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On the controllability of the Navier-Stokes
equation in spite of boundary layers

by

Jean-Michel Coron, Frédéric Marbach and Franck Sueur

Abstract

In this proceeding we expose a particular case of a recent result obtained in [6] by
the authors regarding the incompressible Navier-Stokes equations in a smooth bounded
and simply connected bounded domain, either in 2D or in 3D, with a Navier slip-with-
friction boundary condition except on a part of the boundary. This under-determination
encodes that one has control over the remaining part of the boundary. We prove that for
any initial data, for any positive time, there exists a weak Leray solution which vanishes
at this given time.

§1. Geometric setting

We consider a smooth bounded and simply connected1 domain Ω in Rd, with

d = 2 or d = 3. Inside this domain, an incompressible viscous fluid evolves under

the Navier-Stokes equations. We will name u its velocity field and p the associated

pressure. The equations read:

(1.1) ∂tu+ (u · ∇)u−∆u+∇p = 0 and div u = 0 in Ω.

Let us emphasize that the fluid density and the viscosity coefficient are set equal

to one for the sake of clarity.

§2. Boundary conditions

For an impermeable wall, it is natural to prescribe the condition u · n = 0 on ∂Ω,

where n denotes the outward pointing normal to the domain, which means that the

fluid cannot escape the domain and that there is no cavitation at the boundary.

Indeed in the case of a perfect fluid, driven by the Euler equations rather than the

1Indeed our analysis also covers the case of a multiply connected domain for some controls
located on a part of the boundary intersecting all its connected components, but we will stick
here to this simple case and we refer to [6] for the general case.
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Navier-Stokes, such a condition is sufficient to have existence and uniqueness to

the Cauchy problem in various appropriate functional settings. For the case here of

the Navier-Stokes equations, an extra condition has to be added. The two following

propositions are the most used (in complement to the previous condition) :

• the no-slip condition [u]tan = 0 (dating back to Stokes in 1851), where

(2.1) [u]tan := u− (u · n)n

denotes the tangential part of the vector field u.

• the slip-with-friction condition N(u) = 0, where

(2.2) N(u) := [D(u)n+ αu]tan with D(u) :=

(
1

2
(∂iuj + ∂jui)

)
16i,j6d

the rate of strain tensor (or shear stress) and α is a real constant coefficient for

simplicity2. This condition dates back to Navier in 1833 (see [26]). This coef-

ficient describes the friction near the boundary. Let us observe that, formally,

when α→ +∞, the Navier condition reduces to the usual no-slip condition.

§3. The Cauchy problem

Let us recall the following result, where L2
σ(Ω) denotes the closure in L2(Ω) of

smooth divergence free vector fields which are tangent to ∂Ω.

Theorem 3.1. Let u0 ∈ L2
σ(Ω). Then there exists a global weak solution u asso-

ciated with the initial data u0.

This result dates back to the pioneering work [21] by Leray where it is proved

that u ∈ C0
w([0 +∞);L2

σ(Ω)) ∩ L2((0,+∞);H1(Ω)). Moreover, Leray proved the

following partial regularity property: for almost every t in (0,+∞), u(t, ·) is C∞(Ω).

Even though Leray’s paper tackled the case of the no-slip condition, this

result can be adapted almost right away to the case of the Navier slip-with-friction

condition (see [17, Section 3]).

§4. The control problem

We now assume that we are able to act on a non-empty open part Σ of the full

boundary ∂Ω. In particular we may let some fluid enter into the domain and the

same volume of fluid go out of the domain (recall that the fluid is incompressible).

Then the setting we have in mind now is the following (see Figure 1).

2Our analysis also covers the case where α is a smooth matrix-valued function.
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• On the part ∂Ω \ Σ, some boundary conditions are prescribed, either the no-

slip condition u = 0 or the Navier condition u · n = 0 and N(u) = 0 (that is

without any source terms or ability to modify the slip coefficient α which is

assumed to be given once and for all).

• On the part Σ, we are free to choose a boundary condition which is relevant

for some purpose.

