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Abstract

There has been an increasing interest in constrained nonconvex regularized block biconvex / multicon-
vex optimization problems. We introduce an approach that effectively exploits the biconvex / multicon-
vex structure of the coupling term and enables complex application-dependent regularization terms to be
used. The proposed Alternating Structure-Adapted Proximal gradient descent algorithm enjoys simple
well defined updates. Global convergence of the algorithm to a critical point is proved using the so-called
Kurdyka- Lojasiewicz property for subanalytic functions. Moreover, we prove that a large class of useful
objective functions obeying our assumptions are subanalytic and thus satisfy the Kurdyka- Lojasiewicz
property.

Keywords Alternating minimization, Block coordinate descent, Global convergence, Kurdyka- Lojasiewicz
property, Nonconvex-nonsmooth optimization, Proximal forward-backward, Proximal gradient descent, Sub-
analytic functions

1 Introduction

Recently, there has been an increasing interest in the design and the analysis of regularized block biconvex
(multiconvex) optimization problems. In the first part of this work we consider problems of the form:

minimizex,y J(x, y) = F (x) +G(y) +H(x, y), (1)

where x and y belong to real finite-dimensional real spaces. Such an objective is also known as a two
block optimization model with blocks x and y. The coupling term H is block biconvex: for any y fixed,
x 7→ H(x, y) is convex and for any x fixed, y 7→ H(x, y) is convex. The feasible set of J is block biconvex.
The regularization functions F and G can be nonconvex and are supposed continuously differentiable inside
the domain of J (for example, smooth approximations of nonsmooth functions). It worths noting that J is
generally nonconvex even if F and G are convex.

Then we consider the extension of (1) to N blocks living in finite-dimensional real spaces {Ui}Ni=1, in
which case J : U1 × · · · × UN → R ∪ {+∞} reads as

minimizex J
(
x(1), . . . , x(N)

)
:=

N∑
i=1

Fi

(
x(i)
)

+H(x). (2)

The coupling function H is block multiconvex, i.e., x(i) 7→ H(x) is convex for any i, and the possibly
nonconvex regularizers Fi : Ui → R ∪ {+∞} are continuously differentiable on the domain of J .

Optimization problems of the form (1) - (2) are widely used in engineering, science and finance. They are
rich enough to cover various practical applications, such as blind source separation, blind deconvolution, non-
negative matrix factorization, structured total least squares, multi-modal learning for image classification
[40], patch-based methods for inpainting [3], to list a few.

In order to simplify the reading of the paper, most of the presentation is on the two block problem (1);
the results on the multi block problem (2) are given later on.
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1.1 General alternating minimization schemes

The most intuitive way to solve problems of the form given in (1) is to use alternating minimization which
which generates a sequence of iterates {xk, yk}k∈N defined by

Choose algorithm ALG to solve the x- and y-updates;
for each k = 1, 2, . . . , compute

xk ∈ arg minx J(x, yk−1) using ALG,
yk ∈ arg miny J(xk, y) using ALG.

(3)

This classic scheme is known as block coordinate Gauss-Seidel method and as block coordinate descent
(BCD). It was introduced in [27] (1957) and further developed for various problems, see e.g., [36, 24, 3, 11, 2].
If J is continuously differentiable and if the minimum in each step is uniquely attained, convergence to a
critical point holds [12, Prop. 2.7.1]. A general convergence result on descent methods for real-analytic
(possibly nonconvex) objectives was obtained by Absil, Mahony, and Andrews in [1].

A way to relax the requirements for convergence of the BCD in (3) is to consider the proximal BCD
scheme:

Choose algorithm ALG to solve the x- and y-updates;
Select step-sizes τ > 0 and σ > 0;
for each k = 1, 2, . . . , compute

xk ∈ arg minx

{
J(x, yk−1) + 1

2τ ∥x− xk−1∥2
}

using ALG,
yk ∈ arg miny

{
J(xk, y) + 1

2σ∥y − yk−1∥2
}

using ALG.

(4)

This approach was introduced for convex functions J by Auslender [7, sec. 4]. An extension to J strictly
quasi-convex with respect to its blocks was proposed in [25, sec. 7] and to nonsmooth objectives in [36].
Convergence facts on (4) for other nonconvex nonsmooth objectives were found in [38].

Note that the BCD and the proximal BCD schemes in (3) and in (4), respectively, employ a minimization
algorithm ALG which heavily determines the numerical issue.

1.2 Review of related literature

An efficient approach to solve the difficulties arising with the proximal BCD for nonconvex and nonsmooth
objectives J was proposed in 2013 by Xu and Yin [38] for block multiconvex differentiable H and by Bolte,
Sabach, and Teboulle [17] for two block continuously differentiable H. Using the smoothness of H, the idea
was to apply a proximal linearized BCD for (xk, yk):

for each k = 1, 2, . . . , compute

find τk > 0 according to Lip
(
∇xH

(
·, yk−1

))
xk ∈ arg minx

{⟨
x,∇xH

(
xk−1, yk−1

)⟩
+ F (x) + 1

2τk
∥x− xk−1∥2

}
,

find σk > 0 according to Lip
(
∇yH

(
xk, ·

))
yk ∈ arg miny

{⟨
y,∇yH

(
xk, yk−1

)⟩
+G(y) + 1

2σk
∥y − yk−1∥2

}
,

(5)

where the Lipschitz constant is computed (or estimated) at each step. The scheme needs regularizers (F,G)
that are “simple” in the sense that their proximity operator

arg minx

{
F (x) + 1

2τ ∥x− z∥2
}

(6)

has a closed-form expression. Since then, this approach became very popular. It was further successfully used
and improved in numerous works, see e.g., [26, 37, 9, 32, 21, 39]. We recall that a proximal linearized BCD
is equivalent to an alternating proximal gradient descent and to an alternating proximal forward-backward.

The advantages of this approach compared to the schemes in subsection 1.1 are tremendous. All the three
schemes – the BCD (3), the proximal BCD (4) and the proximal linearized BDC (5) – were analyzed and
compared in [38]. The conclusion [38, p. 1795] is that in general the three schemes give different solutions,
and that the proximal linearized BDC (5) needs less computation and offers a better decrease of the objective
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function than the other algorithms. One however remarks the cost to compute or to estimate the step-sizes
(τk, σk) at each iteration and the possible variability of {τk}k≥0 and {σk}k≥0 during the iterations. An
attempt to fix this issue is the preconditioning proposed by Chouzenoux, Pesquet, and Repetti [21]. One
can also remark that if F or G is truly nonconvex, the solution in (6) can be composed out of non-connected
sets, for an example see [17, p. 487].

Remark 1. [Choices for H in applications] In nearly all applications solved using a scheme of the form
(5), the coupling term H is biquadratic (multiquadratic), sometimes combined with a bilinear term. When
restricted to two blocks, one finds H(x, y) = ∥L0(x ·y)−w∥2+⟨L1(x), L2(x, y)⟩ where “·” denotes a product,
w is a known matrix, ∥ · ∥ stands for Frobenius norm and Li are linear forms. Such a term is used in [9]
and with L0 = 1 and L1 = L2 = 0 in [38, 17, 32, 39]. In all these applications, (∇xH,∇yH) are only locally
Lipschitz.

Remark 2. [Choices for (F,G) in applications] The most typical form of F (resp. G) is the non-negativity
constraint x ≥ 0 (resp., y ≥ 0) – see [38, 26, 32, 39] and [17, sec. 4.2, p. 486]. We note that in those cases F
and G are smooth inside their domains. Other forms for F or G are the ℓ2 norm (possibly squared) [32, 9],
the counting function ℓ0 [17] and ℓp, 0 ≤ p < 1 [39].

A unified approach for proving the convergence of proximal splitting methods for nonconvex and nons-
mooth problems was developed by Attouch, Bolte, and Svaiter in their seminal work [6]. A central assump-
tion in order to prove global convergence of the iterates to a critical point is that the objective function J
satisfies the so-called Kurdyka- Lojasiewicz (K L) property [15, 16]. In several articles [26, 9, 32, 9] conver-
gence is proven using the methodology proposed in [17].

1.3 Motivation and proposed algorithm ASAP

The biconvexity (block multiconvexity) of H is a very strong structural property of the objective function.
The proximal linearized gradient approach in (5) (subsection 1.2) does not benefit from this feature. Our
motivation is to build an algorithm that exploits the biconvexity (block multiconvexity) of H. This means
reversing the splitting used in (5), i.e., using the proximity operators with respect to H(·, y) and H(x, ·) –
“simple” in practice, see Remark 1 – instead of those of F and G. The argument behind the splitting in
(5) is to use F and G nonsmooth. Alternatively, we attach to H the convex constraints on F and G and
assume that F and G are differentiable on their domains.

