min pDompXiq Ψpi, pq. More generally, ∆f k i is the k-th smallest value of Ψpi, pq. Once task i ¦ has been selected, it is scheduled using plan p ¦ arg min

pDompX i ¦ q
Ψpi ¦ , pq.

During our preliminary experiments we observed that sometimes our regret-q heuristic is unable to lead the search to good solutions. It is indeed possible that a task with a small regret at a given point of the search is not chosen to be scheduled, but that this decision leads to a large loss of revenue later when exploring the associated subtree. To overcome this potential issue, we designed another branching strategy that selects

the task i ¦ arg max iI0 ¢ min pPi Ψpi, pq
for which the minimal loss of revenue is maximal. Again, once task i ¦ has been selected, it is scheduled using plan p ¦ arg min

pDompX i ¦ q
Ψpi ¦ , pq. We refer to this branching strategy as

M inM axLoss.
The resources assignment is then done technician by technician as long as the request is not fulfilled. We choose with priority the compatible technician which is already working during the days that belong to D p ¦ .

Since the daily location-based incompatibilities are very restrictive, it should be preferable to use technicians that are already working at the same location or at compatible locations. Otherwise, the number of technicians that will be available for other tasks, especially those at incompatible locations, may be drastically restricted.

If during the days d D p ¦ multiple technicians work the same number of time periods, we choose first the technician that could perform the least number of tasks among those remaining. If several technicians can still be selected, we select one randomly.

Exploring the whole neighborhood of a solution is time-consuming; therefore we only allow a certain number max of backtracks (we set max 200 in our experiments). Thus, different solutions can be obtained using different branching strategies. Different repair operators are therefore defined using different branching strategies. In our experiments, we use regret-2 and regret-3 branching strategies, as well as a randomized version of M axM inLoss, where the probability of selecting a task is inversely proportional to the minimal loss of revenue it generates at this point of the search.

Algorithm 3 presents the general structure of a repair operator used as a subroutine in Algorithm 1. 

Acceptance criteria

The original version of LNS proposed by [START_REF] Shaw | Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems[END_REF], uses an elitist strategy to accept solutions (i.e., it accepts only improving solutions). On the other hand, the ALNS by [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF] uses the Metropolis criterion to accept solutions. According to this criterion, solutions are accepted with a given probability. If the newly found solution sol I improves the current solution sol the probability equals to one. Otherwise, the probability is computed using the Boltzmann expression: e ¡pfpsolq¡fpsol I qq{Υ . Parameter Υ is commonly known as the temperature. It is updated after each iteration using what is commonly known as the geometric cooling schedule: Υ Υ ¢ c, where c r0, 1q. Then, the probability of accepting non-improving solutions decreases over the iterations. We tested the two approaches in our experiments.

We also tested a mix of them: we apply an elitist strategy during the first k iterations, and then we activate the Metropolis criterion. We based our choice in two observations. First, using the elitist strategy, the search is often trapped in local optima after a certain amount of iterations, and then it struggles to improve the solution.

Second, as we do not ensure that our algorithm starts from a good-quality solution, reaching a good solution can be time-consuming.

In our experiments, k is set to 300 and c to 0.9975. The initial temperature is fixed to ¡ 0.25 ln0.5 f psol 0 q where f psol 0 q is the value of the objective function of the initial solution sol 0 . Therefore, in the first iteration our approach accepts solutions that are 2.5% worse than the current solution with a probability of 0.5.

Computational experiments 6.1 Instances

Since our problem is new to the maintenance scheduling literature, no publicly available benchmarks exists.

We therefore took advantage of our close collaboration with companies specializing on wind predictions, wind turbine maintenance, and maintenance scheduling software, to get inside knowledge on how real-data for the problem looks like. Based on this knowledge, we built an instance generator that we believe captures reality with a good degree of accuracy.

We used our generator to build a 160-instance testbed (hereafter referred to simply as G1). For each instance, we consider time horizons of different lengths (10, 20 or 40), different number of time periods per day (2 or 4), different number of tasks (20, 40 or 80), and different number of skills (1 or 3). Each task can be executed in several modes (1 to 3). Note that |S| 1 simply means that no skills are considered. For each combination of parameters, we generate two categories of instances: 5 instances with a tight technicians-towork ratio (i.e., technicians can perform the majority of the tasks during the planning horizon, but they are not guaranteed to be enough to perform all the tasks), and 5 instances with a regular technicians-to-work ratio (i.e., technicians can perform all the tasks during the planning horizon). We refer to the former as Type A and to the latter as Type B. We also refer to each family of instance with symbol "a b c d e" where a, b, c, d, and e refer to the number of time periods in the planning horizon, time periods within a day, skills, tasks, and to the technicians-to-work ratio, respectively. For a thorough discussion on the instance generation process the reader is referred to Appendix C. Notice that in all our instances postponing a task is always non-profitable and therefore heavily penalized.

Results

We implemented our algorithms using Java 8 (JVM 1.8.0.25). We rely on Gurobi 6.5.1 for solving the ILP models rP1s and rP2s and Choco 3.3.1 for solving the CP formulation (see [START_REF] Prud'homme | A constraint programming model for real-time train scheduling at junctions[END_REF]). We ran our experiments on a Linux 64 bit-machine, with an Intel(R) Xeon(R) X5675 (3.07Ghz) and 12GB of RAM.

Unless another formula is given (as for the results described in Tables 11 and13), all gaps reported in the article are computed as: gap pz U B ¡ zq{|z|, where z is the objective function of the computed solution and z U B is the objective function of the optimal solution or the minimal upper bound computed by Gurobi after 3 hours of branch-and-bound when solving the two ILP formulations.

ILP formulations

First, we observe that the compact formulation rP2s contains on average 1.5 times more variables (50k vs 86k) than the natural formulation rP1s, but 5 times less constraints (129k vs 25k). As shown below, this significantly impacts the performance of the solver. For reference, we point out that the set P contains 2,400 plans on average. Table 1 reports the average, over all the instances belonging to the same family, of: the gap (Gap), the solution time (Time), and the percentage of tasks scheduled (i.e., not-posponed) in the best solution (%S).

The table also reports the number of optimal solutions found within the 3-hour time limit (#Opt). In order to have a meaningful comparison, the average solution time only takes into account those instances for which an optimal solution has been found within the time limit. Similarly, the average gap and percentage of scheduled tasks takes into account only the instances which are not optimally solved. This allows a better understanding of the results. Indeed, since in our instances postponing a task is heavily penalized, a large gap is often related to a low percentage of tasks scheduled during the time horizon. Notice that on average 99% of the tasks are scheduled in the optimal or best-known solutions for our testbed. To provide the reader with a different perspective, Table 2 presents the same results grouped by instance characteristic rather than by family of instances. At a first glance, we observe that the compact formulation rP2s outperforms the natural formulation rP1s

for small and medium-sized instances. For the large-sized instances, the two formulations struggle reaching optimal solutions, but the compact formulation performs worst than the natural one (rP 2s fails more often than rP1s to schedule a large proportion of the tasks). We believe these results can be explained as follows. The compact formulation contains far less constraints than the natural formulation, and the value of the LP relaxation is around 2% smaller on average, which leads to tighter upper bounds computed by the ILP solver.

