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Abstract

In this paper, we provide an algebraic approach to
Markov Decision Processes (MDPs), which allows
a unified treatment of MDPs and includes many ex-
isting models (quantitative or qualitative) as par-
ticular cases. In algebraic MDPs, rewards are ex-
pressed in a semiring structure, uncertainty is rep-
resented by a decomposable plausibility measure
valued on a second semiring structure, and prefer-
ences over policies are represented by Generalized
Expected Utility. We recast the problem of find-
ing an optimal policy at a finite horizon as an alge-
braic path problem in a decision rule graph where
arcs are valued by functions, which justifies the
use of the Jacobi algorithm to solve algebraic Bell-
man equations. In order to show the potential of
this general approach, we exhibit new variations
of MDPs, admitting complete or partial preference
structures, as well as probabilistic or possibilistic
representation of uncertainty.

Introduction

olivier.spanjaard@lip6.fr

paul.weng@lip6.fr

e Non-probabilistic representation of uncertainty might be
of interest In practice, it is sometimes difficult to quantify
precisely the plausibility of states and consequences -of ac
tions. Assessing probabilities in such situations seefffis di
cult. For this reason, alternative approaches based ot qual
tative representations of uncertainty have been propassd (
e.g.[Darwiche and Ginsberg, 1992; Dubois and Prade, 1995;
Wilson, 199%) and might be used in the context of MDPs.

e Non-EU theories offer also interesting descriptive possib
ities. Despite the appeal of the expected utility model and
its theoretical foundationb/on Neumann and Morgenstern,
1947; Savage, 19%4recent developments of decision theory
have shown the descriptive potential of alternative regmes
tions of preferences under uncertainty. For example, thie ra
dependent expected utility theory (RDEU) is a sophistizati
of EU theory using probability transforms to better account
for actual decision making behaviors under r[€uiggin,
199d. Besides this extension, various alternatives to EU have
been proposed for decision making in a non-probabilistic se
ting. Among them, let us mention the qualitative expected
utility (QEU) theories proposed ilDubois and Prade, 1995
and[Giang and Shenoy, 200land very recently, the gen-
eralized expected utility theory (GEU) proposed @hu and
Halpern, 2003a; 2003which generalizes the notion of ex-

In the field of planning under uncertainty, the theory of ; P

Markov Decision Processes (MDPs) has received much a{:fectatlon for general plausibility measures.

tention as a natural fram_e_work both for modeling and solving Despite the diversity of models proposed for decision mak-
complex structured decision problems, see é0panetal,  jng under uncertainty, very few of them are used in the con-
1993; Kaeblinget al, 1994. In the standard MDP approach, ext of dynamic decision making. This gap can be explained
the utilities of actions are given by scalar rewards sup@oseby the inconsistencies entailed by the use of non-EU caiteri
to be additive, uncertainty in the states of the world and i“(typically RDEU) in the dynamic conteMachina, 1989;
the consequences of the actions are represented with probgz,in and Wakker, 1998 Indeed, when using a given non-
bilities, and policies are evaluated using the expectddyuti |inear utility criterion at each decision stage, the Beiima
(EU) model. Although these choices are natural in variougyinciple is generally violated, so that backward inducti®
practlcal situations, many other options are worth ingedti likely to generate a dominated policy; further, there isémg

ing for several reasons : eral no operational way to determine an optimal policy. This
¢ Rewards of actions are not necessarily scalar nor additive Simple statement largely explains the predominance ofthe E
In multi-agent planning or in multicriteria MDPs, the utyli ~ model in dynamic decision making under risk.

of any action is given by a vector of rewards (one per agent or In the last decade however, some alternative models to EU
criterion) and actions are compared according to Parete donhave been proved to be dynamically consistent, thus provid-
inance[Wakuta, 1995 In qualitative frameworks, rewards ing new possibilities for sequential decision making. This
are valued on an ordinal scale and therefore are not additivés the case of qualitative expected utility the¢Bubois and
The sum is then replaced by the min, max or any refinemenPrade, 199bthat has led to a possibilistic counterpart of
of them, depending on the context. MDPs [Sabbadin, 1999with efficient algorithms adapted



from backward induction and value iteration, substitutipg ot 6% & 4
erations (+,x) by (max, min) in computations. In the same st al ol a? d?
vein, [Littman and Szepesvari, 19ppropose a generalized s2 al a? at a?
version of MDPs wherenax and + are substituted by ab-
stra%t operators in Bellman equations, 4Bdnet and Pearl,
200. | propose a gualitative versipn of MDPs. Besides thes% — St R(si.a). We denotd, (s) the set of-ste

positive results, very few alternatives to standard MDR&ha higé)ries Eér:tilng(frgm%.)lior an initial stt(at)e, at-step poIicF))/

been investigated. d o o A
) . . . - m = (d,...,91) induces a probability distributioRr} (s, -
Among the diversity of possible choices for defining a re- ver(hitstories%)The-step value of being in stateantd( exgz-