Remark 3. Smooth approximations to solve nonsmooth optimization problems are recommended in a
unified framework by Beck and Teboulle [10]. Very numerous methods with nonsmooth regularizers use
their smooth approximations in the numerical algorithms [18, 28, 20, 32]. Smooth (stiff) functions are
customarily used for sparse recovery [19, 29, 20]. A study by Chen of smoothing methods giving rise to
efficient calculations in numerical schemes for nonsmooth optimization can be found in [18]. In other cases
the estimates of x, y must not be sparse and hence the regularizers must be smooth; a practical application
on fringe separation is presented in subsection 7.2.

For simplicity, here we present the case of biconvex coupling terms H. We reformulate the problem so
that H contains the biconvex constraints and let F and G be continuously differentiable. Thus we propose
the simple Alternating Structure-Adapted Proximal gradient descent (ASAP) algorithm1 sketched below:

ASAP Set τ ∈ (0, 2/Lip(∇F )) and σ ∈ (0, 2/Lip(∇G));
for each k = 1, 2, . . . , compute:

xk = arg minx

{⟨
x,∇F

(
xk−1

)⟩
+H(x, yk−1) + 1

2τ ∥x− xk−1∥2
}

;

yk = arg miny

{⟨
y,∇G

(
yk−1

)⟩
+H(xk, y) + 1

2σ∥y − yk−1∥2
}
.

(7)

Let us provide some details about the proposed algorithm.

1A particular form of this algorithm designed for a specific application was proposed by Soncco, Barbanson, Nikolova et
al. [35] without convergence proof.
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− The step-sizes τ and σ in the proposed ASAP algorithm depend only on F and G, so they are fixed
in advance.

− The facts that H is biconvex and that (7) does not involve directly F and G show that xk and yk

are given by the unique minimizer of a strictly convex coercive function. Thus the iterates (xk, yk) are
uniquely defined (even if F or G are nonconvex). Furthermore, Remark 1 shows that in many important
applications (xk, yk) are the explicit solutions of well-posed quadratic problems. In general, data-fidelity
terms are defined using functions H(x, ·) and H(·, y) that are “simple” in the sense of (6).

− Regularizers F and G can have complex structure in order to capture various application-dependent
features; one example is presented in subsection 7.2.

The bi / multi convex structure of the coupling term H and its particular use in the ASAP algorithm
requires a specific proof to obtain subsequential convergence of the iterates. Our assumptions are very
simple and easy to verify. Besides, a series of additional results help understanding the algorithm. We
exhibit important classes of optimization problems that can be solved using the proposed ASAP and prove
that they are subanalytic. They hence enjoy the K L property. The global convergence of the iterates
produced by ASAP is established using a result from [6].

The ASAP algorithm addresses in a simple way a wide range of problems. Two particular applications of
the algorithm to big-data air-born sequences of images are actually used by our industrial partner ONERA
(the French aerospace lab).

1.4 Outline

Section 2 presents the optimization model. Section 3 is devoted to the prerequisites for understanding the
ASAP algorithm and its convergence. The ASAP algorithm is outlined in section 4. Section 5 establishes
the convergence of ASAP for biconvex coupling terms; a generic family of objective functions is proven to
satisfy the K L property in subsection 5.3. Section 6 is on block multiconvex coupling terms. Applications
for Hadamard based coupling terms are presented in section 7.

2 The problem and examples

Notations We consider that x ∈ U and y ∈ V where U and V are real finite-dimensional spaces. The
ith element of a vector or a matrix x (seen as a vector) reads as xi. A vector (a matrix) indexed for some
purpose is denoted by x(i). For an m× n real matrix w we systematically denote

∥w∥ := ∥w∥F =

√∑
i,j

w2
i,j ,

noticing that if w is a vector (n = 1), the Frobenius norm ∥ · ∥F boils down to the ℓ2 norm. For subsets of
real finite-dimensional spaces, capital italic letters are used. Given a nonempty set S ⊂ U , the distance of
any point x+ ∈ U to S is defined by

dist(x+,S) := inf{∥x− x+∥ | x ∈ S},

while the indicator function of S is given by

χS(x) :=

{
0 if x ∈ S,
+∞ if x ̸∈ S.

The subdifferential of a convex function h is denoted by ∂h.

2.1 The optimization model for biconvex coupling term

We are interested in solving nonconvex minimization problems of the form J : U × V → R

J(x, y) := F (x) +G(y) +H(x, y), (8)

where U and V are real finite-dimensional spaces.2 According to what was said in the introduction, we
adopt the following blanket model assumption on the objective J :

2For instance, in section 7 an application with U = V = Rm×n is presented.

4



Assumption (M)

(a) J : U × V → R ∪ {+∞} is lower bounded;

(b) F : U → R and G : V → R are continuously differentiable and their gradients ∇F and ∇G are Lipschitz
continuous with constants L∇F and L∇G, respectively;

(c) H : U × V → R ∪ {+∞} is biconvex3 and differentiable on its domain.

The cases F = 0 or G = 0 are considered as well. From Assumption (M), the objective J is lower-
semicontinuous. Further, H can be cast into the form

H(x, y) = H̃(x, y) + χDx(x) + χDy(y),

where H̃ is differentiable on U × V and Dx ⊆ U and Dy ⊆ V are nonempty closed convex sets. The
optimization problem equivalently reads as

J(x, y) = H̃(x, y) + F (x) + χDx(x) +G(y) + χDy(y). (9)

Typically, the biconvex structure of the coupling term H is due to a bilinear mapping (see Remark 1 for
examples). For clarity, we recall that

Definition 1. A mapping b : U × V →W is bilinear if x 7→ b(x, y) and y 7→ b(x, y) are linear applications.
If W = R, then b is called a bilinear form.

2.2 Illustration: a general family of objective functions

A generic family of objective functions that can be minimized using the proposed algorithm is described
next for the case of H biconvex:

J(x, y) :=
∑
i

fi(∥Aix∥)︸ ︷︷ ︸
=:F (x)

+
∑
j

gj(∥Bjy∥)︸ ︷︷ ︸
=:G(y)

+h(∥b(x, y) − w∥) + χDx(x) + χDy(y)︸ ︷︷ ︸
=:H(x,y)

(10)

with b : U ×V →W a bilinear mapping, (Dx,Dy) closed nonempty convex sets, Ai and Bi linear operators,
and w ∈ W given data. Function h is convex and differentiable; the most often, h(t) = t2. Some relevant
choices for functions (fi, gj) in accordance with Assumption (M)(b) are listed below.

Example 1. [Choices for (fi, gj) in (10)] These functions are of the form ψ : R → R or (ψ)p : R → R where
p is a rational number and include a parameter α > 0:

(i) ψ(t) := |t|2 and (ψ(t))p for p > 1
2 ;

(ii) ψ(t) :=

{
|t| − α/2 if |t| > α
t2/(2α) if |t| ≤ α

, α > 0 and (ψ(t))p for p ∈ (0, 1];

(iii) ψ(t) :=
√
t2 + α, α > 0 and (ψ(t))p for p ∈ (0, 1];

(iv) ψ(t) := |t| − α log(1 + |t|/α), α > 0;

(v) ψ(t) := log(1 + t2/α), α > 0;

(vi) ψ(t) := t2/(α+ t2), α > 0;

(vii) ψ(t) = 1 − exp
(
−t2/α

)
.

When α is small, functions (ii)-(vi) are stiff near the origin and they provide smooth approximations of
nonsmooth functions. In particular, (v), (vi) and (vii) can approximate the counting function ℓ0. Functions
ψ in (iii)-(iv) are convex and for α small enough they are used to approximate the ℓ1 norm [19, 10] whereas
ψp for p ∈ (0, 1] are used to approximate the corresponding ℓp “norm” for “sparse recovery” [29, 28, 20].

3for fixed y ∈ V , x 7→ H(x, y) is convex, and for fixed x ∈ U , y 7→ H(x, y) is convex.
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3 Preliminary facts

3.1 Elements of subdifferential calculus

Here we recall some facts on subdifferential calculus in relation with the objective J . Given a function
f : Rm → R ∪ {+∞}, its domain is

dom f := {x ∈ Rm | f(x) < +∞},

and f is proper if and only if dom f ̸= ∅.

