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Automated prediction of Extraversion during Human-
Humanoid interaction

Anzalone S. M. · Varni G. · Ivaldi S. · Chetouani M.

Abstract - One of the most important challenges in ro-botics is to achieve natural and engaging interactions between humans
and robots. Interpersonal interaction, the process by which two or more people exchange information through verbal and non-
verbal messages, could be exploited by robots both to establish interaction and to inform about its quality. The production of
social signals being influenced by individual factors, such as personality traits, is critical for robots to have personalized models
of interaction. This paper focuses on estimating social traits such as human personality from the dynamics of interpersonal
interaction. The work was carried out in the framework of the Project EDHHI (Engagement During Human-Humanoid Inter-
action) which focuses on understanding individual factors influencing joint human-humanoid actions. In particular, this work
addresses the automated prediction of the Extraversion trait during a human-humanoid interaction. We show how it is possible
to take into account the specificity of Human-Robot Interaction (HRI) scenarios by contextualizing personality through the
attitude that participants show towards the robots. This attitude is influenced by the a priori knowledge that people have
on social robotics, and their prior anxiety in interacting with them. The proposed model exploits a set of nonverbal features
chosen according to literature in Psychology and Personality Computing. These features are adopted to characterize human
behaviors and the dynamics of human-robot interaction. Experimental results highlight that it possible to predict Extraversion
of the human partner from nonverbal behavior during human-robot interaction with an accuracy of 62%. A higher accuracy,
70%, is obtained from the computational model by explicitly combining the dynamics of interpersonal interaction and the
attitude of the participants towards the robots. Results show that 120s are needed to obtain such performance.

1 Introduction

Researchers in social robotics strive to build machines

able to work, play and help people in their daily life

activities as real, effective partners [13, 14]. Such ma-

chines should express, through their embodiment and

their behaviors, a certain degree of Social Intelligence

[17]. This feature essentially emerges from the coherent

exploitation of cognitive and social skills that endow the
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Saint-Denis, France
E-mail: sanzalone@univ-paris8.fr

G. Varni and M. Chetouani
CNRS & Sorbonne Universités, UPMC Université Paris 06,
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robot with “the ability of getting along with others” [67].

The grand challenge of achieving such a level of inter-

action translates into the analysis and the synthesis of

social behaviors. Robots should produce coherent, mul-

timodal, “readable” social cues [35]. At the same time,

they should capture the details of the mutual interplay

of verbal and nonverbal behaviors occurring during so-

cial activities with humans [7]. The production of the

so called “social signals” (verbal and non-verbal signals,

i.e., speech, gaze, gestures) can be influenced by some

individual factors, such as age, gender, personality and

attitudes [36, 42, 63]. This paper focuses on the analysis

of the dynamics of human-robot interaction to predict

individual differences in personality.

Dealing with personality is one of the key “socio-

cognitive building blocks” [54] needed for creating so-

cially intelligent robots. Interaction with humans can

be improved by endowing social robots with an unique

personality as well as with the ability of inferring the

partners’ personality and adapting to them. These skills

will ensure a more intuitive and natural interaction be-

tween humans and machines [31, 12].

From this point of view, personality here refers to

the “individuals’ characteristic patterns of thought, emo-
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tion, and behavior, together with the psychological mech-

anisms - hidden or not - behind those patterns.” [28].

Previous studies showed that social robots can benefit

from the exhibition of compelling personalities through

their behaviors [26]. However, a critical limitation of

these previous studies is that they neglected the online

adaptation and the recognition of the personality of the

people interacting with robot: they relied on scripted,

a priori knowledge. On the contrary, while displaying

a personality, socially intelligent robots should be able

to grasp the specific personality of their human part-

ner and accordingly adapt their behavior [21, 14]. Re-

cent works showed how the adaptation to individual

factors contributes to enhance the interaction between

humans and social robots [34, 61]. However, adapting

the robot’s behavior to the personality of each indi-

vidual is not straightforward. Previous studies found

evidence of two contradicting phenomena [68]: the sim-

ilarity attraction phenomenon, where similar person-

alities will tie together; the complementary attraction

phenomenon, where opposite personalities will be at-

tracted. It is not clear if robots should adapt to peo-

ple following one of the two paradigms, showing similar

(e.g. [3]) or opposite personalities (e.g. [43]). The choice

of the paradigm could depend on the task context and

the joint activity [39]. Even if we had more evidence

that one of the two paradigms should be preferred, the

question remains of how to estimate the user’s person-

ality online from his/her behavior.

Adaptation to individual factors is highlighted to be

one of the key design issues for engagement in long-term

interaction contexts [45]. In particular, a two-month

field trial in an elementary school showed how engage-

ment towards the robot decreases among the weeks of

interaction when a continuous adaptation of behaviors

to the interacting partners is missing [41, 42].

The adaptation of robots behaviors according to

people personality opens several questions. In partic-

ular, although the correlation between personality and

behaviors in human interaction is a well-studied issue,

it is still not fully investigated how personality traits in-

fluence people’s behaviors in human-robot interaction.

Studies in social signal processing proposed method-

ologies to recognize individual differences in personal-

ity traits during interaction with computers, however

this topic in human-robot interaction is still under-

investigated. The work presented in this paper is part

of the EDHHI Project1, aimed at advancing the current

understanding about the individual factors that influ-

ence human-humanoid interactions in joint activities.