∂Ω \ Σ

Σ

Figure 1. The control problem

More precisely we have in mind to drive the system from an arbitrary initial

data to some given state at some given time. The following goal, first suggested by

Jacques-Louis Lions in the late 80’s (cf. for instance [22]) tackles the case where

the target is the rest state.

Open Problem (OP). For any T > 0 and u0 in L2
σ(Ω), does there exist a

solution to the Navier-Stokes system with u(0, ·) = u0 such that u(T, ·) = 0 ?

Above the Navier-Stokes system to which (OP) refers is constituted of the

incompressible Navier-Stokes equations (1.1) in Ω and of the no-slip condition or

the Navier condition on ∂Ω\Σ, but without any boundary condition prescribed on

the controlled part Σ of the boundary. Such a system is therefore under-determined

so that uniqueness of a solution is not expected (even in the 2D case for which

uniqueness of Leray solutions is known in the uncontrolled setting corresponding

to the case where Σ = ∅). Indeed in the formulation above the control is implicit:

a relevant condition to prescribe as a control on Σ can be recovered by taking the

trace on Σ of a convenient solution to the under-determined system.

Observe that there is no restriction regarding the sizes neither of the time

T > 0 nor of the initial data u0 in L2
σ(Ω). In the terminology of control theory a

positive result to this question amounts to the small-time global controllability of
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the Navier-Stokes, or more precisely the small-time global exact null controllability

since the target in (OP) is the rest state and has to be reached exactly.

§5. Our result

In Lions’ original question, the boundary condition on the uncontrolled part ∂Ω\Σ
of the boundary is the no-slip boundary condition. Our goal here is to present the

following result establishing a positive answer to (OP) in the case where some

Navier conditions are prescribed on ∂Ω \ Σ.

Theorem 5.1. Let T > 0 and u0 ∈ L2
σ(Ω). There exists a weak solution u to

(5.1)


∂tu+ (u · ∇)u−∆u+∇p = 0 in Ω,

div u = 0 in Ω,

u · n = 0 on ∂Ω \ Σ,

N(u) = 0 on ∂Ω \ Σ

satisfying u(0, ·) = u0 and u(T, ·) = 0.

Theorem 5.1 does not require any condition on the coefficient α appearing in

the definition (2.2) of N . Indeed, observe that there is no asymptotic parameter

in the statement above. Still the next lines about the proof of it will be full of ε.

Let us also mention that the results in [6] are more general, in particular they

prove that one may intercept at time T any smooth uncontrolled solution to the

Navier-Stokes system with Navier condition on the full boundary ∂Ω.

§6. Earlier results

When Jacques-Louis Lions formulated it in the late 80’s, (OP) was pretty impres-

sive since the answer was not even known in the case of the heat equation. For this

equation the first key breakthroughs were obtained by [20] and [19] thanks to Car-

leman inequalities respectively associated with parabolic and elliptic second order

operators. The latter has been then extended to the Stokes equations and later

on to the Navier-Stokes equations in the case of small initial data by Imanuvilov

in [18]. The smallness assumption implies that the quadratic convective term may

be seen as a perturbation term so that the result can be obtained from the con-

trollability of the Stokes equations by a fixed point strategy. This result has since

been improved in [7] by Fernández-Cara, Guerrero, Imanuvilov and Puel.

All these works deal with the case of the no-slip boundary condition. For

Navier slip-with-friction boundary conditions, let us mention [14] and [16] which

prove in particular local null controllability when the initial data is small.
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The case of large initial data was first tackled in [3], where the first author

proves a small-time global result in a 2D setting with Navier boundary conditions:

the smallness obtained within the inside of the domain is good, but the estimates

up to the boundary are not sufficient to conclude using a known local result. In fact,

when there is no boundary, the first author and Fursikov prove in [5] a small-time

global exact null controllability result (in this setting, the control is a source term

located in a small subset of the domain) thanks to the return method and to the

global controllability of the incompressible Euler equations (for large smooth initial

data). Likewise, in [8], Fursikov and Imanuvilov prove small-time global exact null

controllability when the control is supported on the whole boundary (i.e. Γ = ∂Ω).