Definition 2. [Subgradients of convex functions] Let h : Rm → R ∪ {+∞} be a proper convex lower
semicontinuousnn function and x+ ∈ dom h. The subdifferential ∂h(x+) of h at x+ is the set of all p ∈ Rm,
called subgradients of h at x+, such that

∀ x ∈ Rm h(x) ≥ h(x+) + ⟨p, x− x+⟩

If x+ /∈ dom h, then ∂h(x+) = ∅.

The subdifferential for nonconvex nonsmooth functions is defined below.

Definition 3. [33, Def. 8.3] Let h : Rm → R ∪ {+∞} be a function.

(a) The Fréchet subdifferential of h at x+∈ dom h, denoted ∂̂h(x+), is the set of vectors p ∈ Rm such that
∀x ∈ Rm one has h(x) ≥ h(x+) + ⟨p, x− x+⟩ + o(∥x− x+∥). If x+ /∈ dom h, then ∂̂h(x+) = ∅.

(b) The (limiting-)subdifferential of h at x+∈ dom h, written ∂h(x+), is defined by

∂h(x+) :=
{
p ∈ Rm | ∃ xk → x+, h(xk) → h(x+), pk → p, pk ∈ ∂̂h(xk)

}
.

Then ∂̂h(x) ⊂ ∂h(x) and both subsets are closed [33, Theorem 8.6]. If h is convex, then ∂̂h(x) = ∂h(x)
as in Definition 2. If h is differentiable, ∂h(x+) = {∇h(x+)}.

The next remark simplifies several parts in the analysis of our algorithm.

Remark 4. From Assumption (M), one has

(a) dom J := {(x, y) ∈ U × V | J(x, y) < +∞} = Dx ×Dy is biconvex and closed;

(b) J is continuous at any point (x, y) ∈ int(dom J) and obeys J(x, y) = J̃(x, y) where the continuous
function J̃ is given by J̃(x, y) := F (x) +G(y) + H̃(x, y).

We can note that (b) holds true for the assumptions in [4, 38, 39].

For y fixed, the partial subdifferential of J(·, y) at x is denoted by ∂xJ(x, y); for x fixed, ∂yJ(x, y) is
defined in a similar way.

Proposition 1. Let J obey Assumption (M). Then, for any (x, y) ∈ dom J ,

∂J(x, y) = ∂xJ(x, y) × ∂yJ(x, y) = (∇F (x) + ∂xH(x, y)) × (∇G(y) + ∂yH(x, y))

where the symbol “×” stands for Cartesian product.

Proof . From (9), the function J̃(x, y) := F (x) + G(y) + H̃(x, y) is differentiable. This shows that for any
(x, y) ∈ dom J one has

∂J(x, y) = ∇J̃(x, y) + ∂
(
χDx(x) + χDy(y)

)
.

Using subdifferential calculus for separable functions [33, Prop. 10.6] yields

∂
(
χDx(x) + χDy(y)

)
= ∂χDx(x) × ∂χDy(y).

Since ∇J̃(x, y) = (∇F (x) + ∇xH̃(x, y),∇G(y) + ∇yH̃(x, y)), and using the last equality together with
Remark 4(b), leads to the stated result. �

The Fermat’s rule, extended to nonconvex/nonsmooth functions is given next.
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Proposition 2. [33, Theorem 10.1] Let f : Rm → R ∪ {+∞} be a proper function. If f has a local
minimum at x∗, then 0 ∈ ∂f(x∗).

For nonconvex functions, the Fermat’s rule is only a necessary conditions. First-order methods can find
only points satisfying this rule.

Definition 4. We say that (x∗, y∗) is a critical point of J if (0, 0) ∈ ∂J(x∗, y∗).

The set of the critical points of J will be denoted by crit(J).

3.2 Two facts on limit point sets

Any bounded sequence {zk}k∈N has a convergent subsequence; thus the set of all its limit points

L(z0) :=
{
z∗ | ∃ {kj}j∈N strictly increasing such that zkj → z∗ as j → ∞

}
. (11)

is nonempty and closed. The next two claims are proven in Appendix.

Lemma 1. Let {zk}k∈N be a sequence of Rm such that ∥zk+1 − zk∥ → 0 as k goes to infinity. Suppose that
the set L(z0) of the limit points of {zk}k∈N is nonempty and bounded. Then limk→∞ dist

(
zk,L(z0)

)
= 0.

An immediate useful consequence is the following:

Corollary 1. Let {zk}k∈N be a sequence of Rm such that ∥zk+1 − zk∥ → 0 as k goes to infinity. The
following statements are equivalent:

(a) the set L(z0) of the limit points of {zk}k∈N is nonempty and bounded;

(b) the sequence {zk}k∈N is bounded.

3.3 Elements of proximal gradient descent

Proximity operators were inaugurated by Moreau in 1962 [31] as a generalization of convex projection
operators. They were studied in numerous works, see the monograph of Bauschke and Combettes [8] for an
overview.

Definition 5. Let h : Rm → R ∪ {+∞} be a proper, lower semicontinuous and convex function. Given
z ∈ Rm and τ > 0. The proximity operator of h at z ∈ Rm is defined as [31, 8]

proxτh(z) = arg min
x∈Rm

{
h(x) +

1

2τ
∥z − x∥2

}
. (12)

Remark 5. Two important consequences of this definition are given below:

(a) the minimizer proxτh(z) always exists and is uniquely defined as being the minimizer of a strictly convex
coercive function;

(b) for any z ∈ Rm one has proxτh(z) ∈ dom h, which follows from Fermat’s rule.

A fundamental inequality associated with the proximity operator is given next.

Lemma 2 (Proximal inequality). Let h : Rm → R ∪ {+∞} be a proper, lower semicontinuous convex
function. Given z ∈ Rm and τ > 0, if x+ = proxτh(z), then

h(x) ≥ h(x+) − 1

τ
⟨x− x+, x+ − z⟩ ∀ x ∈ Rm.

The proximal gradient descent, known also as proximal forward-backward, has a crucial role when
minimising the sum of a convex and a smooth function.
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Definition 6. Let h : Rm → R ∪ {+∞} be a proper, lower semicontinuous and convex function and
f : Rm → R be a differentiable (not necessarily convex) function with L∇f -Lipschitz continuous gradient.
The main iteration to minimize f +h using the proximal gradient method starting from any u ∈ Rm is given
by

x+ = proxτh (u− τ∇f(u)) . (13)

The point x+ is uniquely defined and satisfies x+ ∈ dom h, see Remark 5.

Remark 6. The proximal gradient descent can be seen as the minimization of h+ f̃ , where f̃ is a quadratic
approximation of f around the point u:

x+ = proxτh (u− τ∇f(u))

= arg min
x∈Rm

{
h(x) +

1

2τ
∥x− (u− τ∇f(u))∥2

}
= arg min

x∈Rm

{
h(x) + f(u) + ⟨x− u,∇f(u)⟩ +

1

2τ
∥x− u∥2︸ ︷︷ ︸

=:f̃(z)

}
.

We recall a classical result whose proof can be found in the textbook [12, A. 24].

Lemma 3 (Descent lemma). Let f : Rm → R be a differentiable function with L∇f -Lipschitz continuous
gradient. Then

f(u) ≥ f(x) − ⟨x− u,∇f(u)⟩ −
L∇f

2
∥x− u∥2 ∀ x, u ∈ Rm. (14)

The next lemma warrants a sufficient decrease of the objective after a proximal step.

Lemma 4. Let f : Rm → R be a differentiable function with L∇f -Lipschitz continuous gradient and h :
Rm → R∪ {+∞} a convex, lower semicontinuous and proper function. Fix τ such that τ < 2/L∇f . If x+ is
defined by (13), then

f(u) + h(u) ≥ f(x+) + h(x+) +

(
1

τ
−

L∇f
2

)
∥x+ − u∥2 ∀ u ∈ Rm (15)

where (1/τ − L∇f/2) is a positive number.

Proof . Apply the proximal inequality to h with x := u and z := u− τ∇f(u):

h(u) ≥ h(x+) − 1

τ

⟨
u− x+, x+ − u+ τ∇f(u)

⟩
= h(x+) +

1

τ
∥x+ − u∥2 +

⟨
x+ − u,∇f(u)

⟩
.