ward system, a plausibility measure over events and a prefsing nolicy is given by (expected accumulated reward):
erence over lotteries on rewards, we need to know which

combination of them can soundly be used in the context of Vi (8) = Xner,(s) Pri (s, 7) R(7)
MDPs and which algorithm should be implemented to deterDenotingv] the vector whosé" component isf (s*), any
mine an optimal policy. For this reason, we propose in this patwo ¢-step policiesr, =’ can be compared using the compo-
per an algebraic generalization of the standard settihgnge  nentwise dominance relatiorg- defined by:
on the definition of a semiring structure on rewards, a semi- 7 7 7 '
ring structure on plausibilities of events, and a geneedliz Vi 2R U = . (Vs € 5, f (S), = U? (s))_
expectation model as decision criterié@hu and Halpern, Thet-step value of a policy of the forr*, ) is defined re-
20033. The generalization power of semirings have been alcursively byv" ™ = (0,...,0) ando{® ™ = fi(ur ,),
ready demonstrated in Al bBistarelli et al, 1993 in the wheref? : R® — R™ is the update function which associates
context of constraint satisfaction problems. Within thés1g 5 any vector: = (21, ...,2n) the vector( fi(z), ..., fi(z))

j k

eral setting, our aim is to present a unified treatment of MDPSyhere fi(z) = R(s?,5i(s7)) + S0, T(s7, 6%(s7), 55 ).

and to provide algorithmic solutions based on the general Ja I ’ =1 ’ ’

cobi algorithm (initially introduced to solve systems afdar ~ Example 1 Consider an MDP withS = {s',s%}, A =

equations). {a',a®}, T(s',a’,s") = 1if i = j = k and 0.5 other-
The paper is organized as follows: in Section 2, we showwise, R(s*,a') = 8, R(s',a?) = 7, R(s* a') = 12 and

by example how to recast an MDP as an optimal path probf(s?,a?) = 11. Thus, there aréV = 4 available decision

lem in a decision graph. Then we introduce an algebraicules at each step (see Table 1). For instance, decision rule

framework for MDPs, relying on the definition of algebraic §2 consists in applying action' in statess' and actiona?

structures on rewards, plausibilities and expectatioest{Sn  in states2. In this example, the function$ are given by:

3). In Section 4 we justify the use of the Jacobi algorithm f!(z;,25) = (8 + 21,124 0.52; + 0.525)

as a general procedure to determine an optimal policy in an f2(x;, z,) (8 4+ w1, 11 + x3)

Algebraic MDP (AMDP). Finally, we consider in Section 5 3(z, 25) = (7+ 0.521 + 0.522,12 + 0.52; + 0.525)

Table 1: Decision rules.

some particular_ir]s_tqnces of AMDPs, inpluding new proba- [z, ) = (74052 +0.529,11 + x5)
E)éllv\";:g;:dznd possibilistic MDPs using partial preferencesr o, )1 (z1,22) € R2.
' Given a finite horizonH, the optimal policyz* can be
2 Decision Rule Graph in MDPs found thanks to the following Bellman equations:
We briefly recall the main characteristics of a Markov Deci- vf = (0,...,0) (1)
sion Process (MDHPuterman, 1994 It can be described as of =max;—. n fi0],) t=1...H
atuple(S, A, T, R) where:
o S ={s',...,s"}is afinite set of states The solution of these equations can be reduced to a vector-
o A— {af B _’ a™} is a finite set of actior'1s weighted optimal path problem in a particular graph, with up

e T: S x A — Pr(S) s atransition function, giving for each date f_unctions (the?’'s) on the arcs aIIowing. the propagation
state and action, a probability distribution over statestfe  ©Of Policy values over nodes. Indeed, consider a graph where

sequel, we writd'(s, a, ') for T'(s, a)(s)), each nodes; correqunds to decision rulé at stept.,-and
e R: S x A — Ris areward function giving the immediate €ach arc of the forni;, J;_, ) corresponds to a transition be-
reward for taking a given action in a given state. tween decision rules. Moreover, nodgs j = 1...N are

A decision rule is a function from the set of statgédo the  connected to a sink denotéd and a source denotefl is

set of actions4. There areV = m™ available decision rules connected to node¥,, j = 1... N. Hence, any path from

at each step. We writd = A% = {§',..., 6"} the setof nodeds! to node0 corresponds to &step policy where deci-

decision rules. A policy at step(i.e., thet"-to-last step) is  sioné’ is applied first. We name that graph ttiecision rule

a sequence dfdecision rules. For a policy and a decision graph Note that the Bellman update vj&'s is nicely sepa-

rule 5, we note(d, ) the policy which consists in applying rable (f;f’s can be computed independently) and therefore the

first decision rule) and then policyr. vector value of a path can be obtained componentwise (state
A history is a realizable sequence of successive states ariy state) as usual in classic MDP algorithms. This property

actions. The accumulated reward corresponding to a hiswill be exploited later on for Algebraic MDPs. Coming back

tory v+ = (s, a4, 8t-1,-..,a1,S0) (with initial states;) is  to Example 1 and assuming thidt= 2, there ard 6 available



wherelB : V x V — VandX : P x V — V are the coun-
terparts of+ and x in probabilistic expectation, and the three
following requirements are satisfied:Hy)Hz = 2B (yHz),
xHBy=yHBz, 1p Xz = 2. For any plausibility distribution
Pl onV having its support inX, the generalized expectation
writes: Z?EX Pl(z) X «.

