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Abstract In this work we consider a broad class of smooth optimization problems composed of a biconvex
data-fidelity terms and smooth, nonconvex regularisation terms. We propose a family of attractive schemes
for solving this class of problems. It is based on the standard alternate proximal linearized forward-backward
approach. Unlike the existing prox-based algorithms, our approach exploits the biconvex structure of the
data term. Thus we use proximity operators with respect to convex functions only. The iterates are uniquely
defined, independently of the form of regularization terms.

1 Introduction

In this work we consider a broad class of smooth optimization problems composed of a biconvex data-fidelity
terms and regularisation terms. They consist of solving the following nonconvex minimization problem:

Jpx, yq “ F pxq `Gpyq `Hpx, yq, (1)

where x and y belong to real finite-dimensional spaces of appropriate dimensions. Our focus is on situations
when H is a biconvex function: for any y fixed, x ÞÑ Hpx, yq is convex and for any x fixed, y ÞÑ Hpx, yq is
convex. It worths emphasizing that such a H is generally nonconvex, and thus J can have numerous local
minimizers. Bicovex data terms H arise in various important applications, such as total least squares [15],
blind deblurring [8], channel source separation typically blind [11], patch-based methods [4], to cite a few.
We focus on differentiable regularizers F and G for four main reasons. (a) In a large amount of cases there
is no evidence that x or y belong to a dictionary that is sparse. The use of sparsity (F or G nonsmooth
at the origin) then leads to adding unrealistic frequency components in the solution [1]. (b) Quite few facts
on the global minimizers of J when F or G is nonsmooth are known, a pitfall in blind deblurring [8] shows
that the global minimizers are trivial. (c) Numerous algorithms involving nonsmooth regularization terms
are approximated by smooth regularizers [7]. In some cases the error induced by the smooth approximation
is thoroughly analyzed see, e.g., [12]. (d) Nonetheless the way of smoothing, the latter definitely alterates
the main features of all local minimizers, see e.g., [18]. The paramount reason (a) together with those in (b),
(c), and (d), justify our choice to consider well-selected smooth regularizers F and G.

In some cases the biconvex structure is due to a bilinear / biaffine term. In [3, 21] the problem is
reformulated based on the bilinear term and a branch-and-bound procedure taking into account the affine
structure is proposed.

The usual approach to solve the problem in (1) is to use the Alternating Convex Minimization [16] which
amounts to generate a sequence starting from px0, y0q with iterates pxk, ykq given by

xk P arg minx Jpx, y
k´1q,

yk P arg miny Jpx
k, yq,

which amounts to a block-coordinate Gauss-Seidel method, also known as block-coordinate descent (BCD)
method, which can be found in several studies, see e.g., [20]. For biconvex differentiable objectives, this
approach was applied in [4], [2]. A key condition necessary to obtain convergence is that the minimum in
each step is uniquely attained.

A way to relax this assumption is to consider the proximal regularization of the BCD scheme:

xk P arg minx

´

Jpx, yk´1q ` 1
2τ1
}x´ xk´1}2

¯

,

yk P arg miny

´

Jpxk, yq ` 1
2τ2
}y ´ yk´1}2

¯

,
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where τ1 ą 0 and τ2 ą 0 are step-sizes. In the non-convex case, the situation is much harder, see e.g.,
[13, 5]. In [22] a multi-convex problem with nonsmooth regularization is solved by 3 methods, BCD, proximal
BCD, and prox-linear BCD where proximity operators are based on the regularization terms. In [10, 6],
differentiable biconvex data-terms with nonsmooth regularization are considered using prox-linear BCD also
based on the regularization terms. In the articles mentioned in this paragraph, the objectives are nonsmooth
and convergence results are obtained using the Kurdyka- Lojasiewicz property.

We propose a family of attractive schemes for solving a broad class of problems of the form in (1) where
F and G are differentiable, nonconvex in general. It is based on the standard alternate proximal linearized
forward-backward approach. Unlike the prox-based algorithms presented before, our approach exploits the
biconvex structure of the term H: each one of our proximal steps is computed with respect to the partial
convex functions x ÞÑ Hpx, yq and y ÞÑ Hpx, yq, respectively. Thus we use proximity operators with respect
to convex functions only. The iterates are uniquely defined, independently of the form of F and G. Further,
our stepsizes depend only on the Lipschitz constants of F and G. The only major assumption is that the
iterates are bounded. However, if the initial value Jpx0, y0q is below a threshold, boundedness is ensured
without coercivity requirements. The general form of the proposed algorithms can deal with any biconvex
function. When H is biquadratic the proximal operators have an explicit simple form. The threshold leading
to bounded iterates is easy to compute explicitly.

Outline of the paper Preliminary facts on Proximal Forward-Backward and on biconvex functions are
presented in section 2. The main algorithm is given in section 3. Convergence facts are presented in the
following subsections. They concern the convergence of the sequences generated by the algorithm towards
stationary points, as well as the existence of limit points. Section 5 is devoted to the classical case when H is
biquadratic. The implementable form of the algorithm is presented in 5.1. When the null-space of F or G is
non-null, the objective J is not coercive. In subsection 5.2 we compute an initial value ensuring boundedness
of the iterates. Existence of global minimizers is established as well. Under convexity assumptions on F and
G, stronger convergence facts are derived in subsection 5.3.