In [1], Chapouly obtains global exact null controllability for Navier-Stokes in a 2D

rectangular domain under Lions’ boundary condition (corresponding to the case

where α = 0 in the Navier condition) on the uncontrolled part of boundary.

Still the approaches used in the aforementioned papers failed to deal with the

viscous boundary layers appearing near the uncontrolled part of the boundary. This

is precisely the goal of this paper to promote the well-prepared dissipation method

in order to obtain some controllability results despite the presence of boundary

layers. This method was first introduced in [24] by the second author in order to

deduce a controllability result for the 1D Burgers equation. The extension of this

method to the Navier-Stokes equations will be crucial in our proof of Theorem 5.1.

In particular here the method will be implemented thanks to a multi-scale expan-

sion describing the boundary layer occurring in the vanishing viscosity limit of the

Navier-Stokes equations. The application of the method is presented in Section 12.

§7. A few words of caution

Next sections are devoted to the scheme of proof of Theorem 5.1. We will try to

highlight a few key ingredients whereas some technical difficulties will be omitted

on purpose for the sake of clarity. We refer to [6] for a complete proof.

Let us also mention here that we are not going to really use a control all

the time in the sense that it will be relevant on some time intervals to choose as

boundary condition on Σ the same Navier condition than on ∂Ω \ Σ so that the

system then coincides with the uncontrolled one for which Σ = ∅.

§8. Reduction to an approximate controllability problem from a

smooth initial data

In this section we are going to prove that it is sufficient to have the existence

of a solution starting from an arbitrary smooth initial data and reaching a state
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close to zero in L2
σ(Ω), in any positive time in order to conclude the proof of

Theorem 5.1. Indeed according to Leray’s partial regularity result hinted above

(cf. below Theorem 3.1), there exists t∗ in (0, T/2) such that u(t∗, ·) is C∞(Ω). Let

us assume that we are able to prove the existence of a solution starting from u(t∗, ·)
at time t∗ and reaching, say at time 3T/4, a state close enough to zero in L2

σ(Ω)

such that the local controllability results mentioned above can be applied3 on

the remaining time interval (3T/4, T ). Then the concatenation of this three steps

yields Theorem 5.1 (see Figure 2). Our task is therefore only to obtain approximate

null controllability from a smooth initial data on the intermediate time interval

(t∗, 3T/4). In order to simplify the notations let us pretend that this interval is

(0, T ) in the next sections. On the other hand we will denote u∗ the initial data,

which is smooth, for this new problem, in order to distinguish it from the original

initial data u0 which was only assumed to be in L2
σ(Ω).

t∗ 3T
4 T

u0 ∈ L2(Ω)

smooth u∗ ×

×

×
×

Leray ? Local

Figure 2. Reduction to a global approximate controllability problem

§9. A fast and furious control

In order to take profit of the nonlinearity at our advantage we aim at reaching

approximatively zero thanks to a control which is fast and furious in the sense that

its amplitude and duration are scaled with respect to a small positive parameter

ε which is introduced by force and will be ultimately taken small enough. Indeed

3Results available in the local controllability literature require to start with an initial data
which is more regular than L2 but Leray’s partial regularization of the uncontrolled Navier-Stokes
equations can be used again in order to glue these steps. Here we have to pay attention to the
preservation of the smallness assumption in this regularization argument (cf. [6] for more).
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we look for a solution u to (5.1) of the form

(9.1) u(t, x) =
1

ε
uε
(
t

ε
, x

)
,

having in mind to look for a family of functions uε with, typically, variations of

order O(1) on time interval of order O(1). This means for the original searched

solution u having fast transitions on time interval of order O( 1
ε ) with furious

amplitudes of order O( 1
ε ). The underlying idea is to start with the ambitious idea

to try to control the system during the shorter time interval [0, εT ] with forcing

the system to evolve in a high Reynolds regime.

Regarding the pressure p associated with the original solution u, having in

mind Bernoulli’s principle which associates the pressure with the square of the

velocity, we look for an ansatz of the form

p(t, x) =
1

ε2
pε
(
t

ε2
, x

)
.