The focus is on the analysis of personality traits of hu-

man partners, on their influence on the exchange of ver-

1 http://www.smart-labex.fr/EDHHI.html

bal and nonverbal signals, as well as on the mechanisms

underlying the dynamics of behavior during interaction

with social robots.

1.1 Research questions

This work focuses on the prediction of the Extraver-

sion personality trait of a human partner from non-

verbal behaviors during human-robot interaction. The

effect of personality and attitudes is observable from

the overt actions of the individual [1]. We chose to ex-

plore Extraversion as this particular trait is the most

detectable from nonverbal behaviors [47]. As discussed

in [36], Extraversion “is the personality trait that no-

tably (i) shows up more clearly during interaction, and

(ii) has the greater impact on social behavior with re-

spect to the other traits”. A number of studies report

on the influence of Extraversion on social signals, for

example on the frequency and duration of gazes during

face-to-face interactions [33], as well as on speech dy-

namics [62, 23]. The three following research questions

will be here addressed:

RQ1: Is it possible to predict Extraversion of the hu-

man partner from nonverbal behavior during human-

robot interaction?

RQ2: How this prediction is influenced by the human

partners’ a priori on robotics?

RQ3: How much time a robot needs to build an ac-

curate first impression model of Extraversion of its

human partner?

2 Related Works

In this section, firstly, personality and personality traits

are defined according to the state of art on Psychol-

ogy. Instruments for the evaluation of personality traits

are then introduced. Finally, a review of the current

research on the interplay between personality and be-

haviors in Human-Computer Interaction (HCI) and in

Human-Robot Interaction (HRI) is presented.

2.1 Human personality traits

Individual differences in personality define ourselves,

making each person unique. An accepted definition of

personality characterizes it as the “patterns of relatively

permanent traits and unique characteristics that give

both consistency and individuality to a person’s behav-

ior” [25]. This is, therefore, a psychological construct

that influences behaviors via the mind-body interplay.

However, psychologists are still far from a universally

http://www.smart-labex.fr/EDHHI.html
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shared definition. For example, Allport identified 4.500

terms in the English vocabulary describing aspects of

personality [2]. Our thinking, feelings and behavioral

patterns, reflect our personality. Individual differences

shape our own identity in a relatively stable way along

all our life, guiding behaviors in our social life as well as

in the loneliness [48]. At the same time, people observe

our behaviors for building mental models of us. In social

interactions, these mental models give us the possibil-

ity of establishing effective relationships with others,

harmonizing our behaviors to them, according to their

personality, the social context and our own personality.

The definition of personality provided above grounds

on the concept of “personality traits”. A trait is defined

as “a dimension of personality used to categorize people

according to the degree to which they manifest a par-

ticular characteristic” [15]. These traits are considered

as the fundamental building blocks of personality. They

are stable across contexts and time and represent peo-

ple‘s disposition to respond in certain ways. From this

point of view, a trait is considered as the “conditional

probability of a category of behaviors in a category of

contexts” [51]. It is possible to observe a certain degree

of stability in personality traits. Nonetheless, some as-

pects of our personality may change over time, as a

result of specific actions taken to smooth or alter some

traits: some people tend to take considerable time and

effort to be successful in this process.

Psychologists tried to identify a basic set of traits

able to define the uniqueness of each individual. Each

person has a different mixture of common traits mak-

ing his personality unique. In other terms, researchers

in psychology tried to find independent factors repre-

senting the common traits of personality. The combi-

nations of these traits express all the continuous spec-

trum of personalities. Being supported by experimental

evidence, the “Big-5 model” recently gained consensus

in the research community [60]. This model defines

the basic structure of people’s personality as a set of

five “supertraits” consisting each one of six subordi-

nated facets. The five supertraits are: Openness, Con-

scientiousness, Extraversion, Agreeableness and Neu-

roticism. The Big-5-model is a data-driven psycholog-

ical model. The hypothesis on which it grounds, that

is that five supertraits are sufficient to cover the com-

plexity of personality, emerges from a Factor Analysis

applied to a big amount of data collected through ques-

tionnaires.

The instruments proposed in literature for person-

ality assessment are Likert scales-based questionnaires.

The most popular questionnaires are: the NEO Person-

ality Inventory Revised (NEO-PI-R, 240 items) [19], the

NEO Five Factor Inventory (NEO-FFI, 60 items) [49],

and the Big-Five Inventory (BFI, 44 items) [38]. These

instruments were conceived in a “human perspective”:

they allow to assess personality through self-judgments

and their results were validated via correlation with

judgments provided by acquainted persons. These ques-

tionnaires were also extensively used to investigate the

interplay between personality and the use of technol-

ogy (see [68] for a survey). However, the relationship

between the self-assessment and the behavior of peo-

ple during Human-Machine Interaction is still under-

investigated.

2.2 Personality computing and robotics

People display different facets of their personality trough

everyday behavior. This implies that the way in which

they use technology sometimes also reflects these facets.

The interplay between personality and technology is ad-

dressed in a growing number of recent studies [11, 57,

37]. In particular, many works in the field of Affective

Computing [55] and of Social Signal Processing [69] fo-

cused on this issue. Thus, a new and challenging field of

research, called “Personality computing”, is emerging.

For example, Qiu et al. found correlations by the text

produced in a month by 142 Twitter users and their

Big-5 personality traits [57]. Ivanov et al. successfully

recognized personality traits using speech features from

a corpus of 119 conversations [37]. In [11], the authors

proposed the recognition of “personality states” from

the analysis of nonverbal social signals in 442 Youtube

video blogs.