Notations We consider that x P U and y P V where U and V are real finite-dimensional spaces of appro-
priate dimensions. For a positive integer n, we use the index set In “ t1, . . . , nu. Sequences (e.g., iterates) are
denoted by tzkuk and their subsequences by tzkjuj . The kth element of the vector or a matrix x (seen as a
vector) reads as xk. A vector or a matrix indexed for some purpose is denoted by xpiq. The identity operator
is denoted by I, its size is clear from the context. A vector or a matrix of zeros of arbitrary dimension is
denoted by 0. We write xT for the transposed of x. The subdifferential of the convex function h is denoted
by Bh. Likewise, BxHp¨, yq (reps., ByHpx, ¨q) denotes the subdifferential of the convex function x ÞÑ Hpx, yq
(resp., y ÞÑ Hpx, yq).

2 Preliminaries

2.1 Proximal Forward-Backward (PFB) descent

Proximity operator Let h : U Ñ RY t`8u be a proper, lower semicontinuous (lsc) and convex function.
Given u P U and τ ą 0, let us define [17]

proxτhpuq “ arg min
xPU

"

hpxq `
1

2τ
}u´ x}2

*

Note that proxτhpuq is uniquely defined since it is the minimizer of a strongly convex (thus strictly and
coercive) function.

Lemma 1 (Proximal inequality). Let h : U Ñ RY t`8u be a proper, lsc and convex function. Given u P U
and τ ą 0, let x` “ proxτhpuq. Then

hpx`q ´ hpxq ď
1

τ
xx´ x`, x` ´ uy @ x P U

Proof . The optimality condition which characterizes x` yields

p “
u´ x`

τ
P Bhpx`q
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Writing the subgradient inequality for p P Bhpx`q, we have

@ x P U hpxq ě hpx`q ` xx´ x`, py “ hpx`q `
1

τ
xx´ x`, u´ x`y

which is the desired result. l

PFB descent Let h : U Ñ RYt`8u be a proper, lsc and convex function and f : U Ñ R be a differentiable
function with L∇f -Lipschitz continuous gradient. Such functiond are said L∇f -smooth. Note that f may be
nonconvex. Let us consider the Proximal Forward-Backward (PFB) descent, defined for any u P U by:

x` “ proxτh pu´ τ∇fpuqq

Once again, thanks to the convexity of h, the point x` is uniquely defined.

Remark 1. The PFB descent can be viewed as the minimization of h` f̃ , where f̃ is a quadratic approxi-
mation of around the point u:

x` “ proxτh pu´ τ∇fpuqq (2)

“ arg min
xPU

"

hpxq `
1

2τ
}x´ pu´ τ∇fpuqq}2

*

(3)

“ arg min
xPU

$

’

’

’

&

’

’

’

%

hpxq ` fpuq ` xx´ u,∇fpuqy ` 1

2τ
}x´ u}2

looooooooooooooooooooooomooooooooooooooooooooooon

“f̃pzq

,

/

/

/

.

/

/

/

-

(4)

Let us recall a classical result which comes from the smoothness of f .

Lemma 2 (Descent facts). Let f : U Ñ R be a differentiable function with L∇f -Lipschitz continuous gradient.
Then [9, A. 24]

fpxq ď fpuq ` xx´ u,∇fpuqy `
L∇f

2
}x´ u}2 @ x, u P U (5)

The next lemma makes possible a sufficient-decrease condition.

Lemma 3 (Decrease properties). Let f : U Ñ R be a differentiable function with L∇f -Lipschitz continuous
gradient and h : U Ñ R a convex, lsc and proper function. For any u consider x` defined by (2). Then

fpx`q ` hpx`q ď fpuq ` hpuq ´

ˆ

1

τ
´

L∇f
2

˙

}x` ´ u}2 (6)

Proof . Applying the proximal inequality to h in (2) with u :“ x´ τ∇fpxq and x :“ u we have

hpx`q ď hpuq `
1

τ
xu´ x`, x` ´ u` τ∇fpuqy

“ hpuq ´
1

τ
}x` ´ u}2 ´ xx` ´ u,∇fpuqy

Then, adding the descent Lemma 2 (5) for f to the obtained result yields

fpx`q ` hpx`q ď fpuq ` hpuq ´

ˆ

1

τ
´

L∇f
2

˙

}x` ´ u}2

which completes the proof. l

2.2 Biconvexity

Definition 1. A function H : U ˆ V Ñ R is called biconvex, if for fixed y P V , x ÞÑ Hpx, yq is convex, and
for fixed x P U , y ÞÑ Hpx, yq is convex.

Similarly, a set C Ă U ˆ V is biconvex if C|U is convex for every x P U and C|V is convex for every y P C|V .
Obviously, a biconvex set is not convex in general. The following proposition was taken from [14].
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Proposition 1 (Goh et al. 1994). Let H : U ˆ V Ñ R be biconvex. Then its level sets

levHďr :“ tpx, yq P U ˆ V | Hpx, yq ď ru

are biconvex for every r P R.

Biconvex function are in general nonconvex and may have a large amount of local minimizers. A survey
on biconvex optimization problems can be found in [16]. However, the question arises whether the convex
substructures of a biconvex function can be utilized more efficiently for the minimization of objective functions
involving biconvex terms than in the case of general non-convex optimization problems.

A noteworthy algorithm that exploits the partial convexity in biconvex minimization problems is the
Alternate Convex Search (ACS) algorithm [16, Algorithm 4.1]. However, despite the study led in [16], there
are few theoretical results about the convergence of this algorithm when applied in the general case.

3 The ABC-PFB algorithm

Let us now consider the following nonconvex and (possibly nonsmooth) minimization problem:

arg min
px,yqPUˆV

!

Jpx, yq :“ F pxq `Gpyq `Hpx, yq
)

(7)

Assumptions (J)

(a) J : U ˆ V Ñ RY t`8u is lower bounded;

(b) J is either biconvex or continuously differentiable.

(c) F : U Ñ R and G : V Ñ R are L∇F -smooth and L∇G-smooth, respectively ;

(d) H : U ˆ V Ñ RY t`8u is continuous and biconvex.