We also observe that, at least in our 3-hour time limit, optimality is only reached for small-sized instances and that whenever optimality is reached the CPU time is rather long (around 30 minutes on average). It is not very surprising as the formulations only involve binary variables and their size is quite large. We therefore reach the following conclusion: solving the ILP formulations using a commercial solver does not yield suitable exact approaches for the problem.

Our results suggests that the number of skills does not have a significant impact on the difficulty of the instances (although we observe that instances with 3 skills appear to be easier to solve). This may be a result of less symmetries among technicians and a shorter number of feasible configurations to schedule the tasks.

On the other hand, the number of tasks seems to have an impact on the difficulty of the instances when the technicians-to-work ratio is tight. This can be explained by the higher difficulty of finding a maintenance plan when considering more tasks. It is also worth observing that the ILP formulations perform better on instances with 2 time periods per day; the solution time is shorter and the number of optimal solutions is larger than in those with 4 time periods per day. A plausible explanation is that the daily location-based incompatibilities are more binding on instances with more time periods per day. Indeed, a larger number of periods provides a wider choice of task starting times and therefore more opportunities to move technicians between locations during a single day. Instances with 4 time periods per day also have a larger number of plans and patterns; this may also explain their higher difficulty. In conclusion, according to our experiments, the difficulty of an instance increases with the number of time periods per day and the tightness of the technicians-to-work ratio.

CP formulation

Table 3 summarizes the aggregated results found solving the CP model. In this experiment, we tested the resolution of the model with two branching strategies: regret-2 (R) and a randomized version of regret-2 coupled to a geometrical restart policy (we restart the search from the root node) based on the number of backtracks (R+restart). The columns of the table report the relative average mean gap 6 (Gap) and the mean percentage of tasks scheduled in the solution 7 (%S) with 5 minutes of CPU time limit.

The results show that coupling our branching strategy with the restart policy gives the best results: the average gap is improved approximately by 6%. Jointly using a randomized branching strategy with a restart policy allows us to explore different parts of the search tree which increases the likelihood of finding better solutions. Table 4 reports additional results obtained solving the CP model with the R+restart configuration.

We find good quality solutions for instances with 2 time periods per day and near optimal solutions for Type B instances; the gap is larger for the other instances. We observe that the solutions obtained after a few iterations are little improved during the search. It seems that the CP model is facing some symmetry issues, especially on the technicians assignment. This drawback is not overcome with our restart policy. Nonetheless, we can 6 average of the mean gap found for each instance over 3 runs 7 average of the mean percentage of tasks scheduled in the solution found for each instance over 3 runs notice that solving the CP formulation gives better overall results on the largest instances than solving the ILP formulations. Since the quality of the results are barely improved when increasing the time limit from 1 to 5 minutes, we did not consider necessary to test the model with a 3-hour time limit as for the ILP formulations. 

CPLNS

Our first experiment aimed to select the best acceptance criterion for our CPLNS. To achieve our goal, we ran our algorithm with three different solution acceptance criteria: elitism (El), Metropolis (MT), and both (El+MT) and three different time limits: 1, 3, and 5 minutes. Since the neighborhoods are partially randomized, we launched the algorithm 10 times for each instance. Table 5 shows that coupling an elitist strategy with the Metropolis acceptance criterion leads to the best results independently of the time limit. We therefore used this acceptance criterion in the remainder of our experiments.

Table 5: Average computational results according to the solution acceptance criterion (testbed G1 -average over 10 runs) We now discuss more thoroughly the performance of the CPLNS algorithm. Table 6 reports the results delivered by our CPLNS for each family of instances. The columns in the table report the relative average mean gap 8 (Gap) and the mean percentage of tasks scheduled in the solution 9 (%S) running with a 1, 3, and 5 minutes of CPU time limit. These experiments aim to enable a decision-maker to define a CPU time limit according to the trade-off between resolution time and quality of the results he or she is interested in. To provide the reader with a different perspective, Table 7 presents the same results grouped by instance characteristic rather than by family of instances.

Since the gap is computed with respect to upper bounds for the largest instances, assessing the intrinsic quality of the CPLNS using only the gap is sometimes not conclusive enough. However, the overall average gaps of 1.2% after 5 minutes show the effectiveness of our approach. We might expect to be closer to the optimal solutions for the largest instances. The algorithm provides near optimal solutions for all the Type B instances and all the instances where the number of time periods per day is equal to 2, but the performance is slightly inferior on Type A instances in which the number of time periods per day is equal to 4. This last observation can be explained by the fact that the number of plans and thus the model to be considered by the CP model when repairing the solution is larger. Since we only allow a limited number of backtracks, the quality of the first decisions taken in our branching strategies strongly impacts the capacity of the algorithm to improve the current solutions. The algorithm may then sometimes fail building better solutions with the CP model (in the reparation stage), although it could be possible if it explored the whole search space.

Table 8 reports the relative average mean gap (Mean), the average best gap 10 (Best), and the average worst gap 11 (Worst) for the CPLNS with 5 minutes of CPU time limit (detailed results are available in Table 10 in Appendix B). The CPLNS exhibits a stable behavior: on average the difference between the best and the worst solution found over the 10 runs is a reduced 0.68%.

8 average of the mean gap found for each instance over 10 runs 9 average of the mean percentage of tasks scheduled in the solution found for each instance over 10 runs 10 average of the best (minimal) gap found for each instance over 10 runs 11 average of the worst (maximal) gap found for each instance over 10 runs For each approach presented in the article to solve the problem, we report in Table 11 of Appendix B the gap to the best solution (lower bound) that we were able to compute in all the tests presented in this section.

This gap is computed as: gap pz LB ¡ zq{|z|, where z is the objective function of the computed solution and z LB is the best solution (i.e., best lower bound) found throughout our tests. For small sized-instances, the direct resolution of the ILP formulations gives the best solutions. Nonetheless, for those instances, the solutions obtained from the resolution of the CP model and from the CPLNS are very close. For medium-sized and large-sized instances, the CPLNS outperforms the other approaches.

7 Particular case: handling of corrective tasks

Up to this point, we have only considered preventive tasks. Sometimes, however, the technicians may also have to perform corrective tasks. Our models and methods can be easily adapted to deal with corrective tasks in a number of practical situations. We describe in this section those adaptations. Needless to say, since our approaches are conceived to work on a static case we only focus on how to handle non-started corrective tasks that are known with certitude prior to the beginning of the planning horizon.

Extending models and methods

First, let us introduce new binary parameters. We denote : b wi 1 if and only if task i is a corrective task that shuts down turbine w until it is not entirely completed. Our models require the following minor modifications.

We add constraints ( 55) and ( 56) to ILP formulation rP1s.

f t w 1 ¡ ţI T s.t. t I ¤t c t I i ¤ 1 dw W, di I s.t. : b wi 1, dt T , (55) 
r f d w 1 ¡ ţI T s.t. t I ¤t rest d 1 c t I i ¤ 2 dw W, di I s.t. : b wi 1, dd D, (56) 
Constraints ( 55) and ( 56) state that a turbine w is unavailable during a time period (or a rest time period) if there are incomplete corrective tasks related to that turbine.