Then, adding equation (14) for f and x = x+ in the descent Lemma 3 to the result obtained above leads to
the desired inequality (15). Finally, (1/τ − L∇f/2) > 0 because of the choice of τ . �

4 A simple algorithm adapted to multiconvex coupling terms

4.1 Alternating Structure-Adapted Proximal gradient descent algorithm (ASAP)

According to Remark 6, the iterations of our algorithm sketched in subsection 1.3, see (7), are equivalent to
minimizing the following quadratic approximations of F around the point xk−1 and of G around the point
yk−1, respectively:

xk = arg min
x∈U

{
F (xk−1) + ⟨x− xk−1,∇F (xk−1)⟩ +H(x, yk−1) +

1

2τ
∥x− xk−1∥2

}
, (16)

yk = arg min
y∈V

{
G(yk−1) + ⟨y − yk−1,∇G(yk−1)⟩ +H(xk, y) +

1

2σ
∥y − yk−1∥2

}
. (17)
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Algorithm 1 ASAP: Alternating Structure-Adapted Proximal gradient descent

Initialization: (x0, y0) ∈ U × V and 0 < τ < 2/L∇F , 0 < σ < 2/L∇G
General Step: for k = 1, 2, . . ., compute

xk = proxτH(·,yk−1)

(
xk−1 − τ∇F (xk−1)

)
, (18)

yk = proxσH(xk,·)

(
yk−1 − σ∇G(yk−1)

)
. (19)

Hence, ignoring the terms that are constant at iteration k, namely F (xk−1), ⟨xk−1,∇F (xk−1)⟩, G(yk−1)
and ⟨yk−1,∇G(yk−1)⟩, and using the definition of proximal gradient descent (Definition 6), the proposed
ASAP algorithm takes the compact form stated below.

The step-sizes τ and σ are set according to Lemma 4 so that they ensure a sufficient decrease of the
objective J at each step. They depend only on the Lipschitzians of ∇F and ∇G. According to the
initialization, if F = 0 (resp., G = 0), then τ (resp., σ) is a positive number.

Remark 7. The ASAP algorithm confirms immediately two attractive points that are direct consequences
of Remark 5:

(a) iterates (xk, yk) are always uniquely defined, even if F or G are nonconvex;

(b) for any k ≥ 1, it holds that (xk, yk) ∈ dom J .

4.2 ASAP algorithm with N blocks

The ASAP algorithm can be applied to the case when H is block multiconvex. Then the variable x is split
into N blocks x =

(
x(1), . . . , x(N)

)
and the optimization problems has the form

J
(
x(1), . . . , x(N)

)
:= H

(
x(1), . . . , x(N)

)
+
∑N

i=1 Fi

(
x(i)
)
,

H
(
x(1), . . . , x(N)

)
= H̃

(
x(1), . . . , x(N)

)
+
∑N

i=1 χDi(x(i)).
(20)

Analogously to Assumption (M), J is lower-bounded, and for any i = 1, . . . , N , functions Fi obeys (M)(b)
and x(i) 7→ H̃

(
x(1), . . . , x(N)

)
is convex and differentiable, and the set Di ̸= ∅ is closed and convex, see

(M)(c). The corresponding algorithm is:

Algorithm 2 ASAP for Multiconvex coupling term

Initialization: Updating rule (UR),
(
x0(i)

)
i

and 0 < τi < 2/L∇Fi for i = 1, . . . , N

General Step: for k = 1, 2, . . .
pick i ∈ {1, 2, . . . , N} according to UR and compute

xk(i) = proxτiH(xk
(1)

,...,xk
(i−1)

,·,xk−1
(i+1)

,...,xk−1
(N)

)

(
xk−1
(i) − τi∇Fi(x

k−1
(i) )

)
.

If the update is sequential, the alternating system has the form

(xk−1
(1) , · · · , x

k−1
(N) ) → (xk(1), x

k−1
(2) , · · · , x

k−1
(N) ) → · · · → (xk(1), · · · , x

k
(N)). (21)

Other block updates can also be used; in [39, sec. 3] a random shuffling was shown to provide better
numerical results for a scheme of the form (5).

5 Convergence analysis of ASAP for biconvex coupling term

5.1 Essential convergence facts

Given an initial (x0, y0), the alternating system we have to study is of the form (xk−1, yk−1) → (xk, yk−1) →
(xk, yk). Our first result states the convergence of the sequence {J(xk, yk)}k∈N to a real number J∗ with a
guaranteed decrease.
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Proposition 3. Let Assumption (M) hold and let {(xk, yk)}k∈N be a sequence generated by ASAP. Based
on the initialization of the algorithm we set

ρx :=
1

τ
− L∇F

2
> 0, ρy :=

1

σ
− L∇G

2
> 0, and ρ := min {ρx, ρy} > 0. (22)

(a) For every k ≥ 1 the following sufficient decrease property holds:

J(xk−1, yk−1) ≥ J(xk, yk−1) + ρ ∥xk − xk−1∥2;

J(xk, yk−1) ≥ J(xk, yk) + ρ ∥yk − yk−1∥2;

J(xk−1, yk−1) ≥ J(xk, yk) + ρ
(
∥xk − xk−1∥2 + ∥yk − yk−1∥2

)
;

(23)

and hence
J(xk−1, yk−1) ≥ J(xk, yk−1) ≥ J(xk, yk). (24)

(b) The sequences {J(xk, yk)}k∈N and {J(xk, yk−1)}k∈N are non-increasing and interlaced by (24), hence
they converge to a value denoted by J∗;

(c) We have
+∞∑
k=1

(
∥yk − yk−1∥2 + ∥xk − xk−1∥2

)
< +∞

and hence lim
k→∞

∥xk+1 − xk∥ = 0 and lim
k→∞

∥yk+1 − yk∥ = 0.

Proof . Applying Lemma 4 with f := F , h := H(·, yk−1), x+ := xk and x := xk−1, along with the definition
of ρ in (22), shows that

J(xk−1, yk−1) = F (xk−1) +G(yk−1) +H(xk−1, yk−1)

≥ F (xk) +G(yk−1) +H(xk, yk−1) + ρ ∥xk − xk−1∥2

= J(xk, yk−1) + ρ∥xk − xk−1∥2. (25)

Lemma 4 with f := G, h := H(xk, ·), x+ := yk and x := yk−1, and (22) yield

J(xk, yk−1) = F (xk) +G(yk−1) +H(xk, yk−1)

≥ F (xk) +G(yk) +H(xk, yk) + ρ ∥yk − yk−1∥2

= J(xk, yk) + ρ ∥yk − yk−1∥2. (26)

Bringing (25) and (26) together leads to

J(xk−1, yk−1) ≥ J(xk, yk−1) + ρ ∥xk − xk−1∥2

≥ J(xk, yk) + ρ ∥xk − xk−1∥2 + ρ ∥yk − yk−1∥2
(27)

which completes the proof of (a). It follows that the sequences {J(xk, yk)}k and {J(xk, yk−1)}k are non-
increasing and interlaced by (24), and bounded from below because J is lower bounded. Therefore, they
converge to the same finite number J∗, which proves (b).

Using the inequalities in (27) we also have

∀ k ≥ 1, J(xk−1, yk−1) − J(xk, yk) ≥ ρ
(
∥xk − xk−1∥2 + ∥yk − yk−1∥2

)
. (28)

For K ≥ 1, summing (28) from k = 1 to K yields

∀ K ≥ 1, J(x0, y0) − J(xK , yK) ≥ ρ
K∑
k=1

(
∥yk − yk−1∥2 + ∥xk − xk−1∥2

)
.

Statement (b) entails that

∀ K ≥ 1,
1

ρ

(
J(x0, y0) − J∗) ≥ K∑

k=1

(
∥yk − yk−1∥2 + ∥xk − xk−1∥2

)
.
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Taking the limit as K → ∞ leads to

+∞∑
k=1

(
∥yk − yk−1∥2 + ∥xk − xk−1∥2

)
≤ 1

ρ

(
J(x0, y0) − J∗) ,

which establishes statement (c). �

From the proof of Proposition 3(c) we can derive a global O(1/k) convergence rate for{
∥xk − xk−1∥2 + ∥yk − yk−1∥2

}
k∈N.

Corollary 2 (Convergence rate). Let Assumption (M) hold and {(xk, yk)}k∈N be a sequence generated by
ASAP. Then for any K ∈ N it holds that

inf
k≥K

{
∥xk − xk−1∥2 + ∥yk − yk−1∥2

}
≤ 1

ρK

(
J(x0, y0) − J∗) .

The following result, together with Proposition 3(c), shows that the partial subgradients of J vanish
when k goes to infinity.