This translates the original system in a new system with four main changes:

i) The new unknowns uε and pε satisfy the Navier-Stokes equations with a small

viscosity coefficient ε.

ii) The initial data for uε is now small equal to εu∗.

iii) The time interval is now (0, Tε ) so that we have to investigate the large time

behaviour of the system. In particular, although the initial data is small,

nonlinearities will matter.

The system for (uε, pε) therefore reads:

∂tu
ε + (uε · ∇)uε − ε∆uε +∇pε = 0 in (0, T/ε)× Ω,

div uε = 0 in (0, T/ε)× Ω,

uε · n = 0 on (0, T/ε)× ∂Ω \ Σ,

N(uε) = 0 on (0, T/ε)× ∂Ω \ Σ,

uε|t=0 = εu∗ in Ω.

(9.2)

iv) Last change but not least, the rest state is now targeted (at the final time

T/ε) with more precision. Indeed we now plan to prove that there exists a

solution uε to the underdetermined system (9.2) such that

(9.3)

∥∥∥∥uε(Tε , ·
)∥∥∥∥

L2(Ω)

= o(ε)

in order to deduce from (9.1) that there exists a solution u to (5.1) such

that ‖u(T, ·)‖L2(Ω) = o(1). In particular, choosing ε small enough allows to
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reach a state arbitrarily close to 0 in L2. This will provide the approximate

controllability result mentioned in the previous section.

§10. Inviscid flushing

When ε is small, it is expected that the analysis of the system (9.2) may be built

on the small-time global exact controllability of Euler equations. We therefore

consider the following counterpart of the system (9.2) where the viscosity term

has been dropped out:
∂tu

E +
(
uE · ∇

)
uE +∇pE = 0 in Ω,

div uE = 0 in Ω,

uE · n = 0 on ∂Ω \ Σ,

uE |t=0 = εu∗ in Ω.

(10.1)

As the initial data is of order O(ε) in L∞ it is natural to for a solution uE to (10.1)

which is, at least for times of order O(1), of the form:

(10.2) uE = εu1 + o(ε) and pE = εp1 + o(ε).

Plugging expansions (10.2) into (10.1) and grouping terms of order OL∞(ε) yields:

(10.3)


∂tu

1 +∇p1 = 0 in Ω,

div u1 = 0 in Ω,

u1 · n = 0 on ∂Ω \ Σ,

u1|t=0 = u∗ in Ω.

By elementary combinations of the equations we observe that the system (10.3)

does not admit any solution reaching exactly 0 unless the initial data u∗ is the gra-

dient of a harmonic function, which is not the case in general. System (10.3) suffers

from a lack of controllability which will prevent from using it for our purposes.

In order to overcome this difficulty we are going to use the return method first

introduced by the first author in [2]. This method takes profit of the nonlinearity

thanks to an auxiliary controlled solution to the Euler system. Indeed, instead

expansions (10.2), we will rather look for some asymptotic expansions of the form:

(10.4) uE = u0 + εu1 + o(ε) and pE = p0 + εp1 + o(ε),

where the extra-term (u0, p0) is introduced in order to help to control (u1, p1). Of

course (u0, p0) has to be solution to the Euler system in order to cancel out the
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terms of order O(1) which appear when plugging the expansions (10.4) into the

first three equations of (10.1). Moreover the last equation yields the initial data

u0|t=0 = 0 in Ω. The interest is that the equations obtained by gathering the terms

of order O(ε) are now:

(10.5)


∂tu

1 +
(
u0 · ∇

)
u1 +

(
u1 · ∇

)
u0 +∇p1 = 0 in Ω,

div u1 = 0 in Ω,

u1 · n = 0 on ∂Ω \ Σ,

u1|t=0 = u∗ in Ω.