To solve Problem (7), we consider the following algorithm

Algorithm 1 (Alternating Block Coordinate Proximal Forward-Backward descent (ABC-PFB)).
Initialization: px0, y0q and τ1 ą 0, τ2 ą 0
Iterations: for k ě 0

xk “ proxτ1Hp.,yk´1q

´

xk´1 ´ τ1∇F pxk´1q
¯

(8)

yk “ proxτ2Hpxk,.q

´

yk´1 ´ τ2∇Gpyk´1q
¯

(9)

Using Remark 1, the iterations (8) and (9) are equivalent to minimizing the following quadratic approxima-
tions of Hp¨, yk´1q around the point xk´1 and Hpxk, ¨q around the point yk´1, respectively:

J̃xpx, y
k´1q “ F pxk´1q ` xx´ xk´1,∇F pxk´1qy `Hpx, yk´1q ` 1

2τ1
}x´ xk´1}2 (10)

J̃ypx
k, yq “ Gpyk´1q ` xy ´ yk´1,∇Gpyk´1qy `Hpxk, yq ` 1

2τ2
}y ´ yk´1}2 (11)

Hence, ignoring the constant terms, by definition of the proximity operators, xk and yk are defined as

xk “ arg min
xPU

"

xx´ xk´1,∇F pxk´1qy `Hpx, yk´1q ` 1

2τ1
}x´ xk´1}2

*

(12)

yk “ arg min
yPV

"

xy ´ yk´1,∇Gpyk´1qy `Hpxk, yq ` 1

2τ2
}y ´ yk´1}2

*

(13)

4 General convergence facts

The assumptions below concerns the step-sizes in the iterations so that convergence can be ensured. Unlike
[10, 6], our step-sizes do not need to be updated at each iteration.
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Assumption (τ ) We assume that τ1 ă
2

L∇F
and that τ2 ă

2

L∇G
and denote:

λx :“
1

τ1
´

L∇F
2

ą 0 λy :“
1

τ2
´

L∇G
2

ą 0 λ :“ max tλx, λyu ą 0

4.1 Convergence of the objective and its subdifferentials

Our first result states the convergence of the sequence tJpxk, ykquk to a real number J˚, which can be proved
to be the value of a critical point of J if tpxk, ykquk has at least one limit point.

Proposition 2. Assume that pxk, ykq is generated by Algorithm 1 and Assumptions (J) and (τ) hold. Then

(a) tJpxk, ykquk and tJpxk, yk´1quk are nonincreasing and converge to the same value denoted J˚;

(b) Jpxk´1, yk´1q ě Jpxk, yk´1q ě Jpxk, ykq @ k ą 1 (interlacing inequality);

(c) The following holds for every k

Jpxk´1, yk´1q ´ Jpxk, yk´1q ě λx}x
k ´ xk´1}2;

Jpxk, yk´1q ´ Jpxk, ykq ě λy}y
k ´ yk´1}2;

Jpxk´1, yk´1q ´ Jpxk, ykq ě λ
`

}xk ´ xk´1}2 ` }yk ´ yk´1}2
˘

.

(14)

(d) lim
kÑ8

}xk`1 ´ xk}2 “ 0 and lim
kÑ8

}yk`1 ´ yk}2 “ 0.

Proof . Using Lemma 3 with f :“ F , h :“ Hp., yk´1q, x` :“ xk as defined in (12) and u :“ xk´1 shows that

F pxkq `Hpxk, yk´1q ď F pxk´1q `Hpxk´1, yk´1q ´ λx}x
k ´ xk´1}2

hence
Jpxk´1, yk´1q ě Jpxk, yk´1q ` λx}x

k ´ xk´1}2 (15)

In a similar way, we have
Jpxk, ykq ě Jpxk`1, ykq ` λx}x

k`1 ´ xk}2 (16)

From Lemma 3 yet again but with f :“ G, h :“ Hpxk, .q, x` :“ yk as defined in (13) and u :“ yk´1 one
has

Gpykq `Hpxk, ykq ď Gpyk´1q `Hpxk, yk´1q ´ λy}y
k ´ yk´1}2

hence
Jpxk, yk´1q ě Jpxk, ykq ` λy}y

k ´ yk´1}2 (17)

Taking (15), (16) and (17) together yields

Jpxk´1, yk´1q ě Jpxk, yk´1q ` λx}x
k ´ xk´1}2

ě Jpxk, ykq ` λx}x
k ´ xk´1}2 ` λy}y

k ´ yk´1}2

ě Jpxk`1, ykq ` λx

´

}xk`1 ´ xk}2 ` }xk ´ xk´1}2
¯

` λy}y
k ´ yk´1}2

This proves (c). It follows that the sequences tJpxk, ykquk and tJpxk, yk´1quk are monotonous decreasing,
interlaced by

Jpxk´1, yk´1q ě Jpxk, yk´1q ě Jpxk, ykq @ k ě 1 (18)

Hence, (b) is shown. Moreover, these sequences are bounded from below. since J is. Therefore tJpxk, ykquk
and tJpxk, yk´1quk converge to the same finite number, say J˚, which proves (a). Taking the limit as k Ñ8

shows that
0 “ lim

kÑ8
Jpxk´1, yk´1q ´ Jpxk, ykq ě lim

kÑ8

´

λx}x
k ´ xk´1}2 ` λy}y

k ´ yk´1}2
¯

(19)

Since λx ą 0 and λy ą 0 (see Assumption (τ)), it follows that

lim
kÑ8

}xk`1 ´ xk}2 “ 0 and lim
kÑ8

}yk`1 ´ yk}2 “ 0.