In a similar vein, we add constraints ( 57) and (58) to ILP formulation rP2s.

f t w pPi s.t. max t I T a t I p t : b wi x p ¤ 1 dw W, di I, dt T , (57) 
r f d w pPi s.t. max t I T a t I p ¤t rest d : b wi x p ¤ 1 dw W, di I s.t. : b wi 1, dd D, (58) 
In the CP model, we replace constraints ( 48) and ( 50) by the following constraints:

t ¤ C i ñ t F day w dw W, di I s.t. : b wi 1, dt T , (59) 
¤ ¥ t ¤ iI|bwi1 E i ¤ ¥ © iI| : bwi1 pt ¡ C i q ñ t F day w dw W, dt T , (60) 
pt rest d 1q ¤ C i ñ d F rest w dw W, di I, s.t. : b wi 1, dd D, (61) 
¤ ¥ © iI| r bwi1 tt rest d , t rest d 1u E i ¨ ¤ ¥ © iI| : bwi1 t rest d 1 ¡ C i ¨ ñ d F rest w dw W, dd D (62) 
Constraints ( 59) and ( 61) state that a turbine w is unavailable during a time period if there are incomplete corrective tasks related to that turbine. Constraints ( 60) and ( 62) ensure that a turbine is available to produce electricity during a time period if and only if i) no preventive tasks requiring its shutdown are scheduled during the time period and ii) if all the corrective tasks are completed. Note that by adapting the CP model to work with corrective tasks, the CPLNS is also automatically adapted to this new scenario.

Practical applications

Our adapted models and CPLNS can be used to deal with different practical situations. For illustration purposes, in the remainder of this subsection we briefly discuss two of them.

S1 -corrective first, preventive second: As mentioned earlier, in the wind energy industry, more often than not, the maintenance is performed by contractors rather than by the wind farm owners. Therefore, it is difficult for maintenance companies to delay the execution of corrective tasks without generating a conflict with their customers (specially if the breakdown impedes energy production). In these situations, corrective tasks are simply scheduled first and, usually, as soon as possible. Our approaches can easily deal with this situation.

The decision maker only needs to solve two independent problems (one for the corrective tasks followed by one for the preventive tasks), adjusting on the second the parameters π t r and l t r according to the pre-established crew assignments. We can also decide to reconsider these assignments when scheduling the preventive tasks.

To this end, for the second stage of the optimization, we add to set I the corrective tasks along with the preventive tasks, but we enforce the former to be scheduled as found during the first stage of the optimization.

S2 -corrective + preventive:

In some cases, scheduling corrective tasks as early as possible tasks may lead to bad overall decisions. Indeed, if the wind speed is too low to produce electricity for many consecutive days, there is some flexibility to schedule these tasks latter and use the resources (i.e., technicians) to perform tasks that would be optimally scheduled at the beginning of the planning horizon. For instance, assume that a given corrective task has a duration of 3 time periods and induces a very small loss of revenue (or none at all) if we wait, say, two time periods to perform it (the forecasted wind is very low from the beginning of the time horizon until the sixth time period). Assume also that there is a preventive maintenance task to perform at another location where the revenue is very low for the two first time periods but very large after this. If the two tasks cannot be executed in parallel (e.g., lack of technicians), it is probably more profitable to schedule first the preventive task and then the corrective task. In this case, the decision maker may want to combine corrective and preventive tasks and solve a unique problem. This case can be tackled simply by adding both preventive and corrective tasks to set I and running our models and/or CPLNS with the modifications introduced above.

Some results

To assess the impact of considering corrective tasks in the performance (quality and speed) of our approaches we conducted experiments on a new set of instances mixing preventive and corrective tasks. It is worth recalling that the objective of our research is not to compare managerial practices in maintenance scheduling; therefore we limited our experiments in this section to practical situation S2. We believe this situation is the most general and difficult to solve from a purely computational performance perspective. Moreover, to a certain extent, we have already handled the practical situation S1 in the experiments described in the previous section. Our new testbed, denoted G2, is composed from the same families than those in G1. In the instance generation process, the probability of generating a corrective task was set equal to 5%. Nonetheless, we ensured that each instance in this testbed contains at least one corrective task. If a task is corrective, it can prevent more than one turbine to produce electricity with a probability of 7.5%. Similarly than for testbed G1, the penalty of postponement is set in such a way that postponing a task is never profitable. Notice that the penalty is larger than for testbed G1 as the maximal loss of revenue than can be induced by the scheduling of a corrective task is larger.

In general the results obtained in G2 confirm our findings. Solving directly the ILP formulations is just suitable for small-sized instances, while solving the CP formulation gives solutions with a reduced gap. However, the CPLNS remains the best overall approach. Table 9 summarizes the results. Detailed results for each family of instances can be found in Appendix B.2. 8 Conclusions and research perspectives

In this study, we introduced a new and challenging maintenance scheduling problem faced by the wind power industry. Some of the special features of this problem are the existence of alternative execution modes for each task and the individual management of the technicians through a space-time tracking. We also introduced an original objective function, far from the classical scheduling concerns, linking the revenue to the periods during which the maintenance operations are performed.

We proposed three mathematical formulations based on both constraint and integer linear programming.

Computational results indicate that, generally, the models cannot be directly used to solve realistic instances.

ILP models are unable to solve to optimality most of the instances after 3 hours and the gap is still very large for many families of instances. Nevertheless, we showed that an ILP compact formulation using the notion of plans outperforms the more natural ILP formulation of the problem. Moreover, results indicate that the CP model produces high quality solutions for small-sized instances. However, it does not yield very good results, in general, for the majority of medium and large-sized instances. The performance of our CP model actually seems to be affected by symmetry issues, especially on the technicians assignment.

To provide an alternative solution approach, we developed a CP-based large neighborhood search. We successfully adapted some destroy operators to this new problem and proposed some new ones. Moreover, we designed several branching strategies to effectively repair solutions solving a CP model with fixed variables. The CPLNS shows an average gap of 1.2% with respect to the optimal solutions if known, or to the best known upper bounds otherwise. It provides near optimal solutions when the technician-to-work ratio is regular, whereas, when it is tight, the gap increases as the problem size (number of tasks and number of time periods per day) grows. Nonetheless, the computational results demonstrate the efficiency of the proposed method. We have also showed how our method can also handle corrective tasks known prior to the beginning of the planning horizon.

As a perspective, we could extend the definition of the problem to handle the case of technicians working different shifts. Two different approaches could be considered: either one allows tasks to be initiated by some technicians and finished by other technicians (since tasks can last more than the duration of a shift) or one restricts tasks to be performed by technicians working the same shift. To our knowledge, the former is not common in practice, so the latter may be more relevant. The second proposition is compatible -with slight adjustments -with the compact formulation rP2s. Indeed, every plan would be associated to a single shift (we would not create any plan that overlaps two different shifts) and we would restrict technicians to be assigned to plans corresponding to their shift. The CPLNS would require a broader change as the duration of a task would depend on the number of days it overlaps (the duration would become dependent of the starting time in addition to the execution mode). Moreover, we could consider the case of tasks requiring technicians with complementary skills.