This is the linearisation of the Euler equations around u0 (rather than around 0 like

in (10.3)). We may now rely on the transport by u0 (see Figure 3) in order to drive

u1 from u∗ to 0, see the second term in the first equation of (10.5). More precisely

we want to use the transport by u0 in order to flush u1 out of the domain. Of course

the system (10.5) has, in addition to the transport aspect, non local features due

to the incompressibility condition. Still, reasoning on the vorticity of u1, we obtain

that if the fluid particles are flushed outside of the physical domain within a time

interval of order O(1), say [0, T ] (that is if any fluid particle initially at x in Ω

moves with the flow associated with u0 up to some time tx ∈ (0, T ) for which it

reaches Σ with a positive velocity), then u1 can be set equal to 0. Observe that

this requires a time interval far smaller than the allotted one which is [0, T/ε].

u0

Figure 3. Inviscid flushing

On the other hand this auxiliary field u0 also has to vanish at the final time.

In order to construct such a field, a crucial observation is that the potential flows

as solutions to the Euler system enjoy a lot of freedom regarding their behaviour
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in time. Indeed if a scalar function α(x) satisfies

(10.6)

{
∆x α = 0 in Ω,

∂n α = 0 on ∂Ω \ Σ,

then for any function η(t), the vector field η(t)∇xα(x) satisfies the first three

equations of (10.1) for an appropriate pressure. In particular it is possible to

choose a nonzero function η(t) satisfying η(0) = η(T ) = 0, so that this process

leads to a field u0 starting from zero initial data and which vanishes at time T .

Moreover the set of the scalar functions satisfying the underdetermined Neumann

problem (10.6) is rich enough to provide, by an appropriate gluing strategy, vector

fields flushing the whole domain on the time interval [0, T ].

Lemma 10.1. There exists a smooth solution (u0, p0) to

∂tu
0 +

(
u0 · ∇

)
u0 +∇p0 = 0 in Ω,

div u0 = 0 in Ω,

u0 · n = 0 on ∂Ω \ Σ,

u0|t=0 = 0 inΩ,

u0|t=T = 0 inΩ,

(10.7)

such that the smooth solution (u1, p1) to system (10.5) satisfies u1|t=T = 0 in Ω.

This lemma is proved on the one hand by the first author in the papers [2]

and [4] respectively for 2D simply connected domains and for general 2D domains

when Σ intersects all connected components of ∂Ω, and on the other hand by Glass

in [9] and [10] for the corresponding cases in 3D.

In the sequel, when we need it, we will implicitly extend the previous fields

u0 and u1 by zero after T .

§11. Boundary layer

The difficulty comes from the fact that the Euler equation, which models the

behavior of a perfect fluid, not subject to friction, is only associated with the

boundary condition u · n = 0 for an impermeable wall and does not satisfy in

general the Navier slip-with-friction boundary condition on ∂Ω \ Σ. An accurate

description of a solution of the Navier-Stokes equation near ∂Ω \ Σ, even for a

small viscosity, has therefore to use an expansion where a corrector is added to a

solution to the Euler equation.

In the uncontrolled setting for which Σ = ∅ the description of the behavior

of the Navier-Stokes equation under the Navier slip-with-friction condition in the
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vanishing viscosity limit was performed by Iftimie and the third author in [17]

thanks to a multiscale asymptotic expansion involving a boundary layer term v of

amplitude O(
√
ε) and of thickness O(

√
ε) for a vanishing viscosity ε. Let us first

briefly recall this result which will be extended in the sequel to the controlled case.

Let us use here temporarily again the notation u0 for a smooth solution to

the Euler equations on the time interval [0, T ] with the impermeability condition

u0 · n = 0 on the full boundary ∂Ω. The boundary layer corrector will involve

an extra variable describing the fast variations of the fluid velocity in the normal

direction near the boundary and will be given as a solution to an initial boundary

value problem with a boundary condition with respect to this extra variable. We

introduce a smooth function ϕ : Rd → R such that ϕ = 0 on ∂Ω, ϕ > 0 in

Ω and ϕ < 0 outside of Ω̄. Moreover, we assume that |ϕ(x)| = dist(x,Ω) in a

small neighborhood of ∂Ω. Hence, the normal n can be computed as −∇ϕ close

to the boundary and extended smoothly within the full domain Ω. The notation

[·]tan, introduced in (2.1), is extended accordingly. We also introduce the following

definitions:

u0
[ (t, x):=− u0(t, x) · n(x)