The proof is complete. l
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Remark 2. The interlacing in (18) is clearly important. In [10] the authors prove only (19), but their
algorithm generates Cauchy sequences. Since our sequences are certainly not Cauchy, this interlacing property
is welcome.

In what follows, BxJp¨, y
k´1q stands for the subdifferential for Jp¨, yk´1q and ByJpx

k, ¨q stands for the
subdifferential for Jpxk, ¨q. Since F and G are smooth, one has BxJpx, y

k´1q “ ∇F pxq ` BxJpx, yk´1q and
ByJpx

k, yq “ ∇Gpyq ` ByJpxk, yq for any px, yq P U ˆ V .

Proposition 3. Let pxk, ykq be generated by Algorithm 1 and let Assumption (J) hold. Then for any k ě 1,
there exist pkx P BxJpx

k, yk´1q and pky P ByJpx
k, ykq such that

(a) }pkx} ď

ˆ

L∇F `
1

τ1

˙

}xk´1 ´ xk} and }pky} ď

ˆ

L∇G `
1

τ2

˙

}yk´1 ´ yk}

(b) Let Assumption (τ) hold as well. Then

lim
kÑ8

}pkx} “ 0 and lim
kÑ8

}pky} “ 0. (20)

Proof . The optimality condition for xk defined by (12) yields

1

τ1
pxk´1 ´ xkq P ∇F pxk´1q ` BxHpxk, yk´1q (21)

By extracting BxHpx
k, yk´1q from (21) and using its explicit expression, we have

pkx :“ ∇F pxkq ´∇F pxk´1q ` 1

τ1
pxk´1 ´ xkq P BxJpx

k, yk´1q

Using Assumption (J) yields

}pkx} ď L∇F }x
k´1 ´ xk} `

1

τ1
}xk´1 ´ xk} “

ˆ

L∇F `
1

τ1

˙

}xk´1 ´ xk}

Using Assumption (τ), we can apply the last statement of Proposition 2 which entails

lim
kÑ8

}pkx} ď

ˆ

L∇F `
1

τ1

˙

lim
kÑ8

}xk´1 ´ xk} “ 0

Similar computations prove that

lim
kÑ8

}pky} ď

ˆ

L∇G `
1

τ2

˙

lim
kÑ8

}yk´1 ´ yk} “ 0

which ends the proof. l

Assumption (B). The sequence generated by the Algorithm 1 is bounded.
This assumption is trivially satisfied if J is coercive. Boundedness of the iterates can be proven in other

less restrictive cases, see e.g., [5]. The question is examined in a more general context in subsection 4.3 and
for a family of non-coercive objectives in section 5.

The set of all limit points corresponding to a starting point px0, y0q of Algorithm 1 is denoted by Lpx0, y0q.

Proposition 4. Let pxk, ykq be generated by Algorithm 1 and let Assumptions (J), (τ) and (B) hold. Then
the limit points px˚, y˚q of the sequence of iterates are critical points of the objective J , i.e., they satisfy

0 P BxJpx
˚, y˚q and 0 P ByJpx

˚, y˚q

Proof . Let px˚, y˚q P Lpx0, y0q. Then from assumption (B) there exists a subsequence
 `

xkj , ykj
˘(

j
such

that
`

xkj , ykj
˘

Ñ px˚, y˚q and
`

xkj , ykj´1
˘

Ñ px˚, y˚q as j Ñ 8 (thanks to Proposition 2(d)). Since J is
continuous

lim
jÑ8

J
´

xkj , ykj
¯

“ Jpx˚, y˚q and lim
jÑ8

J
´

xkj , ykj´1

¯

“ Jpx˚, y˚q

6



Proposition 3 shows that there exist two sequences tppkx, p
k
yqu such that for any k P N

pkx P ByJpx
k, yk´1q and pky P ByJpx

k, ykq

and }pkx}, }p
k
y} Ñ 0.

Then, following assumption (J)(b) two cases may occur.
Case 1: J is biconvex. Then the subgradient inequalities yield for any j P N

Jpx, ykj´1q ě Jpxkj , ykj´1q ` xp
kj
x , x´ x

kjy and Jpxkj , yq ě Jpxkj , ykj q ` xp
kj
y , y ´ y

kjy

Taking the limit as j Ñ8 and using the continuity of J , we have

Jpx, y˚q ě Jpx˚, y˚q @ x and Jpx˚, yq ě Jpx˚, y˚q @ y

that is, 0 P BxJpx
˚, y˚q and 0 P ByJpx

˚, y˚q.
Case 2: J is C1. This implies that H is continuously differentiable. Then, using the continuity of ∇xJ and
∇yJ , we have

lim
kÑ8

∇xJpx
k, ykq “ ∇xJpx

˚, y˚q and lim
jÑ8

∇yJpx
kj , ykj q “ ∇yJpx

˚, y˚q

Proposition 3 shows that ∇xJpx
˚, y˚q “ 0 and ∇yJpx

˚, y˚q “ 0. l

4.2 Convergence of the iterates

Without additional strong hypothesis about the objective J , no convergence results can be proved for the
sequence of iterates tpxk, ykquk. However, some weaker yet useful results can be shown.

Proposition 5 (Fixed points). If px˚, y˚q is a critical point of J , then pxk, ykq “ px˚, y˚q for any k.