Future works also include the development of efficient exact approaches. One can observe an intrinsic decomposition of the problem into a scheduling problem on the one hand and a resource management problem on the other hand. This leads us to investigate a branch-and-check approach as well as cut generation processes.

Last but not least, we have only addressed the deterministic problem, but, as a matter of fact, the wind speed (and therefore the revenue) is stochastic by nature. l t r : location of technician r R when he or she is not available during time period t tt I T , π t I r 1u

A Notations

Tasks -I: set of tasks to be performed on the turbines -ovpIq: set of sub-sets of non-overlapping tasks l i : location where task i I has to be performed -M i : set of execution modes for task i I m 0 i : execution mode related to the postponement of task i I (m 0 i M i ) q im : number of technicians required during each time period to perform task i I in mode m Scheduling one additional task would drastically reduce this gap.

M i (q im 0 i 0) -d im : duration of task i I if performed in mode m M i (d im 0 i 0) -γ t i 5 1 if task i I can
From the results, we do not see any significant impact of adding corrective tasks on the difficulty to solve the instances. It is not so surprising as corrective tasks usually need to be scheduled at the beginning of the planning horizon in order not to induce too much lost revenue. For our models, this might implies less symmetry on the scheduling of the tasks. Moreover, we can draw identical conclusions on the efficiency of the approaches. Solving the ILP formulations does not lead to an efficient exact approach as only the small-sized instances can be optimally solved, whereas solving the CP formulation yields good results for Type B instances.

The CPLNS gives the overall best results and near optimal solutions for small and medium-sized instances.

Lastly, the difficulty of the instances seems also to be related to the same characteristic as for testbed G1. 

C Instance generation

An instance of the problem is primarily characterized by:

• a finite time horizon (a finite number of time periods)

• a number of time periods per day (yielding the number of days)

• a set of locations (wind farms + home depot)

• a set of wind turbines distributed over the wind farms

• a set of maintenance tasks to perform at the different locations and that impact the availability of the turbines

• a set of technicians to perform the tasks

• wind speed for each time period and location

• postponing penalties

The generator is based on the following parameters:

• n T , n D , n I , n S (length of time horizon, number of days, number of wind farms, number of tasks, and number of skills)

• Dn L : probability distribution of the number of locations

• Dl xy : probability distribution of the coordinates associated with each location

• Dn L W : probability distribution of the number of turbines per location

• Dn W I : probability distribution of the number of tasks per turbine

• ∆l min : minimum distance between two locations

• ∆r max : maximum distance between two locations such that they can be visited by the a technician during the same day

• K: set of all types of preventive tasks that we consider

• ppkq: probability of generating a task of type k K

• Di impact pkq: probability distribution of the impact of each type of preventive task on the wind turbines

• Di dur pkq: probability distribution of the duration of each type of preventive task

• Di req pkq: probability distribution of the number of technicians that can perform each type of preventive task during any time period

• Dr #skills : probability distribution of the number of skills mastered by a technician

• Dr Ppunvq : probability that a technician has some unavailability time periods during the time horizon

• Dr #unv : probability distribution of the number of time periods during which a technician is unavailable

• Dr d unv : probability distribution of the duration of the unavailability of a technician (in man-hours)

• Dw power : probability distribution of the nominal power (in kW) of each turbine

• p φ: average wind speed on each wind farm

• Υ saf ety max : maximum wind speed allowed to perform a task

• ∆l max : maximum distances for the spatial correlation of the wind speed

• δ: number of values used in the moving average for the time-wise dependency between the wind speeds

• α: correlation factor between wind speed

We generate an instance following multiple steps. First of all, the length of time horizon, the number of days, the number of tasks, and the number of skills are input values. This yields directly the set T of time periods and the set D of days.

We then start the generation of an instance by building the set L of locations whose cardinality is set by sampling the Dn L distribution. According to the distance ∆l min , we then generate the coordinates of each location by sampling the Dl xy distribution. Based on these coordinates and on the distance ∆r max , we compute the parameters pδ ll I q pl,l I qL 2 that enable to define the daily location-based incompatibility constraints.

Afterwards, we built the set W of wind turbines. To this end, according to the target number of tasks, we start by generating a number of wind turbines per locations by sampling the Dn L W distribution. For each location where there is at least one wind turbine (i.e., this location is a wind farm), we then generate a nominal power by sampling the Dw power distribution and we set the nominal power P w equal to this latter value for each wind turbine w W of the wind farm.

After that, we call procedure genTaskspq to create the set I of tasks. Notice that for each task i I we build the set M i of execution modes such that it meets the two following requirements:

• dm, m I M i , q im $ q im I , • dm, m I M i , q im q im I Ñ d im ¡ d im I .

Arbitrarily, we build ovpIq considering that overlapping tasks are forbidden on the same turbine. Notice that, according to some experts in the field, it is reasonably realistic to only consider these subsets. After the generation of the tasks, we generate the set R of technicians using procedure genTechnicianspq.

The last part of the generator concerns the parameters related to the objective function. For the sake of convenience, we introduce the set T of all time periods formed by the union of set T and the set of rest time periods that occur between each day. More specifically, we include a rest time period after every |T | |D| consecutive time periods of T .

As it concerns the wind speed at hub height, the main purpose is to use realistic values. First, we generate wind speed φt l for every location l L and every time period t T using a Rayleigh distribution with a scale parameter equal to p φ 2 π (so that the expected wind speed is p φ). Since space correlation can be significant, we compute a corrected wind speed φt l for every location l and every time period t as follows: Wind speeds were generated independently from a time period to another one. However, this time-wise independence assumption is unlikely to be verified in practice. To smooth out the speed-values, we use a δ-weighted moving average that yields wind speed φ t l according to the following formula: * We consider that the turbine is stopped slightly longer than the duration of a task (that has an impact on its execution) because the turbine has often to be stopped a bit earlier than the starting time of this task .

NS No turbines are shut down during the execution of the task.

ST The task impacts only the turbine on which it is executed. This turbine is stopped during the execution of the task (not during the rest time periods the task overlaps).

BL The task impacts only the turbine on which it is executed. This turbine is stopped during the execution of the task and during the rest time periods the task overlaps.

Remark: The model can also consider tasks that shut down multiple turbines in a wind farm (e.g., the maintenance of the wind farm substation), but this is extremely rare in practice.

Figure 1 :

 1 Figure 1: Illustration of the daily location-based incompatibilities 3 A wind farm substation collects the electricity produced by all the turbines of the farm and distributes it through the grid

  i I starts at the beginning of time period t T , r R is assigned to task i I, i I ends at the end of time period t ¡ 1 T , i I is executed during time period t T , i I is executed during day d D, w W can produce electricity during time period t T , w W can produce electricity during the rest time period following day d D, r R is assigned to task i I during time period t T , r R is at location l L during time period t T , 0 otherwise.

  defines the objective function variable obj R of our problem.