ϕ(x)
and g0(t, x):=2χ(x)N(u0)(t, x) for x ∈ Ω,

where χ is a smooth cut-off function satisfying χ = 1 on ∂Ω. Even though ϕ

vanishes on ∂Ω, u0
[ is not singular near the boundary because of the impermeability

condition u0 · n = 0. Indeed since u0 is smooth, a Taylor expansion proves that

u0
[ is smooth in Ω̄. The boundary layer corrector will be described by a smooth

vector field v expressed in terms both of the slow space variable x ∈ Ω and a fast

scalar variable z = ϕ(x)/
√
ε, where v(t, x, z) satisfies the equation:

(11.1) ∂tv +
[
(u0 · ∇)v + (v · ∇)u0

]
tan

+ u0
[z∂zv − ∂zzv = 0,

for x in Ω̄ and z in R+, with the following boundary condition at z = 0:

(11.2) ∂zv(t, x, 0) = g0(t, x).

We refer to [17, Section 2] for a detailed heuristic of the equations (11.1) and

(11.2). Let us only mention here that these equations are obtained by plugging

u0(t, x) +
√
εv

(
t, x,

ϕ(x)√
ε

)
instead of uε(t, x)

into the first and fourth equations of (9.2) and keeping the terms of higher order

(taking into account that u0 satisfies the Euler equations). Indeed the pressure pε

has to be expanded as well, into the sum of the Euler pressure and of a boundary

layer term but the latter can be eliminated from the resulting equation by distin-

guishing the normal and tangential parts. Thus this pressure boundary layer term
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acts as a projection on the convective terms and this is why the second term in

(11.1) is only tangential.

The Cauchy problem associated with (11.1) and (11.2) is well-posed in Sobolev

spaces. Moreover for any x ∈ Ω̄, z ≥ 0 and t ≥ 0, we have

(11.3) v(t, x, z) · n(x) = 0

It is easy to check that the solution inherits this condition from the initial and

boundary data. This orthogonality property is the reason why equation (11.1) is

linear. Indeed, the quadratic term (v · n)∂zv should have been taken into account

if it did not vanish. Thanks to the cut-off function χ, satisfying χ = 1 on ∂Ω, v is

compactly supported in x near ∂Ω, while ensuring that v compensates the Navier

slip-with-friction boundary trace of u0.

Then it is proved in [17] that the Leray solutions uε to the Navier-Stokes

equation can be described by the following expansion in L∞
(
(0, T );L2(Ω)

)
:

uε(t, x) = u0(t, x) +
√
εv

(
t, x,

ϕ(x)√
ε

)
+O(ε).

Let us highlight that this expansion holds up to any time T > 0 for which u0 is

a smooth solution to the Euler equations on the time interval [0, T ]. On the other

hand this analysis fails to describe the vanishing viscosity limit of the Navier-

Stokes equation for large times of order O( 1
ε ), even in the case where the Euler

solution stays smooth for all times.

Now going back to the controlled setting for which Σ 6= ∅ we expect to be

able to describe the behavior of the Navier-Stokes equation near the uncontrolled

part ∂Ω \ Σ of the boundary in the vanishing viscosity limit thanks to a similar

expansion. Indeed since we aim at finding a Navier-Stokes solution satisfying (9.3)

we consider the following refined expansion:

uε(t, x) = u0(t, x) +
√
εv

(
t, x,

ϕ(x)√
ε

)
+ εu1(t, x) + εrε(t, x),(11.4)

where u0 and u1 are as Lemma 10.1 and the vector field rε is wished to be o(1)

at time T
ε . If so, and since the fields u0 and u1 are zero after the time T , the

leading part of the the expansion (11.4) after T is given by the second term in the

right hand side and we therefore must understand the large time behavior of this

boundary layer. For t ≥ T , the equations (11.1) and (11.2) reduce to

(11.5)

{
∂tv − ∂zzv = 0, for z ∈ R+,

∂zv(t, x, 0) = 0,
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where the slow variables x ∈ O play the role of parameters through the “initial”

data v̄(x, z) := v(T, x, z).

This heat system dissipates towards the null equilibrium state. Unfortunately

the natural decay (that is without any assumption on v̄) at the final time t = T/ε

only yields

(11.6)

∥∥∥∥√εv(Tε , ·, ϕ(·)√
ε

)∥∥∥∥
L2(Ω)

= O (ε) ,

which is not sufficient in view of the wished estimate (9.3). Physically, this is due

to the fact that the average of v is preserved under its evolution by equation (11.5)

and to the fact that the energy contained by low frequency modes decays slowly.

§12. Well-prepared dissipation method

In order to overcome the previous difficulty we are going to use the well-prepared

dissipation method first introduced in [24] by the second author in order to obtain a

new controllability result of the 1D Burgers equation in the presence of a boundary

layer. We will here adjust the method to the boundary layers associated with the

Navier conditions in the vanishing viscosity limit of the Navier-Stokes equations.

The idea is to design a control strategy in order to enhance the natural dissipation

of the boundary layer after the time T . Our strategy will be to guarantee that v̄

satisfies a finite number of vanishing moment conditions for k ∈ N of the form:

(12.1) ∀x ∈ Ω,

∫
R+

zkv̄(x, z)dz = 0.

This will allow to enhance the dissipation and to improve the estimate (11.6) into

(12.2)

∥∥∥∥√εv(Tε , ·, ϕ(·)√
ε

)∥∥∥∥
L2(Ω)

= o (ε) .

Actually we aim at constructing the different fields mentioned so far by restriction

to the physical domain Ω of solutions to analogous problems in an larger domain O
extended across Σ (and O can be chosen smooth, bounded and simply connected)

with source terms compactly supported in the added portion of the domain. This

means in particular that we intend to find a solution that we still denote (uε, pε)

of the following Navier-Stokes equations:

∂tu
ε + (uε · ∇)uε − ε∆uε +∇pε = ζε
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for x in O where the source term ζε(t, x) is a vector field supported for x in O\ Ω̄,

of the form

ζε = ζ0(t, x) +
√
εζv

(
t, x,

ϕ(x)√
ε

)
+ εζ1(t, x),

where ζ0 and ζ1 are smooth vector fields used in order to insure Lemma 10.1

whereas the vector field ζv(t, x, z) is devoted to the control of the moments of

the boundary layer. Indeed we now aim at obtaining a profile v solution to the

following equation:

(12.3) ∂tv +
[
(u0 · ∇)v + (v · ∇)u0

]
tan

+ u0
[z∂zv − ∂zzv = ζv,

for x in O and z in R+. Since the initial boundary value satisfied by v is linear, its

moments at time T (see the left hand side of (12.1)), can be decomposed as the

sum of an addend due to the right hand side of (11.2) and of an addend due to the

outside control (see the right hand side of (12.3)), which generates some moments

outside, and are convected inside the domain by the field u0, see the second term

in (11.1). Indeed, according to Duhamel’s formula, the second addend is given by

an integral over the time interval [0, T ], which allows to insure the condition (12.1)

for all x in Ω.

Σ
O

Ω

support(v)

Figure 4. The kaitenzushi strategy

Let us use here the following metaphor: see the extended domain as a conveyor-

belt sushi restaurant, the added part of the extended domain as the kitchen and

the moments as the plates (see Figure 4). In order to send some plates from the

kitchen, without sending the chef into the dining room, we use the transport by

the field u0 as a conveyor belt to serve the wished moments (compensating what

comes from the uncontrolled part of the boundary) all along the boundary before

the end of the service, which corresponds here to the time T . In this process it is
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crucial to maintain the orthogonality condition (11.3) (otherwise the linearity of

the equation would dramatically fall down because of the term (v ·n)∂zv mentioned

above). Let us observe that it seems impossible to control completely the boundary

layer v because the plates need some time to be conveyed from the kitchen and

are therefore strongly regularized in z (the equation (11.2) is parabolic in z) when

they are supposed to be compensating what comes instantly from the nonhomo-

geneous data on the uncontrolled part of the boundary and is therefore far less

regularized. Thus a compensation is only possible for a projection on a functional

space containing the two types of contributions and we precisely make use of some

finite dimensions projections by adjusting a finite number of moments.

§13. Estimates of the remainder

Going back to the velocity expansion (11.4) we are led now to the issue of esti-

mating the large time behaviour of the remainder rε. The field rε can be naturally

defined as the solution to a Navier-Stokes type equation of the form:

(13.1) ∂tr
ε + (uε · ∇) rε − ε∆rε +∇πε +Aεrε = fε,

where πε denotes the pressure associated with the vector field rε, the notation

Aε stands for an amplification operator and fε for a source term both due to the

terms which were omitted in the equations of u0, u1 and v for being of higher order

in ε. Since the field u1 bears the initial data u∗, this remainder starts with a zero

initial data (taking the trace at the initial time of the equality (11.4) and taking

into account that u0 and v start with zero initial data) but is generated by the

source term fε and possibly amplified by mean of the term Aεrε. Of course the

equation (13.1) is completed with the divergence free condition and some initial

and boundary conditions. Here the key points in the large time estimate of rε are

on the one hand that the quadratic nonlinearity in term of rε which is hidden in the

third term of (13.1) is tamed by a factor ε, see the velocity expansion (11.4), and

on the other hand that the effects of both Aε and fε are tamed by the enhanced

dissipation hinted in Section 12. Let us refer once more to [6] for more on the

technicalities and only conclude here that the result of an energy estimate is that

(13.2)

∥∥∥∥rε(Tε , ·
)∥∥∥∥

L2(Ω)

= o(1).

§14. Conclusion

Taking into account that the fields u0 and u1 vanish after T , estimates (12.2)

and (13.2) plugged into expansion (11.4) yield (9.3) and therefore conclude the
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proof of Theorem 5.1 thanks to the preliminary reductions performed in Sections 8

and 9. The evolution of the state during the control strategy is pictured in Figure 5.

t∗ t∗ + T
4

3T
4 T

u0

u∗

o(1)

1√
ε
v

1
εu

0 + 1√
ε
v + u1

×
×

×

×
×

1 2 3 4

Figure 5. Four main steps of the evolution

The main steps of the proof can be summarized as in Table 1.

Stage References Active control Linear behaviour Used effect

1 [21] No Dissipation

2 [2, 4, 6, 9, 10] Yes v Convection

3 [6, 24] No v, rε Dissipation

4 [14, 16] Yes uε Dissipation

Table 1. Main features of the control steps

§15. Perspectives

Let us mention a few questions inspired by this work:

1. Provided a smooth initial data, is there a strong solution to the 3D Navier-

Stokes system reaching zero at time T? The 2D case follows from Theorem 5.1.

2. Is it possible to deduce from the previous analysis some Lagrangian control-

lability results ? This would extend the results obtained in [11], [12] for the
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incompressible Euler equations and in [13] for the stationary Stokes equa-

tion.This issue is actually related to the previous one as Lagrangian setting

requires enough regularity for the flow to be controlled.

3. Last but not least, is it possible to tackle (OP) in the more difficult case of

the no-slip boundary condition, at least for some favorable geometric settings?

This is a very challenging open problem because the no-slip boundary condi-

tion gives rise to boundary layers that have a larger amplitude than Navier

slip-with-friction boundary layers. We refer to the nice recent survey [23] by

Maekawa and Mazzucato for more on boundary layers in the no-slip case.

Acknowledgements

The two first authors were partly supported by ERC Advanced Grant 266907

(CPDENL) of the 7th Research Framework Programme (FP7). The third author

thanks the Agence Nationale de la Recherche, Project DYFICOLTI, grant ANR-

13-BS01-0003-01, Project IFSMACS, grant ANR-15-CE40-0010 for their financial

support and the third author thanks the hospitality of RIMS during the workshop

on “Mathematical Analysis of Viscous Incompressible Fluid”.

References

[1] Marianne Chapouly. On the global null controllability of a Navier-Stokes system with
Navier slip boundary conditions. J. Differential Equations, 247(7):2094–2123, 2009.
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