During the interaction with social robots, personal-

ity plays a relevant role. Each human has a unique iden-

tity and wants to be treated accordingly [20]. Robots,

then, should personalize their behaviors to the partners

they are interacting with, dealing with mental models of

people identities, preferences and personality traits [14,

8, 72]. Several studies have been focusing on robots able

to express personality [6, 64, 43] and behave accord-

ingly [50, 35].

For example, Lee et al. found that participants en-

joyed interacting with a quadruped robot more when

its personality was complementary to their own per-

sonalities [43]. At the same time, Aly and Tapus [3]

synthesized introverted and extroverted behaviors that

matched with correspondent interacting partners. They

showed how introverted people prefer introverted robots

and viceversa, confirming the similarity-attraction phe-

nomenon. Notably, in this last work personality is as-

sessed online through the analysis of verbal and non-

verbal cues. Behaviors of the robots are then shaped

according to this information. Andrist et al. designed

and evaluated behaviors for a social assistive robot able
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to match its Extraversion/Introversion to that of the

human partner during a joint activity [6]. The robot

expressed its Extraversion through gaze behaviors syn-

thesized by the gaze behavior of participants involved

in a human-human joint activity. As mentioned before,

it is not yet clear whether robots, in general, should

match the personality of the human partner or behave

in a complementary way [68].

In these previous studies the participant’s personal-

ity was known a priori : robots behaved according to

the scores of personality gathered through question-

naires filled before the interaction. Personality comput-

ing techniques can be used to fill this gap. However, be-

haviors in social interactions do not depend only on the

personality of the people involved, but also on the spe-

cific context in which this interaction takes place. This

is especially true in the particular context of Human-

Robot Interaction. Robotics has been popularized by

media, films, and novels. As a result, people may have

developed their own idea on what a robot is, what a

robot can do, and so on. As a consequence, they may

have developed a positive or negative attitude towards

robot. We refer here to “attitude” as a behavior ten-

dency (usually directed towards people, objects or situ-

ations, not necessarily to robots) that is determined by

the background, knowledge, social context and experi-

ences of the individual. Due to their relation to the prior

experience, attitudes are contingent and may change in

time. When näıve end-users2 interact with robots, es-

pecially for their first time, a novelty or anxiety effect

may appear. As such, people could be excited to in-

teract with a robot, showing a rather positive attitude

towards it, or may be afraid to touch it, or feel fear-

ful of the possible actions of a robot, showing a rather

negative attitude towards it. The NARS questionnaire,

“Negative Attitude Towards the Robots” [53], can be

useful to detect such kind of projected anxieties prior to

an interaction. In [59], it was employed to evaluate the

effects of nonverbal gestures of a humanoid during inter-

actions with humans. Further, Kamide et al. adopted

the same questionnaire to quantify the perception of

human-likeness and anthropomorphism of robots [40].

3 Materials & Methods

To address our research questions, we designed and per-

formed an experiment where participants freely inter-

acted with a humanoid robot. Information about per-

sonality and attitude towards robots were collected us-

ing the NEO-PI-R and NARS questionnaires before the

2 By näıve end-users here we intend people that are not
experts in robotics or have no prior significant experience in
operating or interacting with robots.

Fig. 1 The humanoid robot iCub holding a paper toy. The
robot starts to interact with its human partner few seconds
after the encounter with him: it looks at the human and offers
him the paper toy. The human partner can decide to take the
paper toy or to ignore the robot action.

interaction with the robot. A RGB-D sensor was used

to capture the nonverbal behavioral patterns of the par-

ticipants.

3.1 Setup

The experiments were performed in a laboratory set-

ting, using the child-like robot iCub [52] controlled by

an operator. The operator, hidden behind a wall, had

a complete third-person view of the robot and of its

surroundings using a conveniently placed camera. The

robot was controlled through a Wizard-of-Oz (WoZ)

GUI. The operator was able to adjust the stiffness of

the robot to make it fully compliant [27] when touched.

iCub was endowed with multimodal communication, in-

teracting with the human partner by using gestures,

speech and facial expressions.

As shown in Figure 2, an RGB-D sensor was con-

veniently placed over the head of the robot to frontally

capture the movements of the upper-body of the human

interacting with the robot. At the same time, two HD

cameras recorded the scene from the front and from the

side, respectively. The experimenter monitored the in-

teraction out from the sensors’ field of views, able in any

case to push the safety button and intervene in case of

emergencies. Participants were equipped with a wireless

Lavalier microphone to have a clear voice recording.
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Fig. 2 The experimental setup. The left part of the schema
depicts the control area of the experiment: the operator con-
trolling the humanoid partner was hidden behind a wall. The
right part of the schema shows the area where the human
and humanoid partners interacted. Four cameras captured
the interaction: one RGB-D Kinect sensor was set behind the
robot to capture the behavior of the human participant, two
cameras were used by the operator to follow how the experi-
ment runs, an additional camera was set to record the whole
scene. The experimenter followed the interaction and could
intervene in case of dangerous situations by pressing a safety
button.

3.2 Experimental Protocol

The experiments followed an ad hoc protocol3 devel-

oped to study the spontaneous behavior of näıve end-

users interacting with a robot.