Proposition 4. Let Assumption (M) hold and let {(xk, yk)}k∈N be a sequence generated by ASAP. Then
for any k ≥ 1, one has

pkx := ∇F (xk) −∇F (xk−1) +
1

τ
(xk−1 − xk) ∈ ∂xJ(xk, yk−1), (29)

qky := ∇G(yk) −∇G(yk−1) +
1

σ
(yk−1 − yk) ∈ ∂yJ(xk, yk), (30)

such that

∥pkx∥ ≤
(

L∇F +
1

τ

)
∥xk−1 − xk∥ and ∥qky∥ ≤

(
L∇G +

1

σ

)
∥yk−1 − yk∥. (31)

Proof . The Fermat’s rule for xk in (16) yields

1

τ
(xk−1 − xk) ∈ ∇F (xk−1) + ∂xH(xk, yk−1). (32)

From the original formula for J in (8) one has

∂xJ(xk, yk−1) = ∇F (xk) + ∂xH(xk, yk−1).

Subtracting (32) from this expression yields the result in (29). Similarly, using Fermat’s rule for yk in (17)
– the y-step of the algorithm – and (8) leads to (30).

Using that ∇F has Lipschitzian L∇F (see Assumption (M)(b)), it follows that

∥pkx∥ ≤ L∇F ∥xk−1 − xk∥ +
1

τ
∥xk−1 − xk∥ =

(
L∇F +

1

τ

)
∥xk−1 − xk∥,

while the Lipschitz-continuity of ∇G leads to the bound on qky . �

The set of all limit points of a sequence {(xk, yk)}k∈N generated by ASAP starting from a point (x0, y0)
is denoted by L(x0, y0); see (11) in subsection 3.2.

Remark 8. According to Corollary 1, assuming that L(x0, y0) is nonempty and bounded is equivalent to
assume that the iterates {(xk, yk)}k∈N are bounded.

Boundedness of the iterates is a usual assumption, see e.g., [5, 38, 17, 26, 9]. This assumption holds for
instance when the level sets of J are bounded or if J is coercive.

Below we summarize several facts on the limit point set of ASAP.

Proposition 5. Let Assumption (M) hold and let {(xk, yk)}k∈N be a sequence generated by ASAP which is
assumed to be bounded. Let (x∗, y∗) ∈ L(x0, y0).
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(a) there is a subsequence
(
xkj , ykj

)
j∈N such that (xkj , ykj ) → (x∗, y∗) as j → ∞;

(b) lim
k→∞

J(xk, yk) = J(x∗, y∗);

(c) (0, 0) ∈ ∂J(x∗, y∗) and thus (x∗, y∗) is a critical point of J .

Proof . (a) follows from the definition of L(x0, y0).
(b) From Remark 7(b), (xkj , ykj ) belongs to dom J . From Remark 4(b), J(xkj , ykj ) = J̃(xkj , ykj ) where J̃
is a continuous function. Therefore

lim
j→∞

J(xkj , ykj ) = lim
j→∞

J̃(xkj , ykj ) = J̃(x∗, y∗).

Since dom J is closed (see Remark 4(a)) one has (x∗, y∗) ∈ dom J and J(x∗, y∗) = J̃(x∗, y∗). From
Proposition 3(a)-(b) the sequence

{
J(xk, yk)

}
k∈N is nonincreasing, interlaced by (24) and converges to J∗.

This, together with the above results completes statement (b).
(c) The formula for J in (8), together with (29) and (30) in Proposition 4 yield

p
kj
x −∇F (xkj ) ∈ ∂xH(xkj , ykj−1) and q

kj
y −∇G(ykj ) ∈ ∂yH(xkj , ykj ).

Since x 7→ H(x, ykj−1) and y 7→ H(xkj , y) are convex, lower semicontinuous and proper functions (see
Assumption (M)(c)) the subgradient inequality (Definition 2) can be applied which leads to

∀x ∈ U, H(x, ykj−1) ≥ H(xkj , ykj−1) + ⟨pkjx −∇F (xkj ), x− xkj ⟩,

∀ y ∈ V, H(xkj , y) ≥ H(xkj , ykj ) + ⟨qkjy −∇G(ykj ), y − ykj ⟩.

From (31) in Proposition 4 we have (p
kj
x )j → 0 and (q

kj
y )j → 0. By Proposition 3(c),

{
(ykj−1 − ykj )

}
j∈N

converges to 0. Since {ykj}j∈N converges to y∗, it follows that {ykj−1}j∈N converges to y∗ as well. Using

the facts that ∇F , ∇G and H = H̃ are continuous functions on int(dom J) and that ∂J is closed (see
Assumption (M) and Remark 4) we can evaluate the limit in the inequalities above when j → +∞:

∀x ∈ U, H(x, y∗) ≥ H(x∗, y∗) + ⟨0 −∇F (x∗), x− x∗⟩,

∀ y ∈ V, H(x∗, y) ≥ H(x∗, y∗) + ⟨0 −∇G(y∗), y − y∗⟩.

Then, by the definition of the (partial) subgradients of H (see Definition 2),

0 ∈ ∇F (x∗) + ∂xH(x∗, y∗) and 0 ∈ ∇G(y∗) + ∂yH(x∗, y∗).

Invoking Proposition 1, it holds that (0, 0) ∈ ∂J(x∗, y∗). �

Proposition 6. Let Assumption (M) hold and let {(xk, yk)}k∈N be a sequence generated by ASAP which is
assumed to be bounded. Then the following properties hold:

(a) L(x0, y0) ⊂ crit(J);

(b) lim
k→∞

dist
(

(xk, yk), L(x0, y0)
)

= 0;

(c) L(x0, y0) is connected;

(d) J is finite and constant on L(x0, y0).

Proof . (a) follows from Proposition 5(c).
(b) is a direct consequence of Lemma 1 and of Proposition 3(c).
(c) is a consequence of Proposition 3(c) and the previous claim (b).
(d) The sequences J(xk, yk−1) and J(xk, yk) decrease and converge to a finite value J∗ by Proposition 3. �

According to (a), there may be critical points of J that cannot be reached when ASAP starts from a
given initial (x0, y0) which emphasizes the role of this initial guess. Statement (b) guarantees that for k
large enough, the iterates (xk, yk) are arbitrary close to a critical point of J . We conclude this subsection
with the following remark:
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Remark 9. Proposition 5 ensures only subsequential convergence of ASAP to critical points of J . In practice
this result might be enough thanks to Proposition 6. Yet, if J shares some special properties (e.g., all critical
points are isolated), one may be able to conclude with convergence of the whole sequence (xk, yk) towards a
critical point of J , without considering the development presented in the following subsections 5.2–5.4. For
an example, see [38, Cor. 2.4].

5.2 Subgradient convergence

Subgradient convergence can be proved if one considers an additional assumption on the regularity of the
smooth part H̃ of the coupling term H (see Assumption (M)(c) and (9)):

Assumption (H) ∇H̃ is one-sided locally Lipschitz continuous on bounded subsets of U ×V in the sense
that for each bounded subset BU × BV ⊂ U × V there is a constant ξ > 0 such that

∀ (x, y), (x′, y′) ∈ BU × BV , ∥∇xH̃(x, y) −∇xH̃(x, y′)∥ ≤ ξ ∥y − y′∥.

A stronger assumption, namely that ∇H̃ is globally Lipschitz continuous on bounded subsets is often
used in other papers, see e.g., [5, 17, 32, 9, 21]. Assumption (H) can also be derived if H̃ is twice continuously
differentiable.

Proposition 7. Let Assumptions (M) and (H) hold. Let {(xk, yk)}k∈N be a sequence generated by ASAP
which is assumed to be bounded. Then there exists ξ ∈ (0,∞) such that for any k ≥ 1 one has

∃
(
qkx, q

k
y

)
∈ ∂J(xk, yk) obeying

∥∥∥(qkx, q
k
y )
∥∥∥ ≤ β

∥∥∥(xk − xk−1, yk − yk−1
)∥∥∥ ,

where

β := max

√
2

(
L∇F +

1

τ

)
,

√(
L∇G +

1

σ

)2

+ 2 ξ2

 .

Proof . Since the iterates are bounded, there exist BU ×BV ⊂ U × V bounded such that (xk, yk) ∈ BU ×BV

for any k ∈ N. Using assumption (H), the constant ξ below is finite:

∀ k ∈ N, ∥∇xH̃(xk, yk) −∇xH̃(xk, yk−1)∥ ≤ ξ ∥yk − yk−1∥. (33)

From the equivalent formula for J in (9), pkx = ∇F (xk) +∇xH̃(xk, yk−1) + gkx ∈ ∂xJ(xk, yk−1), where by
(29) in Proposition 4 one has

gkx = −∇F (xk−1) +
1

τ
(xk−1 − xk) −∇xH̃(xk, yk−1) ∈ ∂χDx(xk).