Proof . We prove it by induction. Suppose that pxk, ykq is a critical point of J . Then

0 P ∇F pxkq ` BxHpxk, ykq and 0 P ∇Gpykq ` ByHpxk, ykq

By definition,
xk`1 “ proxτ1Hp¨,ykqpx

k ` τ1BxHpx
k, ykqq

so that the optimality condition yields

0 P BxHpx
k`1, ykq `

1

τ1
pxk`1 ´ xk ´ τ1BxHpx

k, ykqq

This implies that

´
1

τ1
pxk`1 ´ xkq P BxHpx

k`1, ykq ´ BxHpx
k, ykq

Since Hp¨, ykq is convex, the monotonicity of its subgradient implies that

´
1

τ1
xpxk`1 ´ xkq, xk`1 ´ xky ě 0

which obviously leads to xk`1 “ xk. Same computations show that yk`1 “ yk. l

The following result ensures that the sequence generated by Algorithm 1 globally approaches critical
points of J .

Proposition 6. Let zk :“ pxk, ykq be generated by Algorithm 1 and let Assumptions (J), (τ) and (B) hold.
Then the distance of zk to the set L :“ Lpx0, y0q of its limit points goes to zero.

Recalling Proposition 3(b), this proposition is a direct consequence of the following lemma:

Lemma 4. Let pzkq be a sequence of U such that }zk`1´ zk} goes to zero. Suppose that the set L of the limit
points of tzkuk is nonempty. Then the distance of zk to the set L goes to zero as k Ñ8.

7



Proof . Since L is closed and nonempty, the distance d of zk to the set L is well defined:

dpzk,Lq :“ min
zPL

}z ´ zk}

Suppose that dpzk,Lq does not go to zero as k Ñ8, namely that there exist ε ą 0 and a subsequence tzknun
such that

@ n P N dpzkn ,Lq ą 2ε. (22)

Observe that t}zk`1´zk}uk is a sequence of real non-negative numbers converging to zero, hence it is a Cauchy
sequence converging to zero. This, together with the fact that z ÞÑ dpz,Lq is a continuous function [19, p.
19.], entails that for each ε ą 0 there is K P N such that for any k ą K one has |dpzk`1,Lq ´ dpzk,Lq| ă ε.
Therefore, there exists N P N so that for any n ą N one has 1 kn ą K and thus

@ n ą N ´ ε ă dpzkn`1,Lq ´ dpzkn ,Lq ă ε. (23)

From the definition of L as the (nonempty) set of the limit points of tzku, there is an infinite number of points
of zk satisfying dpzk,Lq ď ε. Consequently, there exists kn such that dpzkn`1,Lq ă ε. From (23), together
with (22), one obtains

dpzkn`1,Lq ą dpzkn ,Lq ´ ε ą ε,

in contradiction to the fact that dpzkn`1,Lq ă ε. Thus the assumption in (22) fails. l

When the iterate convergence cannot be proved, Proposition 6 gives strong information on the sequence
behaviour. In particular, it shows that for k sufficiently large, the iterates pxk, ykq are arbitrary close to
a critical point of J . In other terms, if Algorithm 1 is stopped after a sufficient number K of iterations,
pxK , yKq is ensured to be close enough to a critical point.

4.3 Existence of limit points

Propositions 4 and 6 rely on the existence of limit points of the sequence tpxk, ykquk (see assumption (B)).
This may not be ensured, unless one adds assumptions on the objective function J . Additional hypotheses
include the coercivity of J or the boundedness of the sequence tpxk, ykquk, which are sufficient but strong
hypotheses.

Proposition 7. Suppose F and G are coercive. Then, if

s :“ inf
kerFˆkerG

J ą inf J

then for any r ă s, the set levďrJ is compact.

Remark 3. The assumption in Proposition 7 only aims at ensuring that there exists r such that Jpx, yq ą r
for any px, yq P kerF ˆ kerG and such that levďrJ is nonempty.

Proof . Let r ă s and suppose that levďrJ is unbounded. Then there exist pxk, ykqk P levďrJ such that
}pxk, ykq} Ñ `8. Since Jpxk, ykq ă s, this implies that pxk, ykq R pkerF ˆ kerGq. Hence, F pxkq or Gpykq
goes to infinity (by coercivity) and since Jpxk, ykq ě F pxkq ` Gpykq, we have that Jpxk, ykq Ñ `8, which
leads to a contradiction with Jpxk, ykq ă s. Thus levďrJ is bounded. Since J is lsc, levďrJ is also closed. l

This general result shows that, if one manages to initialize Algorithm 1 with Jpx0, y0q ă s, then the
iterates tpxk, ykquk remain in a compact set, thus they are bounded. In the following section, we show how
this can be used in practice for some specific classes of objective functions J .

5 A family of objectives J with H biquadratic

Let us consider objective functions of general form where the biconvex term H arises from a biaffine form,
e.g., xy ´ w. Then

Jpx, yq “ F pxq `Gpyq `Hpx, yq “ fp}Ax}q ` gp}Bx}q `
1

2
}xy ´ w}2 (24)

with x P U “ Rmˆn, y P V “ Rnˆp and w P W “ Rmˆp (data or perturbation), and where A and B are two
linear operators. The norm } ¨ } should be understood as the Frobenius norm when the argument is a matrix.
Following Proposition 7 let us define

s :“ inf
px,yqPkerFˆkerG

Jpx, yq. (25)

1If there was no such a kn, the definition / the existence of L would fail.
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Assumption pf, gq

(a) f and g are C2, strictly increasing functions satisfying fptq “ gptq “ 0 iff t “ 0;

(b) for any zk P U z kerF (resp., zk P V z kerF ) with }zk} Ñ 8, there is K such that for any k ě K it
holds that fpzkq ě s (resp., gpzkq ě s).

Assumption (b) is quite weak, compared to coercivity.

Remark 4. The results in this section can be generalized to the case

Hpx, yq “ hp}pMxqy ´ w}q

with M a square invertible matrix and h : U ˆ V Ñ R symmetric, C2-smooth, coercive. Further

F pxq “

qx
ÿ

i“1

fip}Aix}q and Gpyq “

qy
ÿ

j“1

gjp}Bjy}q (26)

with fi and gj as stated above, and Ai and Bj linear operators. We denote A “ pA1, . . . , AIq and B “

pB1, . . . , BJq. Then kerF “ kerA and kerG “ kerA.