  Algorithm 2: Destroy(o,sol) Data: a solution sol a destroy operator o Result: a set of tasks to remove from sol 1 F Ð r 2 F ÐApply destroy operator o to sol 3 return F

Algorithm 3 :4

 3 Repair(o,F,s) Data: a solution sol a set F of tasks a repair operator o (branching strategy) Result: a new solution sol I 1 foreach i IzF do 2 Fix the values of M i , S i , py ri q rRi as in solution sol in the CP model 3 end Solve the CP model applying repair operator o, yelding sol I 5 return sol I

Time-

  T : time horizon -D: set of days -T d : set of time periods that belong to day d D t rest d : last time period t T before the rest time period following day d D Locations -L: set of locations (wind farms and technician home depots) δ ll I 5 1 if locations l and l I are compatible 0 otherwise. Technicians -S: set of skills -R: set of technicians λ rs 5 1 if technician r R masters skill s S, r R is available during time period t T , 0 otherwise.

  . ∆ ll I ∆l max p∆l max ¡ ∆ ll I q φt l I °lI L s.t. ∆ ll I ∆l max p∆l max ¡ ∆ ll I q .

  .., 10uq U pt8, ..., 12uq U pt5, ..., 10uq U pt8, ..., 12uq U pt8, ..., 12uq U pt12, ..., 20uq U pt8, ..., 12uq U pt12,

we obtain the following integer linear program, denoted as rP2s .

  For a plan p, execution periods of i p are expressed by a binary vector a p where a t p 1 if i p is executed during time period t T , and a t p 0 otherwise. Similarly, we introduce binary vector r a p where r a d p 1 if i p overlaps the rest time period following day d D, and r a d p 0 otherwise. With a slight abuse of notation, we introduce parameters b wp , r b wp , and R p respectively equal to b wip , r b wip and R ip . Moreover, we define q p as the number of technicians required when selecting plan p P. Finally, parameter o p is the penalty if plan p is selected (note that di I, dp P i ztp 0 i u, o p 0 and o p 0 i o i ).

	Scheduling the tasks becomes rather implicit as it simply requires to select a plan for each task. Never-
	theless, we still need to manage the technician-to-task assignments that should meet the daily location-based
	incompatibilities and cope with technician availability. We use the decision variables f t w , r f d w , and v t rl defined
	in Section 3.1. We also introduce the following decision variables:	
	5											
	xp	1 if plan p P is selected, 0 otherwise.			
	5											
	ȳrp		1 if technician r R p is assigned to plan p P, 0 otherwise.
	As a result, rP2s max	wW	£	ţT	g t w f t w	ḑD	r g d w	r f d w	¡	pP	o p xp	(28)
	subject to:								
	pPi	xp 1 di I,						(29)
	iB pPi	a t p xp ¤ 1 dB ov pIq , dt T ,		(30)

  day pi, pq where D p is the set of days that task i p of plan p P overlaps. Functions gpw, tq and r gpw, dq are defined as:

	6 9 8	o p					if p p 0 i ,
	9 7	°wW|bwi1	t startp d imodep °tstartp	gpw, tq otherwise.	,
	Ψ rest pi, pq	6 9 8 9 7	0	°wW| r bwi1 °dDp	if p p 0 i , gpw, dq otherwise. , r
						5	g t w 0	if t EnvpF day w q, otherwise.	,
	dw W, dd D, r gpw, dq	5	r g d w 0	if d EnvpF rest w otherwise.	q,	,

dw W, dt T , gpw, tq

Table 1 :

 1 Computational results when solving the two ILP models (testbed G1 -3-hour time limit)

			[P1]				[P2]	
	Family	Gap	%S #Opt Time	Gap	%S #Opt Time
	10 2 1 20 A 1.4% 97%	0/5	-	1.8% 95%	4/5 1,979
	10 2 1 20 B 0.01% 100%	4/5	744	-	-	5/5	46
	10 2 1 40 A 7.1% 95%	0/5	-	0.2% 100%	1/5	395
	10 2 1 40 B 0.00% 100%	3/5 6,015	-	-	5/5	343
	10 2 3 20 A 2.0% 96%	1/5	326	0.9% 100%	4/5 1,845
	10 2 3 20 B 0.02% 100%	3/5	305	-	-	5/5	58
	10 2 3 40 A 9.6% 96%	0/5	-0.01% 100%	4/5 6,477
	10 2 3 40 B 0.00% 100%	4/5 2,857	-	-	5/5	159
	20 2 1 40 A	42% 76%	0/5	-	1.8% 99%	0/5	-
	20 2 1 40 B	1.6% 99%	0/5	-0.01% 100%	3/5 2,888
	20 2 1 80 A	28% 87%	0/5	-	436%	0%	0/5	-
	20 2 1 80 B	6.2% 96%	0/5	-	67% 67%	2/5 4,087
	20 2 3 40 A 6.2% 93%	0/5	-	1.2% 99%	1/5 8,149
	20 2 3 40 B 0.02% 100%	2/5 2,561	-	-	5/5 1,213
	20 2 3 80 A	23% 89%	0/5	-	48% 79%	0/5	-
	20 2 3 80 B	4.3% 97%	0/5	-	196% 50%	3/5 2,082
	20 4 1 20 A 5.3% 93%	0/5	-	1.6% 95%	0/5	-
	20 4 1 20 B	0.2% 100%	3/5 6,264	-	-	5/5	666
	20 4 1 40 A 161% 46%	0/5	-	264%	0%	0/5	-
	20 4 1 40 B 12.8% 91%	0/5	-	131% 50%	1/5 1,428
	20 4 3 20 A 7.9% 92%	0/5	-	2.6% 96%	0/5	-
	20 4 3 20 B	1.2% 98%	2/5 2,152	-	-	5/5 1,276
	20 4 3 40 A 416% 33%	0/5	-	514% 39%	0/5	-
	20 4 3 40 B 204% 56%	0/5	-	162% 50%	3/5 5,877
	40 4 1 40 A 147% 54%	0/5	-	309% 18%	0/5	-
	40 4 1 40 B 157% 73%	0/5	-	430% 40%	0/5	-
	40 4 1 80 A	49% 80%	0/5	-4,948%	0%	0/5	-
	40 4 1 80 B	39% 83%	0/5	-	331%	0%	0/5	-
	40 4 3 40 A 170% 43%	0/5	-	924% 39%	0/5	-
	40 4 3 40 B	13% 88%	0/5	-	87% 78%	0/5	-
	40 4 3 80 A	48% 77%	0/5	-2,813%	0%	0/5	-
	40 4 3 80 B	24% 84%	0/5	-3,899%	0%	0/5	-

Table 2 :

 2 Aggregated computational results when solving the two ILP models (testbed G1 -3-hour time limit)

	Characteristic # 1 |S| 3 |T | # 2 |D| 4 # A Type B	[P1] Gap %S #Opt Time Gap %S #Opt Time [P2] 47% 83% 10/80 3,981 636% 44% 26/80 1,225 68% 81% 12/80 1,841 937% 54% 35/80 2,252 10% 94% 17/80 2,283 92% 75% 27/80 1,743 97% 73% 5/80 4,619 1113% 35% 14/80 2,055 71% 78% 1/80 326 777% 52% 14/80 3,553 39% 88% 21/80 2,932 763% 42% 47/80 1,297
	All	57% 82% 22/160 2,814 773% 48% 61/160 1,815