Before the beginning of the experiment, the partic-

ipants were asked to watch a short video presenting

the iCub. The video did not provide any information

about the experiments. It was only aimed to guarantee

that the participants had a uniform prior knowledge of

the robot appearance. Then, each participant was in-

troduced to the robot by the experimenter, who did

not provide any specific instruction about how to be-

have with the robot and what to do. The experimenter

would simply say “This is the robot iCub”, then stay

on the right side of the robot, to supervise the interac-

tion for safety issues. The participant was not implicitly

or explicitly encouraged to interact with the robot: the

experimenter did not say anything suggesting the fact

that they could interact, speak or touch the robot, nor

that they were not allowed to do it. The robot was

standing on its fixed pole, gently waving the hands and

looking upright, while holding a colored paper toy in

its right hand. It was not speaking.

Once the participant was standing and looking in

front of the robot, he was free to do whatever they

wanted: talking to the robot, touching it, and so on.

After few seconds, the robot started to interact with

the participant: it would look at him (upward gaze)

3 Ivaldi et al., IRB n.20135200001072.

and raise the right hand, holding the colored paper toy.

The participant could choose whether to interpret the

robot’s movement as an intentional and goal-directed

action or not, decide to interact with the robot or to ig-

nore it. When a participant had no reaction to the robot

action, the robot, controlled by the operator, would

lower the hand after 4-5 seconds. Otherwise, the robot

would open the hand to give the paper toy to the hu-

man (see Fig. 1). As participant did not receive any in-

dication by the experimenter, if he wanted to, he could

start interacting more actively with iCub, asking ques-

tions, giving back the paper toy, and so on. Due to the

absence of guidelines by the experimenter, the behav-

ioral response exhibited by the participants was sponta-

neous. When a disengagement or inactivity of the par-

ticipant was detected, the experimenter would invite

him to withdraw from the robot and start preparing for

performing other experiments with iCub (not related

to this work) [36, 29]. The experimenter considered a

disengagement event one of the following: i) the par-

ticipant stopping to look at the robot and looking else-

where, ii) the participant addressing a question to the

experimenter regarding the upcoming experiments, iii)

the participant withdrawing from the robot and gazing

at the experimenter, iv) the participant returning the

cylinder to the experimenter.

3.3 Participants

A group of 37 healthy adults, French, without any prior

experience with robots was involved in this study. Par-

ticipants decided voluntarily to participate in the Project.

They were recruited via word-of-mouth, mailing list and

newspaper announcements. Each participant received

an ID number to preserve their anonymity and signed

informed consent granting us the use of their recorded

data. All the participants received information about

the experiment and gave a written consent before at-

tending it. Due to technical problems and data incon-

sistencies, some recordings were corrupted or incom-

plete, and were therefore discarded (e.g., ROS/YARP

issues, proper detection of the human silhouette). Other

sessions were discarded due to the unpredictability of

the human behaviors. For example, a participant knelt

down in front of the robot for all the interaction; an-

other one sat down on the side of the robot. The final

size of the data set included 23 samples (6 men, 17

women, age: 34.95±16.98).
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3.4 Questionnaires

To assess the personality traits of the participants, two

questionnaires were administered to all the participants

of the EDHHI Project few weeks before the experiment.

The two questionnaires were: the Revised Personality

Inventory (NEO-PIR) [18], assessing the personality

traits according to the Big Five model [60], and the

Negative Attitude towards Robots Scale (NARS) [53].

From the first questionnaire, only the 48 questions

related to Extraversion were retained. The official French

translation was used. The order of the questions fol-

lowed the original questionnaire, the answers were from

1 (Totally disagree) to 5 (Totally agree). Figure 3 shows

the distribution of the NEO-PI-R Extraversion scores.

According to the authors of NEO-PIR [18], people with

a score between 100 and 120 have a neutral level of

Extraversion. People with very low scores (≤ 80) can

be considered introverts, whereas people with very high

scores (≥ 140) can be considered extroverts. In between

the extreme and the average range of scores, there are

people exhibiting tendencies of introversion (80-100) or

extraversion (120-140). It must be noted that the NEO-

PIR scale is normalized, so it is normal to have more

participants with a medium/average score of extraver-

sion, because very extrovert people and very introvert

people fall in the tails of the distribution.

The second questionnaire consists of 14 questions

divided into three sub-scales: Negative attitude toward

situation of interaction with robots (NARS-S1); Nega-

tive attitude toward social influence of robots (NARS-

S2); and Negative attitude toward emotions in interac-

tion with robots (NARS-S3). The order of the questions

followed the original questionnaire, while answers were

on a Likert-type scale, from 1 (Strongly disagree) to 7

(Strongly agree). The total score is computed by adding

the scores of the three subscales, with some items re-

verse coded. The minimum and maximum scores for the

three subscales are respectively 6-42 (NARS-S1), 5-35

(NARS-S2) and 3-21 (NARS-S3). Figure 4 shows the

distribution of the NARS scores.The range of possible

NARS scores is between 18 (very positive attitude) and

98 (very negative attitude). Scores around 58 can be

considered as neutral attitude. For the experiments, we

used the French adaptation of the NARS questionnaire

from [36], which is also already used in other studies

[29].

The participants retained for our analysis have sim-

ilar distribution in terms of individual factors; their av-

erage Extraversion score is 104.21±21.74, whereas their

average NARS score is 51.70±13.40.

Fig. 3 The distribution of the NEO-PI-R scores of the 37
participants involved in the study.

Fig. 4 The distribution of the NARS scores of the 37 par-
ticipants involved in the study.