5.1 The algorithm for J in (24)

Since Hpx, yq “ 1
2}xy ´ w}

2
F one has

∇xHpx, yq “ pxy ´ wqy
T and ∇yHpx, yq “ xTpxy ´ wq

Then a simple calculation shows that

proxτ1Hp.,yqpzq “ pz ` τ1wy
TqpI ` τ1yy

Tq´1;

proxτ2Hpx.,.qpzq “ pI ` τ2xx
Tq´1pz ` τ2x

Twq.
(27)

Observe that these proximal operators are simple and well defined since pI ` τ1yy
Tq and pI ` τ2xx

Tq are
positive definite. Hence, Algorithm 1 applied to J reads

Algorithm 2 (ABC-PFB with H biquadratic).
Initialization: px0, y0q and τ1 ą 0, τ2 ą 0
Iterations: for k ě 0

xk “ pz ` τ1wy
TqpI ` τ1yy

Tq´1 where z “ xk´1 ´ τ1∇F pxk´1q

yk “ pI ` τ2xx
Tq´1pz ` τ2x

Twq where z “ yk´1 ´ τ2∇Gpyk´1q

When F pxq “ fp}Ax}q and Gpyq “ gp}By}q, one may check that

∇F pxq “

#

f 1p}Ax}qA
˚Ax
}Ax} if x R kerA

0 otherwise
and ∇Gpyq “

#

g1p}By}qB
˚By
}By} if y R kerB

0 otherwise
(28)

The stepsizes τ1 ą 0 and τ2 ą 0 are chosen according to Assumption pτq i.e. such that τ1 ă 2{L∇F and
τ2 ă 2{L∇G. These Lipschitz moduli have to be estimated. If f 1 and g1 are resp. Lf 1 and Lg1-smooth, then,
if x, x1 R kerA,

∇F pxq´∇F px1q “ f 1p}Ax}q

}Ax}
pA˚Ax´A˚Ax1q`

f 1p}Ax}q

}Ax}

A˚Ax1

}Ax1}
p}Ax1}´}Ax}q`

`

f 1p}Ax}q´f 1p}Ax1}q
˘A˚Ax1

}Ax1}

Hence,

‖∇F pxq ´∇F px1q‖ ď Lf 1~A~
2‖x´ x1‖` Lf 1~A~‖}Ax1} ´ }Ax}‖` Lf 1‖}Ax1} ´ }Ax}‖~A~

ď 3Lf 1~A~
2‖x´ x1‖

since }Ax1} ´ }Ax} ď }Ax1 ´Ax}. If x P kerA and x1 R kerA, then

‖∇F pxq ´∇F px1q‖ “ ‖f
1p}Ax}q

}Ax}
A˚Ax1‖ ď Lf 1‖A˚Ax1‖ “ Lf 1‖A˚Ax´A˚Ax1‖ ď Lf 1~A~

2‖x´ x1‖

9



This proves that L∇F is bounded by 3Lf 1~A~
2. Similarly, L∇G is bounded by 3Lg1~B~

2.
In the case of more general regularization terms as those in (26), one has

∇F pxq “
qx
ÿ

i“1

∇Fipxq and ∇Gpyq “
qy
ÿ

j“1

∇Gjpyq (29)

with Fipxq “ fip}Aix}q and Gjpyq “ gjp}Bjy}q and p∇Fi,∇Gjq given by (28).

5.2 Facts on J in (24) and Algorithm 2

Remark 5. When kerA ‰ t0u (resp. kerB ‰ t0u), the objective J in (24) is not coercive, since for any
px, yq of the form

zp1q :“ pu, 0nq u P kerF zt0u and zp2q :“ p0n, vq v P kerGzt0u

Jpzpiqq “ Jptzpiqq “ }w}
2 for i P t1, 2u and all t ą 0. The result follows from the form of J in (24).

Lemma 5. If kerA “ t0u or kerB “ t0u and }w}2 ą inf J , then the sequence pxk, ykqk generated by Algorithm
1 is bounded if px0, y0q is chosen such that Jpx0, y0q ă }w}2.

Proof . Just remark that if kerA “ t0u or kerB “ t0u, then px, yq P kerAˆ kerB implies that xy “ 0, thus
Jpx, yq “ }w}2. Then, apply Proposition 7. l

Lemma 5 shows that, when kerA “ t0u or kerB “ t0u, it suffices to initialize Algorithm 1 with Jpx0, y0q ă
}w}2 to generate a bounded sequence tpxk, ykquk.

Proposition 8. The constant s in (25) is well defined. It can be computed and an element px̄, ȳq yielding
Jpx̄, ȳq “ s can be identified.

Proof . Let px, yq P kerF ˆ kerG. Since the latter is a finite-dimensional vector subspace and using the form
of J in (24), Jpx, yq “ Hpx, yq and

inf
px,yqPkerFˆkerG

Jpx, yq “ inf
px,yqPkerFˆkerG

Hpx, yq.

We denote
kerF “ spantup1q, . . . , upnF q

u where nF :“ dim kerF

kerG “ spantvp1q, . . . , vpnGq
u where nG :“ dim kerG

(30)

Any px, yq P kerF ˆ kerG has the form

px, yq “

˜

nF
ÿ

i“1

aiupiq,
nG
ÿ

j“1

bjvpjq

¸

, @ a P RnF ,@ b P RnG .

Then Hpx, yq “
1

2

›

›

›

›

›

nF
ÿ

i“1

nG
ÿ

j“1

aibjupiqvpjq ´ w

›

›

›

›

›

2

has a minimum that is determined by the nFnG numbers ci,j “

aibj . We can hence write down that

s “
1

2
min
tci,ju

›

›

›

›

›

nF
ÿ

i“1

nG
ÿ

j“1

ci,jupiqvpjq ´ w

›

›

›

›

›

2

.

The sum above is composed out of nFnG known elements upiqvpjq P W and the unknown nFnG numbers
ci,j solve a quadratic minimization problem. A set of coefficients c̄i,j yielding the minimum value above can
be computed. 2 One can identify all āi and b̄j yielding āi “ b̄j “ c̄i,j and hence for x̄ “

řnF
i“1 āiupiq and

ȳ “
řnG
j“1 b̄jvpjq one has Jpx̄, ȳq “ s. l

2A solution tc̄i,ju
nF ,nG
i“1,j“1 always exists. It is unique only if the set of all upiqvpjq is linearly independent.
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Lemma 6. Let w PW . Assume that nF nG ă dimW . Then the subset W

W :“

#

z PW | z “
nF
ÿ

i“1

nG
ÿ

j“1

aibjupiqvpjq @ ai, bj P R

+

(31)

is closed in W and its Lebesgue measure in W is LW pWq “ 0.

Proof . W is a vector space spanned by all upiqvpjq where 1 ď i ď nF and 1 ď j ď nG. Then

dimW ď nFnG ă dimW,

hence the statement. l

We emphasize that W zW is an open dense subset of W . We can always assume that data w satisfy
w PW zW. Since typical data w is noisy, the chance that a w following a non singular probability distribution
comes across W can be ignored in practice.

The goal of the following claim is to show that for any w, except for some w PW where W is closed and
of Lebesgue measure zero, there are points px, yq satisfying Jpx, yq ă s.

Proposition 9. Let w PW zW. Then there exist px, yq and ε ą 0 such that inf
px,yqPUˆV

Jpx, yq ď s´ ε.

Proof . Let px̄, ȳq be such that z̄ :“ x̄ȳ KW and that xz̄, wy ą 0. Using the notations in Proposition 8, set

xpcq :“
nF
ÿ

i“1

āiupiq ` cx̄ and ypcq :“
nG
ÿ

j“1

b̄jvpjq ` cȳ. (32)

Then Jpxpcq, ypcqq “ fpc}Ax̄}q ` gpc}Bȳ}q `Hpxpcq, ypcqq and

inf
px,yqPUˆV

Jpx, yq ď fpc}Ax̄}q ` gpc}Bȳ}q `min
cPR

Hpxpcq, ypcqq @ c. (33)

Note that upiqvpiq PW for all pi, jq. Thus using that z̄ KW one has

Hpxpcq, ypcqq “
1

2

›

›

›

›

›

nF
ÿ

i“1

nG
ÿ

j“1

āib̄jupiqvpiq ` c
2z̄ ´ w

›

›

›

›

›

2

“
1

2

›

›

›

›

›

nF
ÿ

i“1

nG
ÿ

j“1

āib̄jupiqvpiq ´ w

›

›

›

›

›

2

`
1

2
c4}z̄}2 ´ c2xz̄, wy

Recalling that xz̄, wy ą 0, the optimal c̃ obeys 3 c̃2 “
xz̄, wy

}z̄}2
and thus 4

min
cPR

Hpxpcq, ypcqq “ Hpxpc̃q, ypc̃qq “ s´
1

2

xz̄, wy2

}z̄}2
. (34)

From Assumption pf, gq, there exists c̄ ą 0 such that for any c P p0, c̄s one has fpc}Ax̄}q ď
1

4

ˆ

1

2

xz̄, wy2

}z̄}2

˙

and

gpc}Bȳ}q ď
1

4

ˆ

1

2

xz̄, wy2

}z̄}2

˙

. Let us now consider that pxpc̄q, ypc̄qq in (32). This, together with (33) and (34)

leads to

inf
px,yqPUˆV

Jpx, yq ď s´
1

4

xz̄, wy2

}z̄}2
.

Thus ε “
1

4

xz̄, wy2

}z̄}2
in the statement. l

If the optimal c̃ used in (34) is such that c̃ ď c̄, then set c̄ :“ c̃ and the stated inequality will hold for a
smaller positive ε. Otherwise, another px̄, ȳq should be chosen so that c̃ ď c̄. This will help to find an initial
point px0, y0q such that Jpx0, y0q ă s in order to guarantee the boundedness of the iterates.

Now we can state a result for J in (24) that reinforces Proposition 7.

3Differentiating wrt c and setting to zero yields c2}z̄}2 “ xz̄, wy.

4One has
1

2
c4}z̄}2 ´ c2xz̄, wy “

1

2

xz̄, wy2

}z̄}4
}z̄}2 ´

xz̄, wy

}z̄}2
xz̄, wy “ ´

1

2

xz̄, wy2

}z̄}2
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Theorem 1. Suppose that f and g obey Assumption pf, gq. Then J has a global minimizer ppx, pyq satisfying
pJ :“ Jppx, pyq ă s and for any r P

”

pJ, s
¯

the set levďrJ is compact and nonempty.

Proof . Let r ă s. The set levďrJ is closed since J is continuous. Suppose that levďrJ is unbounded. Then
there exist pxk, ykqk P levďrJ such that }pxk, ykq} Ñ `8. Since Jpxk, ykq ă s, then pxk, ykq R kerF ˆ kerG.
Hence, by Assumption pf, gq (b), there is K such that F pxkq ě s or Gpykq ě s for all k ě K. Since
Jpxk, ylq ě F pxkq ` Gpykq, we have that Jpxk, ykq ě s, a contradiction to Jpxk, ykq ă s. Thus levďrJ is
bounded. Therefore, for any r ă s, the set levďrJ is compact.