This result, together with (9) and (29) shows that qkx ∈ ∂xJ(xk, yk) reads as

qkx := ∇xH̃(xk, yk) + ∇F (xk) + gkx

= ∇xH̃(xk, yk) + ∇F (xk) −∇F (xk−1) +
1

τ
(xk−1 − xk) −∇xH̃(xk, yk−1)

= ∇xH̃(xk, yk) −∇xH̃(xk, yk−1) + pkx.

Using (33) and the first inequality in (31) in Proposition 4 yields

∥qkx∥ ≤ ∥∇xH̃(xk, yk) −∇xH̃(xk, yk−1)∥ + ∥pkx∥

≤ ξ ∥yk − yk−1∥ +

(
L∇F +

1

τ

)
∥xk − xk−1∥.
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Thus (qkx, q
k
y ) ∈ ∂J(xk, yk) where qky is given in (30). The obtained result on ∥qkx∥ together with the second

inequality in (31) in Proposition 4, and using that (a+ b)2 ≤ 2 a2 + 2 b2, shows that

∥(qkx, q
k
y )∥2 = ∥qkx∥2 + ∥qky∥2

≤
(
ξ∥yk − yk−1∥ +

(
L∇F +

1

τ

)
∥xk − xk−1∥

)2
+

(
L∇G +

1

σ

)2
∥yk − yk−1∥2

≤ 2

(
L∇F +

1

τ

)2
∥xk − xk−1∥2 +

((
L∇G +

1

σ

)2
+ 2ξ2

)
∥yk − yk−1∥2.

This gives the value of β in the statement which completes the proof. �

5.3 The Kurdyka- Lojasiewicz (K L) property and the objective J

The Kurdyka- Lojasiewicz (K L) property was studied for the optimization of nonsmooth functions originally
in [15] and further on in [4, 5, 6].

Definition 7 (K L property). Let f : Rm → R ∪ {+∞} be a proper lower semicontinuous function. The
function f is said to have the Kurdyka- Lojasiewicz (K L) property at x∗ ∈ dom ∂f if there exist η ∈ (0,+∞],
a neighborhood O(x∗) of x∗ and a constant κ > 0 such that

∀ x ∈ Õ(x∗), κ dist(0, ∂f(x)) ≥ |f(x) − f(x∗)|θ , (34)

where θ ∈ [0, 1) and
Õ(x∗) := O(x∗) ∩ {x ∈ U | f(x∗) < f(x) < f(x∗) + η} . (35)

Observe that the K L property implies that all critical points belonging to Õ(x∗) share the same critical
value f(x∗) since otherwise (34) would fail. The K L property requires assumptions only on the shape of
the function around its critical points. The K L property does not require that the critical points are strict
or connected. We recall that if f is a real analytic function on O(x∗), then the K L property holds with
θ ∈ [1/2, 1) thanks to the  Lojasiewicz gradient inequality [30, p. 92].

It is instructive to provide some examples and counter-examples.

Example 2.

(a) The function f : R → R given by f(x) = (x − 1)2/2 satisfies |f ′(x)|/
√

2 = |f(x) − f(x∗)|1/2 for any
x ∈ R \ {x∗} where x∗ = 1 is its minimizer. Thus f satisfies the K L property at x∗ with θ = 1/2 and
κ =

√
θ.

(b) The function h(x, y) = (xy − 1)2 is analytic, has a nonstrict minimizer at (x∗, y∗) = (1, 1), and satisfies
the K L property at (x∗, y∗).

(c) The functions below are infinitely differentiable but fail the K L property:

f(x) =

{
exp

(
−1/x2

)
if x > 0,

0 if x ≤ 0,
f(x) =

{
x2 sin(1/x) if x ̸= 0,
0 if x = 0.

The first one is “infinitely flat” [5, p. 453] while the second presents “wild oscillations” [16, p. 569].

We recall the following fundamental fact:

Remark 10. Both real-analytic and semi-algebraic functions are semi-analytic functions and thus they are
subanalytic functions, according to [13].

Functions that are all together real-analytic and semi-algebraic form the class of Nash functions [14];
see, e.g., functions ψ in (i) and (iii) in Example 1. The objectives J we suggest in subsection 2.2 contain
real-analytic and semi-algebraic functions and involve compositions and sums of such functions, so they
belong to the wider class of extended-real-valued subanalytic functions. We will use the result obtained
by Bolte, Daniilidis, and Lewis in [15] saying that all subanalytic functions enjoy the K L property at their
critical points:
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Theorem 1. [15, Theorem 3.1] Let f : Rm → R ∪ {+∞} be a function which is subanalytic with a closed
domain and continuous on its domain. Let x∗ be a critical point of f . Then there is an exponent θ ∈ [0, 1),
a neighborhood Õ(x∗) of x∗ and a constant κ > 0 such that

∀ x ∈ Õ(x∗), κ dist(0, ∂f(x)) ≥ |f(x) − f(x∗)|θ. (36)

The following properties of subanalytic functions are taken from the monograph of Shiota [34] and from
the work of Denkowska and Denkowski [23], respectively.

Proposition 8. Let f and g be two subanalytic functions. Then the following results hold:

(a) [34, Chapter II.1] If f and g are lower-bounded, then f + g is subanalytic.

(b) [23, Proposition 2.46] If g maps bounded sets on bounded sets or if f−1(X ) is bounded for any bounded
subset X , then f ◦ g is a subanalytic function.

Thanks to these results we can derive some useful properties of the objectives J in subsection 2.2. We
begin with the terms composing J in (10).

Proposition 9. Let f : R → R ∪ {+∞} be a subanalytic function and U a finite dimensional real space.
Then:

(a) If A is a linear operator on U then x 7→ f(∥Ax∥) is a subanalytic function.

(b) If (V,W ) are finite dimensional real spaces and b := (b(1), . . . , b(N)) : U × V → W a bilinear mapping,
then (x, y) 7→ f(∥b(x, y) − w∥) is a subanalytic function.

Proof . (a) Since ∥·∥ is a distance function, the application x 7→ ∥Ax∥ is semi-algebraic and thus subanalytic
(Remark 10), and it also maps bounded sets on bounded sets. Then its composition with f is subanalytic
according to Proposition 8(b).
(b) For any n = 1, . . . , N , b(n) : U × V → R is a bilinear form. Since (U, V ) are of finite dimension,
b(n) can be represented using a real matrix An so that b(n)(x, y) = ⟨Anx, y⟩. Hence, b(n) is real polynomial.
Consequently, (x, y) 7→ ∥b(x, y)−w∥2 =

∑
n(b(n)(x, y)−w(n))

2 is semi-algebraic, and so is (x, y) 7→ ∥b(x, y)−
w∥ since x 7→ x1/2 is a semi-algebraic function. Using Proposition 8(b), it follows that (x, y) 7→ f(∥b(x, y)−
w∥) is subanalytic. �

Theorem 2. For the family of J in subsection 2.2, the following hold:

(a) all functions in Example 1 are subanalytic;

(b) the objective function J in (10) is subanalytic on its domain. Hence, J satisfy the K L property at its
critical points.