3.5 Data Collection

The data stream was captured by a RGB-D sensor

(33fps). The RGB-D images kept synchronized with the

robot behavior logged by the WoZ GUI. These record-

ings captured the first minutes of the interaction of each

participant with iCub.

To investigate if there is a relationship between the

duration of the interaction and the Extraversion or the

participants’ attitude towards robots, correlations were
calculated. No significant correlation emerged from both

the analyses (duration-NEO-PI-R: ρ = 0.19, p = 0.40;

duration-NARS: ρ = −0.19, p = 0.39). According to

such results, we conclude that no relationship exists

between time and scores.

3.6 Observed behaviors

From the behavioral point of view, 65.22% of the par-

ticipants changed their standing posture after taking

the object from the robot (e.g., bending more towards

the robot, reducing the interpersonal distance). Only 1

participant from the 23 did not take the object. About

half the participants (12 over 23) asked to the exper-

imenter if they could take the object from the robot,

whereas only 5 participants (21.74%) asked if they were

allowed to speak to the robot. After taking the ob-

ject, 17 participants gave the object back to the robot

(77.27%) and 5 of them took this exchange as a chance



Automated prediction of Extraversion during Human-Humanoid interaction 7

to “play” with the robot, for example asking to take it

with the other hand (4/5). Most participants (73.91%)

naturally engaged in an interaction with the robot by

talking to it and explaining what they were doing - some

sample behaviors are shown in https://www.youtube.

com/watch?v=L9ZIOwAqeug, where some different non-

verbal cues of the participants can be seen (movements,

gestures, gaze etc.). Figure 5 shows four typical reac-

tions of the participants interacting with the robot: the

pictures on the left capture the participants when the

robot starts lifting the hand holding the object, whereas

the picture on the right shows the participants after

taking the object. Some participants came closer to the

robot (first), some kept the distance but tried to con-

tinue the interaction (second), some went further and

asked the robot to take it back with the other hand

(third), whereas other participants did not act particu-

larly but rather stayed put a bit puzzled (fourth).

4 Nonverbal behavioral features

A set of 15 nonverbal behavioral features were auto-

matically extracted from the video corpus for each par-

ticipant. Table 1 reports the list of the features.

Table 1 The set of nonverbal behavioral features extracted
from the video corpus.

Feature ID Feature name

In
d

iv
.

fe
a
tu

re
s F1 Average of QoM

F2 Standard deviation of QoM
F3 Skewness of QoM
F4 Kurtosis of QoM

D
y
a
d

ic
fe

a
tu

re
s

F5
Instantaneous change of

the human-robot distance

F6
Instantaneous amount

of synchrony
F7 Average of F6
F8 Standard deviation of F6
F9 Skewness of F6
F10 Kurtosis of F6

F11
Instantaneous direction

of synchrony
F12 Average of F11
F13 Standard deviation of F11
F14 Skewness of F11
F15 Kurtosis of F11

The first four features (F1 − F4) were computed

from the Quantity of Motion (QoM) of each partici-

pant. QoM is a measure of the amount of motion de-

tected from a video-camera and it is used in computer

vision as an approximation of the kinetic energy of the

movement. These features, called Individual features,

are related only to the behavior of the participant dur-

ing the interaction. The fifth feature (F5) was the in-

Fig. 5 Some participants reacting to the robot’s gesture.

https://www.youtube.com/watch?v=L9ZIOwAqeug
https://www.youtube.com/watch?v=L9ZIOwAqeug


8 Anzalone S. M. et al.

stantaneous change of the human-robot distance. The

features from F6 to F15 are related to the human-robot

movement synchrony. Synchrony measures the degree

to which the human and the robot adapt in time their

behaviors. Features F5−F15 are called Dyadic features

and they take simultaneously into account both the be-

havior of the participant and the behavior of the robot.

A full description of these features is provided in the

following of this Section. The features were arranged in

a feature vector to obtain a behavioral characterization

of the participants during the interaction. These feature

vectors were used as inputs to feed the model to predict

Extraversion during interpersonal interaction.

Psychology and previous studies on personality com-

puting support the hypothesis that personality can be

inferred from nonverbal communication features as ar-

gued in the personality externalization–perception–at-

tribution chain of the Brunswik Lens model [68]. Fur-

ther, the use of nonverbal features stemmed also from

real world constraints in which a robot could act. Real

life scenarios include several sources of noise as environ-

mental sounds, people talking or the sound produced

from the robot itself. For this reason, audio features

were discarded, although in controlled set up they could

be able to provide better classification performances.

This work focuses on Extraversion prediction dur-

ing a human-robot interaction, thus features relying

both on the Extraversion facets (sociability, energy, as-

sertiveness and excitement-seeking) and on the attitude

towards robots were chosen. Quantity of movement is

known to be a clue of Extraversion: extroverted people

frequently gesture, use a large body area and energetic
movements (e.g., [46]). More, energy can indicate if a

person feels nervous or relaxed when she is face to face

with a robot. This feeling is also partially revealed by

the spatial distance that a participant maintains while

interacts with a robot. Proxemics rules as defined by

Hall [30] display their effects also when humans and

robots interact. In such scenarios, a low familiarity or

confidence with robots (that is, a negative attitude to-

ward robots) results in increasing this spatial distance

[63]. Further, proxemics is directly linked to sociability:

previous studies showed that extraverted people tends

to adopt smaller distances when they interact [71]. Also

interpersonal synchrony is able to describe the dynam-

ics of interaction and its quality [22]. It can be broadly

defined as “the degree to which the behaviors in an in-

teraction are non-random, patterned or synchronized in

both form and timing” [10]. People spontaneously tend

to dynamically adapt their behavioral rhythms (e.g.,

walking rhythm, turn taking) when they interact [35].

This synchrony improves communication of content and

sharing of goals. Recently, synchrony started to be in-

vestigated in HRI. For example, [32] showed that it

can facilitate the natural interaction with robots de-

creasing the cognitive load of the human partner. Ba-

sically, at the present, synchrony was explored in the

following three ways: movement synchrony, synchrony

of direction (that is opposite direction or same direc-

tion), and synchrony towards a specific target (e.g., ob-

ject, person or location). Lehmann et al. endowed a

non-anthropomorphic robot with the skill to perform

even minimal positively synchronized movements in an

object-oriented task [44]. Their results showed an in-

crease in the engagement of human partners and in a

positive feeling with the robot.

Other behavioral features could be added to have a

more complete characterization of the participants. The

identification and the evaluation of other features is out

of the scope of this work.

In the following subsections a description of the fea-

tures conceived starting from this knowledge is pro-

vided. The algorithms for features extraction and com-

putation were implemented in Python. Synchrony was

analyzed by using the open source Python library SyncPy

[66].

4.1 Quantity of Motion

Quantity of motion (QoM) is a Silhouette Motion Im-

age (SMI)-based measure of the amount of motion de-

tected from an optical sensor like a video-camera [16].

In computer vision, it is adopted as indicator of the

energy of the movement. SMI at time t is an image

carrying information about changes in the silhouette

shape and position in the last few frames of a video.

The corresponding QoM at time t is evaluated as the

area, that is the number of pixels, of the SMI at the

time t normalized over the area of the silhouette at t.

The following equations show how SMI and QoM are

computed:

SMI(t, i) =

n∑
i=1

Silhouette(t− i)− Silhouette(t)

QoM(t) =
Area(SMI(t, n))

Area(Silhouette(t))

where n is the number of frames taken into account,

t is the time at which the SMI and the QoM is being

computed, and Silhouette is an image showing only the

silhouette extracted from the background.

In this work, QoM was computed from the depth

images provided by the RGB-D sensor. First, the sil-

houette of the participant was extracted by threshold-

ing the depth image in order to remove the background.
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Unlike [16], the resulting silhouette was not binarized:

this was done in order to keep also the details of “in-

ternal motions”, that is the motion occurring inside the

silhouette (e.g., shaking the hands in front of the body)

which is detectable when depth images are used. The

SMI was obtained by subtracting the silhouette of a

current frame from that of the n last frames. This im-

age was then normalized by the value of n. Finally, the

area of the SMI was calculated and normalized by the

area of the silhouette of the current frame in order to

define the Quantity of Motion of the current frame.

In this work, QoM was computed over a sliding-window

of 500ms (window step=30ms). Then, a statistical de-

scription (average, standard deviation, skewness, and

kurtosis) is computed and used as first entry of the fea-

ture vector.

4.2 Human-robot distance changes

Estimate of human-robot distance was computed from

the depth image provided by the RGB-D sensor. The

instantaneous distance change was approximated by the

mean of the rolling standard deviations (window size=1.5s)

of the distance between the iCub head and the centroid

of the silhouette of the human partner (see Figure 2).

4.3 Behavioral synchrony

Behavioral synchrony was addressed as movement syn-

chrony between the two partners. To take into account

the different nature of the behavioral patterns of the

two partners (continuous for the human and discrete

for the robot), movement synchrony was faced in terms

of synchrony among movement events. The movement

events of the human partner were identified as the peaks

of the Quantity of Motion, whereas the movement events

of the robot were extracted from the log files. These

events included gazing behaviors, hand motions and

speech events, as these last ones are followed by move-

ments behaviors. Starting from this data, movement

synchrony was analyzed though the Event Synchroni-

sation (ES) method [58] that allows to quantify at

which extent two univariate time-series showing events

are synchronized and their time delay patterns. The

equations in the following show the couple of measures

of ES. The amount of synchrony Qτ is the count of the

fraction of event pairs matching in time; it ranges from

0 (no matching at all) to 1 (complete matching). The

number of times each time-series leads the other one

in these matches is qτ . It was here used to show how

often an action of one of the two partners comes before

the corresponding action performed by the other one.

This value ranges in [−1, 1] providing the direction of

synchrony. It allows at discriminating between causal

(qτ = 1 or qτ = −1 depending on which of the two

time-series precedes the other one) or mutual (q = 0)

interaction. In other words, qτ shows who, by a chrone-

mic point of view, is leader.

Qτ =
cτ (x2|x1) + cτ (x1|x2)

√
mx1

mx2

qτ =
cτ (x2|x1)− cτ (x1|x2)

√
mx1

mx2

where: x2 and x1 are the two time-series of the move-

ment events of the participant and the iCub, respec-

tively; mx1
and mx2

are the events occurring at the

times ti
x1 and tj

x2 (i = 1, ...,mx1 ; j = 1, ...,mx2) in

the two time-series; τ a time lag for which two events

could be considered as synchronous. Let us denote by

cτ (x1|x2) =
∑mx1
i=1

∑mx2
j=1 J

τ
ij the the number of times an

event appears in x1 after it appeared in x2; with Jτij =

{1 if 0 < ti
x1−tjx2 < τ ; 1/2 if ti

x1 = tj
x2 ; 0 otherwise}.