Now from Proposition 9 we know that inf J ă s´ ε where ε ą 0. It follows that J has a global minimizer
ppx, pyq satisfying pJ :“ Jppx, pyq ď s ´ ε and ppx, pyq P levďs´εJ . Noticing that inf J “ pJ , it follows that that
levďrJ ‰ ∅ for any r ě pJ . l

5.3 Convergence when F and G are convex

Even if F and G are convex and coercive, the objective J is nonconvex and non-coercive. Nonetheless, some
strong-convexity-like properties hold, due to the biconvex structure of H.

Lemma 7. Let F and G are convex and x` P U and y` P V . Then

@ px, yq P U ˆ V Jpx, yq ě Jpx`, yq ` xx´ x`,∇xJpx
`, yqy `

1

2
‖px´ x`qy‖2 (35)

@ px, yq P U ˆ V Jpx, yq ě Jpx, y`q ` xy ´ y`,∇yJpx, y
`qy `

1

2
‖xpy ´ y`q‖2 (36)

Proof . Let us prove (35). The convexity of F yields

@ px, yq F pxq `Gpyq ě F px`q `Gpyq ` xx´ x`,∇F px`qy.

We notice that ∇xHpx
`, yq “ px`y ´ wqyT so by expanding Hpx, yq one obtains

Hpx, yq “
1

2
‖x`y ´ w ` px´ x`qy‖2 “ Hpx`, yq ` xx`y ´ w, px´ x`qyy `

1

2
‖px´ x`qy‖2

“ Hpx`, yq ` xx´ x`,∇xHpx
`, yqy `

1

2
‖px´ x`qy‖2.

Combining the last equality with the previous inequality proves (35). l

Lemma 8. Let pxk, ykq be generated by Algorithm in subsection 5.1, with limit point px˚, y˚q. Let Assumptions
(J) and (τ) hold with F and G convex. If x˚ has full column rank, then yk converges to y˚.

Proof . From Proposition 4, pxkq has a convergent subsequence txkju, of limit point x˚. Lemma 3 applied to
f “ G, h “ Hpxkj , ¨q, and x` “ ykj yields

@ y

ˆ

1

τ2
´
L∇G

2

˙

‖ykj ´ y‖2 ď Jpxkj , yq ´ Jpxkj , ykj q.

Using Proposition 2 and the continuity of J , we can take the limit in the right-hand side of the previous
inequality, which converges to Jpx˚, yq ´ J˚, hence it has limit points. Suppose that it has two limit points
ŷ and ỹ. Thus, px˚, ŷq and px˚, ỹq are limit points of pxk, ykq. Then using Propositions 2 and 4, we have
Jpx˚, ŷq “ J˚ “ Jpx˚, ỹq and ∇yJpx

˚, ŷq “ 0 “ ∇yJpx
˚, ỹq. Now apply (36) in Lemma 7 to x “ x˚, y “ ŷ

and y0 “ ỹ:

J˚ ě J˚ `
µ

2
‖x˚pŷ ´ ỹq‖2

that is, x˚pŷ ´ ỹq “ 0. Since x˚ has full column rank, this implies that ŷ “ ỹ. In other terms, the sequence
ykj has a unique limit point. l
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6 Hadamard based biconvex term and application

We consider objective functions of the form

Jpx, yq “ F pxq `Gpyq `Hpx, yq “ fp}Ax}q ` gp}Bx}q `
1

2
}x ˝ y ´ w}2 (37)

with x P U “ Rmˆn, y P V “ Rmˆn and w P W “ Rmˆn (data or perturbation), and where ˝ stands for the
Hadamard product. All results in section 5 hold if we replace matrix products by element-wise multiplication
and matrix inverses by element-wise inverses, since x ˝ y “ diagpxqy. Then

∇xJpx, yq “ diag ppx ˝y ´ wq ˝yq `∇F pxq ∇yJpx, yq “ diag px ˝ px ˝y ´ wqq `∇Gpyq

and the first order optimality conditions are

diagpx̃ ˝ ỹ ˝ ỹq `∇F px̃q “ diagpw ˝ ỹq and diagpx̃ ˝ x̃ ˝ ỹq `∇Gpỹq “ diagpw ˝ x̃q (38)

Corollary 1. Let w P W zW satisfy wi ‰ 0 for any i. Then each critical point px̃, ỹq of J obeys x̃ R kerF
and ỹ R kerG.

Proof . Let u P kerF . The optimality condition (38) for x̃ “ u yields uiỹ
2
i “ wiỹi @ i. Then, noticing that

wi ‰ 0, one has
$

&

%

ỹi “ 0 if ui “ 0

ỹi “
wi
ui

if ui ‰ 0

Suppose that ỹ “ v P kerG, hence w “ uv @ u P kerF @ v P kerG and thus w PW. l

Then the algorithm in subsection 5.1 reads as:

Algorithm 3 (ABC-PFB with Hadamard product).
Initialization: px0, y0q and τ1 ą 0, τ2 ą 0
Iterations: for k ě 0

xk “
z ` τ1y

k´1
˝w

1` τ1yk´1 ˝yk´1
where z “ xk´1 ´ τ1∇F pxk´1q

yk “
z ` τ2x

k
˝w

1` τ2xk ˝xk
where z “ yk´1 ´ τ2∇Gpyk´1q

where division is componentwise.

Once again, the gradients are given by (28) or (29), and the stepsizes τ1 ą 0 and τ2 ą 0 have to satisfy
Assumption pτq i.e. chosen such that τ1 ă 2{L∇F and τ2 ă 2{L∇G.
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