An Algebraic MDP (AMDP) is described as a tuple
(S, A, T, R), whereT andR are redefined as follows:
eT: S5 x A — PI(S) is a transition function, wherP1(.5)
is the set of plausibility measures ovewalued inP,

e R: S x A — Visareward function giving the immediate
Figure 1: A decision rule graph. reward inV.

policies (all possible combinations of two successivesleni  Consistently with the standard Markov hypothesis, the next
rules). The corresponding graph is pictured on Figure 1. State and the expected reward depend only on the curreat stat
For alli = 1...n, function f’ is associated to every arc and the action taken. In particular, plausibility disttions
issued froms?, ¢ = 1... H. Moreover, the identity function Of typeT'(s,a) are (plausibilistically) independent of the past
is assigned to every arc issued frdth Thus, the optimal ~States and actions. This plausibilistic independencesgete
policy can be computed thanks to backward induction on théh€ notion introduced biFriedman and Halpern, 19p&nd
decision rule graph, by propagating the vale. ..,0) ¢ leads tothe following algebraic counterpart of the prokbi
R" from the sink0 corresponding to the empty policy. In ti¢ independence propertfl(X NY) = PI(X) @, PI(Y)
Example 1, backward induction leads to the labels indicateder @ny pairX, Y of independent events. _
in Table 2. The optimal policy value can be recovered on In this setting, rewards and plausibilities take valuesvo t
nodeH . The optimal vector value i6l7,23) and the optimal ~ S€mirings. Roughly speaking, a semiring is a set endowed

policy (recovered from bolded values in Table 2}d4$, 61). with two operators allowing the combination of elements (re
wards or plausibilities) together. We now recall some defini
t i o7 i d; tions about semirings.
1 (12) (8,11 (7,12) (7,11) o . ) )
2 (16,22) (16,23) (17,22) (17,23) Definition 1 A semiring(X, ®,®,0,1) is a setX with two

binary operationsd and®, such that:
(A1) (X, ®,0) is acommutative semigroup withas neutral

In the next section, we show how to generalize this ap_elemen(z.e.,ae_;b = bda, (a@b)@c = a®(b®e), a®0 = a).
proach to a wide range of MDPs. In this concern, we intro-(42) (X, ®, 1) is a semigroup witll as neutral element, and

Table 2: Labels obtained during backward induction.

duce the notion of algebraic Markov decision process. for which0 is an absorbing elemefit.e., (a ® b)) ® c = a ®
b®c)ha®l=1a=0a,a0=0Qa=0).
3 Algebraic Markov Decision Process (As) ® is distributive with respect teb (i.e., (a © b) ® ¢ =

We now define a more general setting to model rewards ansja @)@ (b@c)a@be)=(a@h) & (@)

uncertainty in MDPs. Our approach relies on previous works A semiring is said to bedempotentwhen (X, ®) is
aiming at generalizing uncertainty measurement and expe@n idempotent commutative semigroup (i.e., a commutative
tation calculus. Our rewards take values in aldeand we  semigroup such that ® « = a). The idempotence ab en-

use plausibility measurégFriedman and Halpern, 19pfo  ables to define the following canonical order relatior:

model uncertainty. A plausibility measuRd is here a func-

tion from 2" (the set of events) t@, wherelV is the set azxb < adb=a VabeX

of worlds, P is a set endowed with two internal operatars
and®, (the analogs of + and in probability theory), a (pos-
sibly partial) order relation+ p, and two special elements>
and1lp suchthatlp =p p =p 0p for all p € P. Further-
more, Pl verifiesP1(()) = 0p, PI(W) = 1p andPl(X) >p
P1(Y) for all X,Y such that” C X C W. We assume here
thatPl is decomposable, i.®1(X UY) = P1(X) @, P1(Y)
for any pair of disjoint eventX andY. To combine plausi-
bilities and rewards, we use the generalized expectation p
posed by[Chu and Halpern, 2003a This generalized ex-
pectation is defined on an expectation dom@np, |8, X) 2

From now on, we will assume that the rewards are elements
of an idempotent semiringV, ®,,, ®,,,0v,1y). Operator
@, is used to select the optimal valuedinwhereas operator
®, is used to combine rewards. In classic MDPs with the
total reward criteriong,, = max and®,, = +.
Moreover the structuréP,®,.,®,,0p,1p) is also sup-
posed to be a semiring. Operater, allows to combine the
rplausibilities of disjoint events and operater, allows to
combine the plausibilities of independent events. