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Introduction
Kriging (see Krige (1951)) aims at predicting the condi-
tional mean of a random field (Zt)t∈T given the values
Zt1, ..., ZtN of the field at some points t1, ..., tN ∈ T ,
where typically T ⊂ Rd. It seems natural to predict, in
the same spirit as Kriging, other functionals. In our study,
we focus on expectiles for elliptical random fields. We also
did a similar work for quantiles (see Maume-Deschamps
et al. (2016b)).

Elliptical Distributions
Cambanis et al. (1981) give the representation : the ran-
dom vector X ∈ Rd is elliptical with parameters µ ∈ Rd

and Σ ∈ Rd×d, if and only if
X = µ+ RΛU(d), (1)

where ΛΛT = Σ, U(d) is a d−dimensional random vector
uniformly distributed on Sd−1 (the unit disk of dimension
d), and R is a non-negative random variable independent
of U(d). Furthermore, X is said consistent if :

R d=
χd

ε
(2)

Distribution ε

Gaussian 1

Student, ν > 0 χν√
ν

Unimodal Gaussian Mixture
n∑
k=1
πkδθk

Laplace, λ > 0 1√
E(1
λ
)

Slash β (a, 1)

Table 1: Some consistent distributions

We can now define the notion of elliptical random fields.
Indeed, a random field (X(t))t∈T is R−elliptical if ∀n ∈
N, ∀t1, ..., tn ∈ T , the vector (X(t1), ..., X(tn)) is
(R, n)−elliptical.

Figure 1: Slash random field with a Matérn 3
2
kernel

Furthermore, if X = (X1, X2) is a (R, d1 + d2)−elliptical
random vector with parameters µ = (µ1, µ2), we know
that X2|X1 is (R∗, d2)−elliptical with parameters :{

µ2|1 = µ2 + Σ21Σ
−1
11 (x1 − µ1)

Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12

(3)

Elliptical expectiles
If X is a random variable, the α−expectile of X is given
by :

eα(X) = arg min
x∈R

E[φα(X− x)]

where the scoring function φα is
(1−α)x21{x<0}+αx

21{x>0} = αx
2+ (1− 2α)x21{x<0}.

(4)
Let X be a (R, 1)−elliptical random variable, with param-
eters µ and σ2. We define the function ΨR as follows :

ΨR(x) =

x∫
−∞
c1g1(y

2)dy+
1

x

+∞∫
x

yc1g1(y
2)dy

where c1g1(t) = 1
2
fR(
√
t), fR(t) being the density of R.

Then, the α−expectile of X is given by :

eα(X) = µ+ σΨ−1
R


α

2α− 1

 (5)

We propose, in Maume-Deschamps et al. (2016a), several
ways to compute Ψ−1

R

 α
2α−1

.

Figure 2: Computation of the 0.95 gaussian expectile

Now, we consider X = (X1, X2), X1 ∈ RN, X2 ∈ R a
(R,N + 1)−elliptical random vector. According to (5),
the α−expectile of X2|X1 is given by :

eα(X) = µ2|1 +
√√√√√Σ2|1Ψ−1

R∗


α

2α− 1

 (6)

In the general case, the term Ψ−1
R∗

 α
2α−1

 is difficult to
compute. This is why we propose some other predictors.

Expectile Regression

From now one, we consider the following context:
(X(t))t∈T is an R−elliptical random field. We con-
sider N observations at locations t1, ..., tN ∈ T , called
(X(t1), ..., X(tN)). In order to predict the value of X2 =
X(t) given X1 = X(t1), ..., X(tN), we approximate X(t)
by :

êα(X2|X1 = x1) = β
∗Tx1 + β

∗
0, (7)

where β∗ and β∗0 are solutions of the following minimiza-
tion problem

(β∗, β∗0) = arg min
β∈RN,β0∈R

E[φα(X2 − βTX1 − β0)]. (8)

In the case α = 1
2
, the solution of (8) is exactly the krig-

ing vector. Otherwise, this problem leads to an expectile
regression, introduced by Newey and Powell (1987).
In our context of elliptical random fields, we are able to
solve this minimization problem, and then define the Ex-
pectile Regression Predictor :

êα(X2|X1 = x1) = µ2|1 +
√√√√Σ2|1Ψ−1

R

 α
2α−1

 (9)

Furthermore, its distribution is

êα(X2|X1) ∼ E1
µ2 +

√√√√√Σ2|1Ψ−1
R


α

2α− 1

 , Σ21Σ−1
11 Σ12, R


(10)

Extremal expectiles

In this section, the aim is to establish a relation between
Ψ−1
R and Ψ−1

R∗ for extremal values of α. For that, we do
an assumption : their exist 0 < ` < +∞ and γ ∈ R such
as :

lim
x→+∞1− ΨR∗(x)1− ΨR(xγ)

= ` (11)

Under this assumption, we can define Extreme Conditional
Expectiles Predictors :

^̂eα↑(X2|X1 = x1) = µ2|1 + σ2|1
Ψ−1
R

1− α−1
(2α−1)`



1
γ

^̂eα↓(X2|X1 = x1) = µ2|1 − σ2|1
Ψ−1
R

1− α
(2α−1)`



1
γ

(12)

Distribution γ `

Gaussian 1 1

Student, ν > 0 N
ν
+ 1

Γ(ν+N+1
2 )Γ(ν2)

Γ(ν+N2 )Γ(
ν+1
2 )

1+ q1
ν

N+ν
2 ν

N
2 +1

ν+N
ν−1

ν+N−1

Unimodal GM 1
min(θ1,...,θn)N exp

−min(θ1,...,θn)
2

2
q1


n∑
k=1
πkθ

N
k exp

−θ2k
2
q1



Slash, a > 0 N
a
+ 1

2
1−a
2 (a−1)Γ(N+1+a

2 )q
N+a
2

1

(N+a)(N+a−1)Γ(N+a
2 )Γ(

1+a
2 )χ2N+a(q1)

Table 2: Some examples

Thanks to the paper of Djurčić and Torgašev (2001), we
are able to prove that these predictors ^̂eα↑ and ^̂eα↓ are
asymptoticaly equivalent to the theoretical expectiles re-
spectively when α→ 1 and α→ 0.{

^̂eα↑(X2|X1 = x1) ∼
α→1 eα(X2|X1 = x1)

^̂eα↓(X2|X1 = x1) ∼
α→0 eα(X2|X1 = x1) (13)

Numerical study

Figure 3: Levels of quantile α = 0.9995 and α = 0.0005

Figure 4: E-E plots for Slash example
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