Table 3 :

 3 Aggregated computational results when solving the CP model (testbed G1 -average over 3 runs -5 minutes time limit)

		R		R+restart
	Characteristic # 1 |S| 3 |T | # 2 |D| 4 # A Type B	Gap 9.2% 7.7% 5.5% 11.4% 13.3% 3.6%	%S 94% 95% 97% 93% 92% 98%	Gap 2.7% 2.4% 1.2% 4.0% 4.4% 0.8%	%S 98% 98% 99% 97% 96% 100%
	All	8.4%	95%	2.6%	98%

Table 4 :

 4 Detailed computational results when solving the CP model (testbed G1 -R+restart configuration -

	average over 3 runs)						
		1min	3min	5min
	Family	Gap	%S	Gap	%S	Gap	%S
	10 2 1 20 A	1.3%	98%	1.3%	98%	1.3%	98%
	10 2 1 20 B	0.4%	100%	0.4%	100%	0.4%	100%
	10 2 1 40 A	2.4%	99%	2.4%	99%	2.4%	99%
	10 2 1 40 B	0.4%	100%	0.4%	100%	0.4%	100%
	10 2 3 20 A	2.0%	97%	2.0%	97%	2.0%	97%
	10 2 3 20 B	0.3%	100%	0.3%	100%	0.3%	100%
	10 2 3 40 A	2.4%	99%	2.3%	99%	1.9%	99%
	10 2 3 40 B	0.8%	100%	0.8%	100%	0.8%	100%
	20 2 1 40 A	2.5%	99%	2.5%	99%	2.5%	99%
	20 2 1 40 B	0.3%	100%	0.3%	100%	0.3%	100%
	20 2 1 80 A	3.2%	99%	3.2%	99%	3.2%	99%
	20 2 1 80 B	0.2%	100%	0.2%	100%	0.2%	100%
	20 2 3 40 A	1.6%	99%	1.6%	99%	1.6%	99%
	20 2 3 40 B	0.2%	100%	0.2%	100%	0.2%	100%
	20 2 3 80 A	1.2%	100%	1.2%	100%	1.1%	100%
	20 2 3 80 B	0.3%	100%	0.2%	100%	0.2%	100%
	20 4 1 20 A	2.4%	95%	2.2%	95%	2.1%	95%
	20 4 1 20 B	1.0%	100%	0.9%	100%	0.9%	100%
	20 4 1 40 A	9.9%	93%	9.6%	93%	9.5%	93%
	20 4 1 40 B	2.9%	99%	2.9%	99%	2.9%	99%
	20 4 3 20 A	6.3%	94%	5.7%	94%	5.7%	94%
	20 4 3 20 B	1.7%	99%	1.7%	99%	1.7%	99%
	20 4 3 40 A	6.9%	94%	6.9%	94%	6.9%	94%
	20 4 3 40 B	1.9%	99%	1.8%	99%	1.8%	99%
	40 4 1 40 A	7.8%	94%	7.8%	94%	7.8%	94%
	40 4 1 40 B	0.8%	100%	0.7%	100%	0.5%	100%
	40 4 1 80 A	9.7%	94%	8.8%	95%	8.8%	95%
	40 4 1 80 B	0.5%	100%	0.5%	100%	0.5%	100%
	40 4 3 40 A	5.5%	96%	5.5%	96%	5.4%	96%
	40 4 3 40 B	0.6%	100%	0.6%	100%	0.6%	100%
	40 4 3 80 A	8.0%	95%	7.9%	95%	7.9%	95%
	40 4 3 80 B	0.5%	100%	0.4%	100%	0.4%	100%
	All	2.7%	98%	2.6%	98%	2.6%	98%

Table 6 :

 6 Computational results for the CPLNS (testbed G1 -average over 10 runs)

		1min	3min	5min
	Family	Gap	%S Gap	%S Gap	%S
	10 2 1 20 A 0.8% 98% 0.8% 98% 0.8% 98%
	10 2 1 20 B 0.0% 100% 0.0% 100% 0.0% 100%
	10 2 1 40 A 1.0% 100% 0.5% 100% 0.4% 100%
	10 2 1 40 B 0.0% 100% 0.0% 100% 0.0% 100%
	10 2 3 20 A 0.8% 99% 0.7% 99% 0.6% 99%
	10 2 3 20 B 0.0% 100% 0.0% 100% 0.0% 100%
	10 2 3 40 A 1.5% 99% 1.1% 99% 1.0% 99%
	10 2 3 40 B 0.1% 100% 0.1% 100% 0.0% 100%
	20 2 1 40 A 1.4% 99% 1.0% 99% 0.9% 99%
	20 2 1 40 B 0.1% 100% 0.0% 100% 0.0% 100%
	20 2 1 80 A 3.1% 98% 2.5% 99% 2.2% 99%
	20 2 1 80 B 0.1% 100% 0.1% 100% 0.1% 100%
	20 2 3 40 A 0.9% 99% 0.6% 100% 0.6% 100%
	20 2 3 40 B 0.0% 100% 0.0% 100% 0.0% 100%
	20 2 3 80 A 0.5% 100% 0.4% 100% 0.3% 100%
	20 2 3 80 B 0.1% 100% 0.1% 100% 0.1% 100%
	20 4 1 20 A 1.1% 95% 1.1% 95% 1.0% 95%
	20 4 1 20 B 0.1% 100% 0.1% 100% 0.1% 100%
	20 4 1 40 A 6.2% 94% 5.4% 94% 5.3% 94%
	20 4 1 40 B 1.2% 99% 0.5% 100% 0.2% 100%
	20 4 3 20 A 3.1% 95% 2.6% 96% 2.0% 96%
	20 4 3 20 B 0.3% 100% 0.2% 100% 0.2% 100%
	20 4 3 40 A 4.7% 95% 4.0% 95% 3.9% 95%
	20 4 3 40 B 0.8% 100% 0.6% 100% 0.5% 100%
	40 4 1 40 A 4.7% 96% 4.5% 96% 4.4% 96%
	40 4 1 40 B 0.2% 100% 0.2% 100% 0.1% 100%
	40 4 1 80 A 5.8% 96% 5.4% 96% 5.4% 96%
	40 4 1 80 B 0.3% 100% 0.2% 100% 0.2% 100%
	40 4 3 40 A 3.8% 97% 3.1% 98% 2.8% 98%
	40 4 3 40 B 0.2% 100% 0.2% 100% 0.1% 100%
	40 4 3 80 A 6.3% 95% 5.9% 95% 5.6% 96%
	40 4 3 80 B 0.2% 100% 0.2% 100% 0.2% 100%

Table 7 :

 7 Aggregated computational results for the CPLNS (testbed G1 -average over 10 runs)

		1min	3min	5min
	Characteristic # 1 |S| 3 |T | # 2 |D| 4 # A Type B	Gap 1.6% 98% 1.4% 99% 1.3% 99% %S Gap %S Gap %S 1.5% 99% 1.2% 99% 1.1% 99% 0.7% 99% 0.5% 100% 0.4% 100% 2.4% 98% 2.1% 98% 2.0% 98% 2.9% 97% 2.5% 97% 2.3% 97% 0.2% 100% 0.2% 100% 0.1% 100%
	All	1.5% 99% 1.3% 99% 1.2% 99%