In this work, in order to have a better understanding

about the dynamics of synchrony during the interac-

tion, also the frame-resolved variants of these measure

were extracted. These variants are obtained simply re-

placing cτ (x1|x2) with cn(x1|x2) =
∑mx1
i=1

∑mx2
j=1 JijΘ(n−

ti
x1), where Θ is the Heaviside function (i.e. Θ(x) = 0

for x ≤ 0 ans Θ(x) = 1 for x ≥ 0) and n = 1, ..., N is

the frame number.

The events of the two partners were extracted as

follows:

– Human partner’s events: the first derivative of the

moving standard deviation of QoM computed over

a centered window of 60ms was obtained. Then,

an amplitude threshold was applied on this signal

(the threshold value was empirically estimated from

the distribution of the derivative, a small multiple

of the 75th percentile is used). This resulted in a

dense cloud of candidates events that, finally, were

grouped by using a DBSCAN (Density-Based Spa-

tial Clustering of Applications with Noise) cluster-

ing [24]. The algorithm uses a brute-force search of

neighbors (radius of neighborhood=400ms) to de-

tect the events of the human partner.

– iCub’s events: the detection of the events of the

iCub started from the analysis of the log files. All

the candidates events of the classes mentioned above

were parsed from the files. Then, as for the human

partner, a DBSCAN clustering was adopted to de-

tect the final events. Also in this case, the param-

eters of the algorithm were brute-force searching of

the neighbors with a radius equal to 3s.

The values of Qτ , qτ and their first fourth statistical

moments of their frame resolved versions were included

in the feature vector.
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Fig. 6 Performances (accuracy, F1-score, precision and recall) of the classifier vs the percentage of features kept when classes’
labels are computed from (i) NEO-PI-R (solid line) and (ii) Contextualised Extraversion scores (dashed line). The confidence
intervals of each measure are also provided (shaded area around lines).

5 Data analysis and experimental results

The features extracted from the human-humanoid in-

teraction were analyzed using a two-classes Logistic Re-

gression classifier as prototypical model to predict Ex-

traversion. In this section we will investigate: the feasi-

bility of Extraversion prediction in HRI from nonverbal

features (RQ1); the influence on this prediction of a pri-

ori on robotics (RQ2); and the time the robot needs to

infer an accurate Extraversion first impression (RQ3).

5.1 Extraversion prediction over the whole interaction

As already discussed in Section 2.1, people behavior

depends on the personality but also on the particu-

lar context in which the persons act. In the particu-

lar scenario of a joint activity with an humanoid robot,

people’s behavior can vary accordingly to their atti-

tude towards the robots. This attitude depends on self-

believes of the participants with robots. The NARS

questionnaire is adopted to contextualize the Extraver-

sion scores from the NEO-PI-R questionnaire to this a

priori knowledge. The Spearman’s correlation between

the NEO-PI-R Extraversion scores and the NARS con-

text scores showed how those measures are uncorrelated

(rho = −0.15; p = 0.5). A combination of the NEO-

PI-R Extraversion scores and the three NARS context

scores was obtained through their Principal Compo-

nent Analysis (PCA). The PCA showed that only

the first component was meaningful (explained vari-

ance by the first component equal to 85%): this can

be interpreted as the Extraversion in social interac-

tions with robots. In the following, we will refer to this

component as Contextualised Extraversion score. The

median of the distribution of the Contextualised Ex-

traversion scores of the participants was used to de-

fine the labels of the two classes for the classifier: low-

Contextualised-Extraversion and high-Contextualised -

Extraversion classes. The same approach was also adopted

for building classes from the NEO-PI-R Extraversion

scores (low-Extraversion and high-Extraversion) as well

as from NARS Context scores (low-Negative-Attitude

and high-Negative-Attitude), respectively. The choice of

median as criterion to define class labels was done ac-
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cording to the state of the art on automated personality

traits detection (e.g., [73]).

In order to investigate which features allow to have a

better discrimination between the classes, a feature se-

lection step was performed. The feature selection strat-

egy adopted in this work was the Fisher criterion: fea-

tures were ranked on their f-score and only a prefixed

percentage of them (those ones having the highest f-

scores) was retained. This selection was applied to the

classes obtained from NEO-PI-R Extraversion, NARS

Context and Contextualised Extraversion, respectively.

A leave-one-participant-out cross validation strat-

egy was applied. This approach consists in building

partitions on the participants: let’s suppose to have N

participants, in turn all but one participant are used

to train the classifier and the remaining participant is

used to test it. The mean performance metric (e.g., ac-

curacy) of the classifier results from averaging the N

obtained values of the metric. In this work, the penalty

parameter was optimized using a 5 folds grid-search in

the range [10−5, 105]. To account for the differences in

the cross-validation and to have a statistical significant

sample size useful to compare the results of the clas-

sifier, the procedure described above was repeated 25

times.

Figure 6 shows the average performances (accuracy,

F1-score, precision, and recall) of the classifier vs the

percentage of features kept in the analysis. The classi-

fier highlights the best performance of Contextualised

Extraversion when the 70% of the features are em-

ployed. Table 2 summarizes the results.

Results highlight that we can infer the Extraversion

according to the NEO-PI-R scores with an accuracy of

62%, providing an affirmative answer to the research

question RQ1. By combining NEO-PI-R with NARS

scores through PCA, the Contextualised Extraversion

model shows an accuracy of 70%. This confirms the im-

portance of the contextualization of Extraversion pro-

posed in RQ2.

