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Introduction

Kriging (see [START_REF] Krige | A statistical approach to some basic mine valuation problems on the witwatersrand[END_REF]) aims at predicting the conditional mean of a random field (Z t ) t∈T given the values Z t 1 , ..., Z t N of the field at some points t 1 , ..., t N ∈ T , where typically T ⊂ R d . It seems natural to predict, in the same spirit as Kriging, other functionals. In our study, we focus on expectiles for elliptical random fields. We also did a similar work for quantiles (see [START_REF] Maume-Deschamps | Spatial Quantile Predictions for Elliptical Random Fields[END_REF]). [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF] give the representation : the random vector X ∈ R d is elliptical with parameters µ ∈ R d and Σ ∈ R d×d , if and only if

Elliptical Distributions

X = µ + RΛU (d) , (1) 
where ΛΛ T = Σ, U (d) is a d-dimensional random vector uniformly distributed on S d-1 (the unit disk of dimension d), and R is a non-negative random variable independent of U (d) . Furthermore, X is said consistent if :

R d = χ d (2) Distribution Gaussian 1 Student, ν > 0 χ ν √ ν Unimodal Gaussian Mixture n k=1 π k δ θ k Laplace, λ > 0 1 √ E( 1 λ ) Slash β (a, 1)
Table 1: Some consistent distributions

We can now define the notion of elliptical random fields. Indeed, a random field (X(t)) t∈T is R-elliptical if ∀n ∈ N, ∀t 1 , ..., t n ∈ T , the vector (X(t 1 ), ..., X(t n )) is (R, n)-elliptical. 

, if X = (X 1 , X 2 ) is a (R, d 1 + d 2 )-elliptical random vector with parameters µ = (µ 1 , µ 2 ), we know that X 2 |X 1 is (R * , d 2 )
-elliptical with parameters :

µ 2|1 = µ 2 + Σ 21 Σ -1 11 (x 1 -µ 1 ) Σ 2|1 = Σ 22 -Σ 21 Σ -1 11 Σ 12 (3)

Elliptical expectiles

If X is a random variable, the α-expectile of X is given by :

e α (X) = arg min x∈R E[φ α (X -x)] where the scoring function φ α is (1 -α)x 2 1 {x<0} + αx 2 1 {x>0} = αx 2 + (1 -2α)x 2 1 {x<0} .
(4) Let X be a (R, 1)-elliptical random variable, with parameters µ and σ 2 . We define the function Ψ R as follows :

Ψ R (x) = x -∞ c 1 g 1 (y 2 )dy + 1 x +∞ x yc 1 g 1 (y 2 )dy where c 1 g 1 (t) = 1 2 f R ( √ t), f R (t)
being the density of R. Then, the α-expectile of X is given by :

e α (X) = µ + σΨ -1 R       α 2α -1       (5)
We propose, in Maume-Deschamps et al. (2016a), several ways to compute

Ψ -1 R    α 2α-1    .
Figure 2: Computation of the 0.95 gaussian expectile Now, we consider X = (X 1 , X 2 ), X 1 ∈ R N , X 2 ∈ R a (R, N + 1)-elliptical random vector. According to (5), the α-expectile of X 2 |X 1 is given by :

e α (X) = µ 2|1 + Σ 2|1 Ψ -1 R *       α 2α -1       (6)
In the general case, the term

Ψ -1 R *    α 2α-1    is difficult to compute.
This is why we propose some other predictors.

Expectile Regression

From now one, we consider the following context: (X(t)) t∈T is an R-elliptical random field. We consider N observations at locations t 1 , ..., t N ∈ T , called (X(t 1 ), ..., X(t N )). In order to predict the value of X 2 = X(t) given X 1 = X(t 1 ), ..., X(t N ), we approximate X(t) by : êα

(X 2 |X 1 = x 1 ) = β * T x 1 + β * 0 , (7) 
where β * and β * 0 are solutions of the following minimization problem

(β * , β * 0 ) = arg min β∈R N ,β 0 ∈R E[φ α (X 2 -β T X 1 -β 0 )]. (8)
In the case α = 1 2 , the solution of ( 8) is exactly the kriging vector. Otherwise, this problem leads to an expectile regression, introduced by [START_REF] Newey | Asymmetric Least Squares Estimation and Testing[END_REF]. In our context of elliptical random fields, we are able to solve this minimization problem, and then define the Expectile Regression Predictor :

êα (X 2 |X 1 = x 1 ) = µ 2|1 + Σ 2|1 Ψ -1 R    α 2α-1    (9) Furthermore, its distribution is êα (X 2 |X 1 ) ∼ E 1       µ 2 + Σ 2|1 Ψ -1 R       α 2α -1       , Σ 21 Σ -1 11 Σ 12 , R       (10) 

Extremal expectiles

In this section, the aim is to establish a relation between Ψ -1 R and Ψ -1 R * for extremal values of α. For that, we do an assumption : their exist 0 < < +∞ and γ ∈ R such as :

lim x→+∞ 1 -Ψ R * (x) 1 -Ψ R (x γ ) = (11) 
Under this assumption, we can define Extreme Conditional Expectiles Predictors :

     êα↑ (X 2 |X 1 = x 1 ) = µ 2|1 + σ 2|1     Ψ -1 R     1 -α-1 (2α-1)         1 γ êα↓ (X 2 |X 1 = x 1 ) = µ 2|1 -σ 2|1     Ψ -1 R     1 -α (2α-1)         1 γ (12) Distribution γ Gaussian 1 1 Student, ν > 0 N ν + 1 Γ ( ν+N+1 2 ) Γ ( ν 2 ) Γ ( ν+N 2 ) Γ ( ν+1 2 )   1 + q 1 ν   N+ν 2 ν N 2 +1 ν+N ν-1 ν+N-1 Unimodal GM 1 min(θ 1 ,...,θ n ) N exp    - min(θ 1 ,...,θ n ) 2 2 q 1    n k=1 π k θ N k exp    - θ 2 k 2 q 1     Slash, a > 0 N a + 1 2 1-a 2 (a-1)Γ ( N+1+a 2 ) q N+a 2 1 (N+a)(N+a-1)Γ ( N+a 2 ) Γ ( 1+a 2 ) χ 2 N+a (q 1 )
Table 2: Some examples Thanks to the paper of [START_REF] Djurčić | Strong Asymptotic Equivalence and Inversion of Functions in the Class Kc[END_REF], we are able to prove that these predictors êα↑ and êα↓ are asymptoticaly equivalent to the theoretical expectiles respectively when α → 1 and α → 0. 
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 1 Figure 1: Slash random field with a Matérn 3 2 kernel
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 3 Figure 3: Levels of quantile α = 0.9995 and α = 0.0005