Proof . (a) Functions ψ in (i), (ii) and (iii) in Example 1 are semi-algebraic and thus subanalytic. Fur-
ther, since p is rational, then all (ψ)p in (i)-(iii) are semi-algebraic by composition [17, Ex. 4] and hence
subanalytic. Functions ψ in (v), (vi) and (vii) are real-analytic, and thus subanalytic. Since t 7→ |t| maps
bounded sets on bounded sets, and since t 7→ log(1+ t/α) is real-analytic, t 7→ α log(1+ |t|/α) is subanalytic
according to Proposition 8(b) Thus, function (iv) is the sum of the lower-bounded semi-algebraic function
t 7→ |t| and a subanalytic function, hence it is subanalytic according to Proposition 8(a).
(b) According to Proposition 9, all functions x 7→ fi(∥Aix∥), y 7→ gj(∥Biy∥) and (x, y) 7→ h(∥b(x, y) − w∥)
are subanalytic since fi, gj and h are subanalytic functions by (a). Thus J is a finite sum of lower-bounded
subanalytic functions, hence J is subanalytic according to Proposition 8(a). Noticing also that J has a
closed domain and is continuous on its domain, see Remark 4(b), Theorem 1 shows that J has the K L
property at its critical points. �
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5.4 Convergence of ASAP to critical points under the K L property

We summarize that, under Assumptions (M) and (H), we have proved that any bounded sequence generated
by ASAP satisfy the assumptions in [6, Theorem 2.9]:

1) there exists ρ ∈ (0,∞) such that for any k ≥ 1 the sufficient decrease property holds (Proposition 3(a)):

J(xk, yk) + ρ
(
∥xk − xk−1∥2 + ∥yk − yk−1∥2

)
≤ J(xk−1, yk−1);

2) there exists a subsequence (xkj , ykj ) and a critical point (x∗, y∗) of J such that the subsequential continuity
towards a critical point holds (Proposition 5):

lim
j→∞

(
xkj , ykj

)
= (x∗, y∗) and lim

j→∞
J
(
xkj , ykj

)
= J(x∗, y∗);

3) there exists β ∈ (0,∞) such that ∀ k ≥ 1 the subgradient relative error condition holds (Proposition 7):

∃
(
qkx, q

k
y

)
∈ ∂J(xk, yk) obeying ∥(qkx, q

k
y )∥ ≤ β∥(xk − xk−1, yk − yk−1)∥.

Theorem 3. Let Assumptions (M) and (H) hold and let {(xk, yk)}k∈N be a sequence generated by ASAP
which is assumed to be bounded. Assume also that J has the K L property at a limit point (x∗, y∗) ∈ L(x0, y0).
Then the following hold:

(a) {(xk, yk)}k∈N is a Cauchy sequence that converges to a critical point (x∗, y∗) of J as k goes to infinity;

(b) moreover,
+∞∑
k=0

(
∥xk+1 − xk∥ + ∥yk+1 − yk∥

)
< +∞.

Proof . This theorem is a direct consequence of [6, Theorem 2.9]. Our Definition 7 endowed with the function
φ : R → R given by φ(t) = κt1−θ/(1 − θ) fulfills [6, Def. 2.4]. All conditions needed in [6, Theorem 2.9] are
the three statements given before the theorem, along with the K L property as stated. �

Theorem 3 proves that for objectives J satisfying Assumptions (M) and (H), any bounded sequence
generated by ASAP converges to a limit point (x∗, y∗) ∈ L(x0, y0) provided J has the K L property at
(x∗, y∗). This includes various nonconvex objective functions J that are continuous on their closed domain.
A large family of nonconvex objective functions J was given in subsection 2.2. More generally, the objective
functions J can be composed out of differentiable components that are real-analytic and semi-algebraic
(nonconvex) functions, subanalytic (nonconvex) functions, strongly and uniformly convex functions.

6 Convergence of ASAP with H multiconvex

The variable x is split into N blocks, i.e., x = (x(1), . . . , x(N)) ∈ U1 × · · · × UN with Ui finite-dimensional
real spaces, and the objective J reads as

J
(
x(1), . . . , x(N)

)
:=

N∑
i=1

Fi

(
x(i)
)

+
N∑
i=1

χDi(x(i)) + H̃
(
x(1), . . . , x(N)

)
︸ ︷︷ ︸

=:H(x(1),...,x(N))

(37)

The objective and the full algorithm were presented in subsection 4.2 where the main assumptions were
briefly described. In this section we adopt the following hypothesis:

Assumption (U) The update in Algorithm 2 is sequential, see (21).
Then all statements in subsections 5.1 and 5.2 have a straightforward extension to the case when J has

N > 2 blocks, using analogous arguments and proofs, but at the expense of heavier notation. Only the main
statements are presented.

The next assumption is a direct extension of Assumption (M):
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Assumption (M’)

(a) J : U1 × · · · × UN → R ∪ {+∞} is lower bounded;

for any i = 1, . . . , N , (b) and (c) hold:

(b) Fi : Ui → R has a gradient which is Lipschitz continuous with constant L∇Fi ;

(c) x(i) 7→ H(x) is convex and differentiable on its domain.

Proposition 10. Let Assumptions (M’) and (U) hold and let {xk}k∈N be a sequence generated by ASAP in
Algorithm 2. Then the following holds:

(a) for every k ≥ 1 one has J(xk−1) ≥ J(xk) + ρ∥xk − xk−1∥2 where

ρ := min
i=1,...,N

{
1

τi
− L∇Fi

2

}
> 0;

(b) assuming that {xk}k∈N is bounded and denoting x∗ ∈ L(x0) a limit-point of {xk}k∈N, one has
lim
k→∞

J(xk) = J(x∗) and x∗ is a critical point of J .

Proof . (a) As in the proof of Proposition 3(a), applying Lemma 4 with f := Fi and
h := H(xk(1), . . . , x

k
(i−1), ·, x

k−1
(i+1), . . . , x

k−1
(N) ) yields for any i = 1, . . . , N

J(xk(1), · · · , x
k
(i−1), x

k−1
(i) , · · · , x

k−1
(N) )

≥ J(xk(1), · · · , x
k
(i−1), x

k
(i), x

k−1
(i+1), · · · , x

k−1
(N) ) + ρ ∥xk(i) − xk−1

(i) ∥2.

The result is obtained by summation over i = 1, · · · , N .
(b) By Remark 6, xk(i) is defined for any i = 1, . . . , N and for all k ≥ 1 by:

arg min
u

{
⟨u,∇Fi(x

k−1
(i) )⟩ +H(xk(1), . . . , x

k
(i−1), u, x

k−1
(i+1), . . . , x

k−1
(N) ) +

1

2τi
∥u− xk−1

(i) ∥2
}
.

By Fermat’s rule, for any i = 1, . . . , N it holds that

xk−1
(i) − xk(i)

τi
∈ ∇Fi(x

k−1
(i) ) + ∇xiH̃(xk(1), . . . , x

k
(i−1), x

k
(i), x

k−1
(i+1), . . . , x

k−1
(N) ) + ∂χDi(x

k
(i)). (38)

Then the claim is proven using the pipeline established in the proofs of Propositions 4 and 5. �

As in the biconvex case, strong subgradient convergence can be stated using an additional assumption
on the smooth part H̃ of the coupling term:

Assumption (H’) ∇H̃ is partially locally Lipschitz continuous on bounded subsets in the sense that
for each bounded subset B1 × · · · × BN ⊂ U1 × · · · × UN there is a constant ξ > 0 such that for any
x, x′ ∈ B1 × · · · × BN such that x(j) = x′(j) if j ≤ i,∥∥∥∇x(i)

H̃(x) −∇x(i)
H̃(x′)

∥∥∥ ≤ ξ ∥x− x′∥.

The papers dealing with multiconvex coupling terms use a slightly stronger assumption to prove subgra-
dient convergence [38, 39].

Proposition 11. Let Assumptions (M’), (U) and (H’) hold. Let {xk}k∈N be a sequence generated by ASAP
(Algorithm 2) which is assumed to be bounded. Then there exists ξ ∈ (0,∞) such that for any k ≥ 1 one has

∃ qk ∈ ∂J(xk) obeying
∥∥∥qk∥∥∥ ≤ β

∥∥∥xk − xk−1
∥∥∥ ,

where

β := max

{√
2γ1, max

i=2,...,N−1

{√
2
(
γ2i + (i− 1) ξ2

)}
,
√
γ2N + 2 (N − 1) ξ2

}
and γi := L∇Fi + 1/τi for any i = 1, . . . , N .

17



Proof . Using that the iterates are bounded and Assumption (M’), for any k ∈ N and for any i = 1, · · · , N

∥∥∥∇x(i)
H̃(xk) −∇x(i)

H̃(xk(1), · · · , x
k
(i), x

k−1
(i+1), · · · , x

k−1
(N) )

∥∥∥ ≤ ξ

√√√√ N∑
j=i+1

∥xk(j) − xk−1
(j) ∥2.

Following the proof of Proposition 7, the idea is to find gki ∈ ∂χDi(xk) in order to obtain qki ∈ ∂x(i)
J(xk).

The expression for gki folllows from (38). Using that H = H̃ +
∑n

i=1 χDi with H̃ a differentiable function,
qk(i) ∈ ∂x(i)

J(xk) is given by

qk(i) = ∇x(i)
H̃(xk) + ∇Fi

(
xk(i)

)
+ gk(i).

Inserting the expression for gki in the above equation shows that

qk(i) = ∇x(i)
H̃(xk) −∇x(i)

H̃(xk(1), · · · , x
k
(i), x

k−1
(i+1), · · · , x

k−1
(N) )

+∇Fi(x
k
(i)) −∇Fi(x

k−1
(i) ) +

1

τi
(xk−1

(i) − xk(i)).