Table 8 :

 8 Behavior of the CPLNS on the 10 runs (testbed G1 -5 minutes time limit)

	Characteristic # 1 |S| 3 |T | # 2 |D| 4 # A Type B	Mean 1.32% 1.12% 0.45% 2.00% 2.33% 0.12%	Best 1.04% 0.76% 0.25% 1.55% 1.75% 0.05%	Worst 1.65% 1.50% 0.66% 2.50% 2.93% 0.22%
	All	1.22%	0.90%	1.58%

Table 9 :

 9 Aggregated computational results for the four different approaches (testbed G2)

				[P1]	[P2]	CP	CPLNS
	Characteristic	3h	3h	5min	5min
	|S| |T | |D| Type	# # # 1 3 2 4	A B	Gap %S #Opt Time Gap %S #Opt Time Gap %S Gap %S 150% 81% 9/80 3,976 200% 62% 31/80 1,516 7.0% 98% 4.1% 98% 83% 80% 15/80 3,351 92% 58% 38/80 1,665 7.2% 99% 2.9% 99% 17% 94% 21/80 3,757 29% 88% 52/80 1,431 1.5% 99% 0.5% 100% 196% 70% 3/80 2,382 205% 48% 17/80 2,109 13% 97% 6.5% 98% 174% 72% 5/80 5,572 181% 59% 17/80 1,458 13% 97% 6.9% 98% 50% 90% 19/80 3,062 82% 64% 52/80 1,644 1.5% 100% 0.1% 100%
	All			118% 81% 24/160 3,585 150% 60% 69/160 1,598 7.1% 98% 3.5% 99%

  : revenue if turbine w W can produce electricity during the rest time period following day d D q p : number of required technicians if plan p P is selected-R p R ip b wp b wip -r b wp r b wip o p o ip

	-r b wi	6 9 9 8 9 9 7	1 if the execution of task i I shuts down the turbine w W during the rest time periods it overlaps, 0 otherwise.
	-g t w : revenue if turbine w W can produce electricity during time period t T
	-r g d		
	Plans		
	-P: set of plans
	-P i : set of plans involving task i I
	-i p : task involved in plan p P 5
	-a t p		1 if task i p is executed during time period t T 0 otherwise.
	B Detailed computational results
	B.1 Testbed G1
			be executed during t T ,
		0 otherwise.
	-s i : skill required to perform task i I
	-o i : penalty if task i I is postponed.
	Turbines		
	-W: set of turbines 6 9 9 8
	-b wi	9 9 7	

1 if the execution of task i I shuts down the turbine w W when technicians are effectively working on i, 0 otherwise. w

Table 10 :

 10 Behavior of the CPLNS on the 10 runs (testbed G1 -5 minutes time limit)

	Family	Mean	Best	Worst
	10 2 1 20 A	0.75%	0.70%	0.87%
	10 2 1 20 B	0.03%	0.00%	0.03%
	10 2 1 40 A	0.42%	0.11%	0.95%
	10 2 1 40 B	0.02%	0.01%	0.03%
	10 2 3 20 A	0.60%	0.37%	0.79%
	10 2 3 20 B	0.01%	0.01%	0.03%
	10 2 3 40 A	1.05%	0.22%	1.78%
	10 2 3 40 B	0.05%	0.01%	0.08%
	20 2 1 40 A	0.86%	0.20%	1.68%
	20 2 1 40 B	0.04%	0.02%	0.09%
	20 2 1 80 A	2.24%	1.49%	2.92%
	20 2 1 80 B	0.06%	0.04%	0.08%
	20 2 3 40 A	0.58%	0.47%	0.70%
	20 2 3 40 B	0.02%	0.01%	0.04%
	20 2 3 80 A	0.34%	0.26%	0.43%
	20 2 3 80 B	0.07%	0.05%	0.09%
	20 4 1 20 A	1.03%	0.96%	1.28%
	20 4 1 20 B	0.09%	0.01%	0.21%
	20 4 1 40 A	5.30%	4.52%	5.81%
	20 4 1 40 B	0.24%	0.09%	0.87%
	20 4 3 20 A	2.02%	1.03%	3.52%
	20 4 3 20 B	0.23%	0.04%	0.42%
	20 4 3 40 A	3.86%	2.78%	4.35%
	20 4 3 40 B	0.46%	0.17%	0.71%
	40 4 1 40 A	4.37%	4.26%	4.50%
	40 4 1 40 B	0.13%	0.07%	0.20%
	40 4 1 80 A	5.38%	3.99%	6.67%
	40 4 1 80 B	0.23%	0.16%	0.30%
	40 4 3 40 A	2.79%	1.71%	3.95%
	40 4 3 40 B	0.12%	0.06%	0.19%
	40 4 3 80 A	5.62%	4.86%	6.76%
	40 4 3 80 B	0.17%	0.12%	0.22%
	All	1.22%	0.90%	1.58%

Table 11 :

 11 Gap to the best lower bound according to the different approaches (testbed G1)

	Family	[P1] 3h	[P2] 3h	CP 5min	CPLNS 5min
	10 2 1 20 A	1.1%	0.0%	0.9%	0.4%
	10 2 1 20 B	0.0%	0.0%	0.4%	0.0%
	10 2 1 40 A	7.0%	0.1%	2.4%	0.4%
	10 2 1 40 B	0.0%	0.0%	0.4%	0.0%
	10 2 3 20 A	1.4%	0.0%	1.8%	0.4%
	10 2 3 20 B	0.0%	0.0%	0.3%	0.0%
	10 2 3 40 A	9.6%	0.0%	1.8%	1.0%
	10 2 3 40 B	0.0%	0.0%	0.8%	0.0%
	20 2 1 40 A	40.9%	1.0%	1.6%	0.1%
	20 2 1 40 B	1.6%	0.0%	0.3%	0.0%
	20 2 1 80 A	24.9%	432.2%	1.0%	0.0%
	20 2 1 80 B	6.2%	40.0%	0.2%	0.0%
	20 2 3 40 A	5.7%	0.4%	1.1%	0.1%
	20 2 3 40 B	0.0%	0.0%	0.2%	0.0%
	20 2 3 80 A	22.4%	47.5%	0.7%	0.0%
	20 2 3 80 B	4.2%	78.4%	0.2%	0.0%
	20 4 1 20 A	4.3%	0.5%	1.1%	0.0%
	20 4 1 20 B	0.1%	0.0%	0.9%	0.1%
	20 4 1 40 A	152.2%	256.4%	4.0%	0.0%
	20 4 1 40 B	12.6%	104.7%	2.6%	0.0%
	20 4 3 20 A	6.2%	0.9%	4.0%	0.4%
	20 4 3 20 B	0.7%	0.0%	1.7%	0.2%
	20 4 3 40 A	403.6%	497.5%	3.1%	0.2%
	20 4 3 40 B	204.1%	64.7%	1.8%	0.4%
	40 4 1 40 A	138.0%	295.7%	3.3%	0.0%
	40 4 1 40 B	157.0%	429.8%	0.4%	0.0%
	40 4 1 80 A	40.6%	4777.1%	3.2%	0.0%
	40 4 1 80 B	38.7%	330.1%	0.3%	0.0%
	40 4 3 40 A	165.1%	897.5%	2.5%	0.0%
	40 4 3 40 B	13.4%	86.9%	0.5%	0.0%
	40 4 3 80 A	39.3%	2731.3%	2.1%	0.0%
	40 4 3 80 B	23.8%	3893.2%	0.3%	0.0%
	All	47.7%	467.7%	1.4%	0.1%

  Table12reports the results obtained when solving the ILP and CP models and when running the CPLNS. To assess the quality of the results, it is noteworthy that large values for the gap are essentially associated with Type A instances. Because the technicians-to-work ratio is tighter, it is more difficult to schedule all the tasks.