A paired Wilcoxon signed-rank test was run to eval-

uate the differences between the performances showed

by the classifier when labels from NEO-PI-R Extraver-

sion and Contextualised Extraversion were used, re-

spectively. The reference significance level for the test

was α = 0.05. Statistical significant differences were

found for accuracy (V=20.5, p < 0.01), F1-score (V=61.0,

p < 0.01) and precision (V=27.5, p < .01), whereas

the difference was not significant for recall (V=141,

p > 0.05).

5.2 Extraversion first impression prediction

Previous study on psychology in human-human inter-

actions showed that people need at least 30s to perform

valid inferences about personality [4, 5]. Similarly, we

tried to evaluate how much time the robot required to

predict Extraversion in a reliable way.

As designed by the experimental protocol, interac-

tion patterns with the robot were not totally fixed, they

depended on the spontaneous behavior of each partic-

ipant. Thus, due to the unstructured nature of inter-

action, its segmentation in common phases was impos-

sible. Consequently, we chose to use fixed, cumulative

time slices of 10s. As reported in the state-of-the-art,

the use of fixed size slices for the analysis of unstruc-

tured interaction does not seriously affect the results.

Figure 7 shows the accuracy on prediction over time of

NEO-PI-R Extraversion and Contextualised Extraver-

sion scores. According to the results illustrated in the

previous subsection, the 70% of the most relevant fea-

tures were used to feed the classifier. Results show that

120s are needed to recognize the contextualised Ex-

traversion with 70% of accuracy. Moreover, results con-

firm that the recognition of Contextualised Extraver-

sion outperforms the performance of NEO-PI-R Ex-

traversion score across the time.

6 Discussion

In this paper we addressed the automated prediction

of personality traits from the dynamics of interpersonal

interaction with social robots. In particular, we pro-

posed a set of nonverbal features able to model such

dynamics and we showed the results of the Extraver-

sion prediction obtained by training a classifier with

these features. We also studied how such results are

improved by contextualizing the personality with the

specificity of the explored scenario, a social interaction

with an humanoid robot. Finally, we investigated how

much time a robot needs to find an accurate predic-

tion of the Extraversion of the human partner, without

having prior information.

The performances obtained in this study are com-

parable with the state-of-the-art on automated person-

ality recognition in human-human interaction. In par-

ticular, Zen et colleagues [73], using visual and non-

verbal features, obtained an accuracy of 66% to clas-

sify Extraversion. The adoption of multimodal features,

in particular acoustic features, has the potentiality to

improve the performances of prediction, as shown in

[56]. However, in their work acoustic features were re-

trieved from audio recordings in a controlled environ-

ment, where a good quality of the captured signals cap-
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Fig. 7 Performances (accuracy, F1-score, precision and recall) of the classifier according to the cumulative thin slices when
classes’ labels are computed from NEO-PI-R Extraversion (solid line) and Contextualised Extraversion scores (dashed line).
The confidence intervals of each measure are also depicted (shaded area around the lines.)

Table 2 Average performances of the classifier when 70% of the features is used.

Accuracy F1-score Prec. Recall

NEO-PI-R Extraversion 62%(SD = 0.05) 59%(SD = 0.05) 69%(SD = 0.07) 52%(SD = 0.04)
Contextualised Extraversion 70%(SD = 0.04) 62%(SD = 0.04) 77%(SD = 0.08) 52%(SD = 0.04)

tured was ensured. In real context involving robots, as

previously mentioned, it is not always possible to rely

on such clean acoustic features. Moreover, both these

works addresses interaction among humans. One of the

assumptions of our work is that the robot presence can

alter the dynamics of interpersonal interaction. In the

study of [9], where interaction between people is me-

diated by a computer, the Extraversion classification

accuracy reaches 70%. This result confirms our find-

ings and highlights how the presence of different kind

of media can influence the interaction itself.

Our work should be considered as a pioneering study

towards the development of social robots able to shape

and adapt their behaviors to the personality of the in-

teracting partners. Interestingly, the investigation of

the dynamic interplay of social interactions revealed

key elements for designing natural and effective social

robots. The coherent exchange of social behaviors with

people would be crucial for the emerging of social in-

telligence. Social robots endowed with such capability

would bridge the gap between social animals and unso-

cial machines [70], inducing on humans the illusion of

life [65].

The obtained results are encouraging but they should

be interpreted in the context of several limitations. First

of all, the number of participants to the experiment

does not allow us a complete generalization of the re-

sults. As mentioned above, the setup complexity was

such that many recordings were not retained in this

study. Further data were discarded due to the unpre-

dictability of people behavior. Future works should try
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to design new scenarios in between the extremes of

structured and spontaneous interaction.

In this paper we focused on social interaction with

a humanoid robot. Humanoid robots are a strong con-

veyors of anthropomorphism: their shape could induce

a bias in the way people behave in front of the robot,

meaning that our result cannot be generalized to any

kind of robot at this stage of investigation. Further re-

search focusing on non human-like robots as well as on

more realistic, android-like robots, should explore how

the anthropomorphism influences the dynamics of the

interaction, and consequently the prediction of person-

ality traits like in this study.

In this work we studied a dyadic interaction. While

personality traits are stable across situations, group dy-

namics would alter the behaviors of people and their

robot perception. Humans and robots could also co-

operate in more sophisticated joint activities. Future

works should investigate such complex interpersonal in-

teractions, identifying methodologies and behavioral fea-

tures able to model such kind of scenarios.
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