Using Assumption (H’) and the Lipschitz continuity of ∇Fi, the last equation yields

∥qk(i)∥ ≤ ξ

√√√√ N∑
j=i+1

∥xk−1
(j) − xk(j)∥2 + (L∇Fi + 1/τi)∥xk−1

(i) − xk(i)∥,

which in particular gives ∥qk(N)∥ ≤ (L∇FN
+1/τi)∥xk−1

(N)−x
k
(N)∥. Then, using yet again that (a+b)2 ≤ 2 a2+2 b2,

the sum of ∥qk(i)∥
2 over i = 1, . . . , N is computed. Its square root is the desired ∥qk∥ and β follows from the

obtained inequality. �

We have proven that ASAP for multiconvex coupling terms satisfies all the three conditions in [6,
Theorem 2.9]: sufficient decrease by Proposition 10(a), subgradient relative error by Proposition 11 and
subsequential continuity towards a critical point by Proposition 10(b). Therefore we can state the following
result:

Theorem 4. Let Assumptions (M’), (U) and (H’) hold. Let {xk}k∈N be a sequence generated by ASAP
(Algorithm 2) which is assumed to be bounded. Assume also that J has the K L property at a limit point
(x∗) ∈ L(x0). Then the following assertions hold:

(a) {(xk)}k∈N is a Cauchy sequence that converges to a critical point (x∗) of J as k goes to infinity;

(b) moreover,

+∞∑
k=0

∥xk+1 − xk∥ < +∞.

Let us consider general objectives of form (see subsection 2.2)

J(x) :=
∑
i,j

fij(∥Aijx(j)∥) + h(∥b(x) − w∥) +
∑
j

χDj (x(j)), (39)

where b : U1×· · ·×UN →W is a multilinear form, Aij are linear mappings and fi,j are as in Example 1. The
results in subsection 5.3 show that J in (39) is also a subanalytic function and thus fulfils the K L property.

7 An application for Hadamard based coupling terms

Here we focus on objective functions J of the form presented in subsection 2.2 for U = V = W = Rm×n and
a bilinear mapping b given by b(x, y) = x ◦ y where “◦” denotes the Hadamard (componentwise) product.
Following Assumption (M), the coupling term H reads as

H(x, y) :=
1

2
∥x ◦ y − w∥2 + χDx(x) + χDy(y).

Hadamard matrix products arise in lossy compression, tensor factorization, image processing, statistics,
among others.
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7.1 The ASAP algorithm with Hadamard product

Here x, y and w are seen as mn-length vectors. We focus on constraints (Dx,Dy) of the form

Dx := {x ∈ U | ax ≤ xi ≤ bx} and Dy := {y ∈ U | ay ≤ xi ≤ by}
for some constants −∞ ≤ ax < bx ≤ +∞ and −∞ ≤ ay < by ≤ +∞. We define the function h : R2 → R by

h(xi, yi) =
1

2
(xi yi − wi)

2

so that H̃(x, y) =
∑mn

i=1 h(xi, yi). Then the proximity operators are computed componentwisely proxτH(·,y)(z) =(
proxτh(·,yi)(zi)

)mn

i=1
where

proxτh(·,yi)(zi) = arg min
xi∈[ax,bx]

{
1

2
(xiyi − wi)

2 +
1

2τ
(xi − zi)

2

}
∀ i.

The computation of proxσH(x,·)(z) is done in a similar way.
The full algorithms is particularly simple:

Algorithm 3 ASAP with Hadamard product

Initialization: (x0, y0) ∈ U × V and 0 < τ < 2/L∇F , 0 < σ < 2/L∇G
General Step: for k = 1, 2, . . ., compute

xk = min

{
max

{
τw ◦ yk−1 + z

τ(yk−1 ◦ yk−1 + 1)
, ax

}
, bx

}
with z = xk−1 − τ∇F (xk−1);

yk = min

{
max

{
σw ◦ xk + z

σ(xk ◦ xk + 1)
, ay

}
, by

}
with z = yk−1 − σ∇G(yk−1).

7.2 Fringe Separation in Interferometric Images

Sieleters [22] is a nonconventional infrared spectro-imaging device, which is based on interferometric imaging.
Its purpose is to obtain hyperspectral images from a temporal image sequence, provided the images can be
accurately registered. Due to the imaging system, the images provided by Sieleters have so-called interference
fringes, which have a particular structure (see Fig. 7.2 bottom left). However, for many applications (such
as stereo-matching, which is necessary to compute accurate image registration), these fringes have to be
removed, so that one can recover the so-called panchromatic images. The latter can then be handled by
conventional image processing techniques.

According to [35], a multiplicative model for the fringe formation was shown to be much more physically
accurate than previous additive decomposition models. According to this model, an observed image w ∈
Rm×n is given by

w = x ◦ y + perturbations,

where x is the panchromatic image to recover, y – the fringe oscillations.and 1 stand for an image composed
of ones. Two facts known from the physics of the observation device are that

− the fringe oscillations have a range constraint, |yi,j | ≤ 1;

− the 1D Fourier transform of the columns of the fringe y, denoted by F(y), belongs to a known interval.

Applying these constraints enables the obtention of a good initialization (x0, y0). Other observations are
that the gradients of the panchromatic image and of the fringes are not sparse and that the perturbations
under the multiplicative model are negligible. we focus on an optimization problem of the form

J(x, y) =
∑
i

ψ(Dv
i x)︸ ︷︷ ︸

=:F (x)

+µ
∑
j

ψ(Dh
j y) +

ν

2
∥F−1MF(y)∥2︸ ︷︷ ︸

=:G(y)

+
η

2
∥x ◦ y − w∥2 + χDy(y)︸ ︷︷ ︸

=:H(x,y)
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Figure 1: Result with Algorithm 3 (zooms). Clockwise: data, recovered panchromatic image, recovered
fringe, reference

where ψ is function (iv) in Example 1, {Dv
i }i and {Dh

j }j are vertical and horizontal first-order finite difference
operators, respectively, M is a binary mask ensuring the spectral constraint, and Dy = {y | − 1 ≤ yi,j ≤ 1}.
Finally, µ, ν and η are positive tuning parameters and thus L∇F = 4/α and L∇G = 4µ/α+ ν.

We were given 9 “ground-truth” 424×1000 images computed from an ONERA’s Sieleters image sequence
using a protocol based on the physical model. Fig. 7.2 shows 140×250 zooms. Algorithm 3 was successfully
applied on Sieleters sequences, which typically consist in thousands of such airborne images.

Appendix

7.3 Proof of Lemma 1

For simplicity, set L := L(z0). Since L is closed and nonempty, the distance dist(zk,L) of zk to the set L
is well defined. Suppose that dist(zk,L) does not go to zero as k → ∞, i.e., that there exist ε > 0 and a
subsequence {zkj}j such that

∀ j ∈ N dist(zkj ,L) > 2ε. (40)

Observe that {∥zk+1 − zk∥}k∈N is a Cauchy sequence of non-negative numbers converging to zero. This,
together with the fact that z 7→ dist(z,L) is a continuous function [33, p. 19.], entails that for ε > 0 there
is K ∈ N such that for any k > K one has

∣∣dist(zk+1,L) − dist(zk,L)
∣∣ < ε. Therefore, there exists K ′ ∈ N

so that for any j > K ′ one has kj > K and thus

∀ j > K ′ dist(zkj+1,L) − dist(zkj ,L) < ε.

This, together with (40), yields

dist(zkj+1,L) > dist(zkj ,L) − ε > ε.

From the definition of L, see (11), there is an infinite number of points of zk satisfying dist(zk,L) ≤ ε.
Hence there exists kj + 1 ≤ kj+1 such that dist(zkj+1,L) < ε; thus, a contradiction.

7.4 Proof of Corollary 1

If L(z0) is nonempty and bounded, there exists M > 0 such that any z∗ ∈ L(z0) satisfies ∥z∗∥ ≤ M .
From Lemma 1, the distance of zk to L(z0) goes to zero as k goes to infinity, hence there exists k0 ∈ N
such that k ≥ k0 implies that minz∈L(z0) ∥zk − z∥ < M . Therefore, for any k ≥ k0, one has ∥zk∥ ≤
minz∈L(z0) ∥zk − z∥ + ∥z∗∥ ≤ 2M , hence (a) ⇒ (b). The converse claim is obvious.
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