Table 12 :

 12 Computational results for the four different approaches (testbed G2)

			[P1]				[P2]	CP	CPLNS
	Family		3h				3h	5min	5min
		Gap	%S #Opt Time	Gap	%S #Opt Time Gap %S	Gap	%S
	2 1 20 A	2.5% 98%	1/5 9,877	4.9% 100%	4/5	991 3.0% 98% 1.8% 99%
	2 1 20 B 0.01% 100%	4/5 2,082	-	-	5/5	110 1.2% 100% 0.01% 100%
	2 1 40 A	17% 95%	0/5		0.2% 100%	1/5	315 2.9% 99% 1.2% 99%
	2 1 40 B	2.6% 98%	2/5 6,083	-	-	5/5	970 1.8% 99% 0.04% 100%
	2 3 20 A 0.01% 100%	4/5	4496	-	-	5/5	82 0.7% 100% 0.2% 100%

Table 13 :

 13 Gap to the best lower bound according to the different approaches (testbed G2)

	Family	[P1] 3h	[P2] 3h	CP CPLNS 5min 5min
	10 2 1 20 A	1.0%	0.0% 2.0%	0.8%
	10 2 1 20 B	0.0%	0.0% 1.1%	0.0%
	10 2 1 40 A	16.8%	0.0% 2.7%	1.0%
	10 2 1 40 B	1.6%	0.0% 1.8%	0.0%
	10 2 3 20 A	0.0%	0.0% 0.7%	0.2%
	10 2 3 20 B	0.0%	0.0% 1.2%	0.0%
	10 2 3 40 A	47.7%	0.0% 4.0%	0.7%
	10 2 3 40 B	0.1%	0.0% 0.7%	0.1%
	20 2 1 40 A	18.0%	0.7% 1.5%	0.0%
	20 2 1 40 B	0.0%	0.0% 0.1%	0.0%
	20 2 1 80 A	60.0%	68.7% 0.9%	0.0%
	20 2 1 80 B	11.8%	0.0% 0.3%	0.0%
	20 2 3 40 A	6.8%	0.9% 0.6%	0.0%
	20 2 3 40 B	0.0%	0.0% 0.8%	0.0%
	20 2 3 80 A	23.2%	86.0% 0.6%	0.0%
	20 2 3 80 B	7.4%	0.0% 0.1%	0.0%
	20 4 1 20 A	3.5%	0.1% 2.4%	0.6%
	20 4 1 20 B	0.5%	0.0% 2.9%	0.1%
	20 4 1 40 A 178.6%	68.3% 6.9%	0.0%
	20 4 1 40 B	6.7%	0.1% 1.7%	0.0%
	20 4 3 20 A	1.2%	0.0% 4.7%	0.1%
	20 4 3 20 B	1.3%	0.0% 3.5%	0.7%
	20 4 3 40 A 380.8%	90.2% 28.2%	0.0%
	20 4 3 40 B	47.2%	0.5% 6.4%	0.1%
	40 4 1 40 A 1241.2% 1321.5% 4.5%	0.0%
	40 4 1 40 B	65.6%	0.3% 1.0%	0.0%
	40 4 1 80 A	74.6% 255.6% 8.6%	0.0%
	40 4 1 80 B	353.6% 175.7% 0.3%	0.0%
	40 4 3 40 A 243.9%	49.3% 3.3%	0.0%
	40 4 3 40 B	55.2%	1.5% 1.0%	0.0%
	40 4 3 80 A 115.2% 244.3% 1.8%	0.0%
	40 4 3 80 B	60.1% 282.4% 0.7%	0.0%
	All	94.5%	82.7% 3.0%	0.1%

The Global Wind Energy Council -Global wind report annual market update

-http://www.gwec.net/wpcontent/uploads/vip/GWEC-Global-Wind-2015-Report April-2016 22 04.pdf, last

accessed: 2016-09-15 2 The ratio of the duration that a generating unit is available to provide energy to the grid, for the time considered, to the duration of the same time period

We also implemented the adaptive layer as proposed in[START_REF] Ropke | An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows[END_REF], but after some preliminary experimentation we concluded that the contribution of this component to the accuracy of the method did not payoff the loss of simplicity and the effort needed to fine tune the additional parameters. We therefore limit the discussion in the paper to the basic LNS version.

3 20 B

For each approach, we also report in Table 13 the gap to the best solution that we were able to compute in our tests. We find similar results as for testbed G1. Globally, the CPLNS outperforms the other approaches. 

; /* We assume that the duration of a working day is 8 hours.

*/

Add the created executing mode to M i

Add the created task i to I end

The resulting values are rounded to the nearest tenth. From our perspective, they compare well to realistic data.

Afterwards, for each task i I and every time period t T , we compute the binary parameter r ϑ t i equal to 1 if and only if φ t l Υ saf ety max (i.e. the task i can be scheduled during time period t according to safety concerns).

Arbitrarily, we set each parameter ϑ t i equal to 1 for every task i and every time period t. We point out here that this choice makes the instances more complicated to solve as there is a wide flexibility to schedule the maintenance operations. This also matches field observations. The last step consists in computing the revenue value g t w for every wind turbine w W during each time period t T . We compute the revenue from the nominal power P w of the wind turbine and from the wind speed φ t l . We also use an estimation hoursptq of the number of hours during every time period t. More specifically, we compute the revenue g t w generated by each turbine w W that is available during time period t T as follows:

where • 0.08: is an approximation to the selling price in euros of 1 kWh of wind energy (this selling price is guaranteed for the next 10 years in France).

• hoursptq: estimation of the number of hours during time period t T • φ t lw : wind speed during time period t at the location of turbine w W • CF pφq: the ratio of the net electricity generated according to a wind speed equal to φ to the energy that could have been generated at full-power operation (this ratio is given by a piecewise linear function estimated from real data) Finally, we compute a single postponing penalty across all tasks. This penalty is equal to the maximum loss of revenue that can be generated by the scheduling of a task of I plus one. With this definition, we almost always (if not always) ensure that postponing a task is non-profitable. With this penalty we therefore almost ensure to schedule the maximum number of tasks according to the total number of technicians and their availability. This is quite in line with the practice in the field.

Table 14 presents the detail parameter setting used in the generation process.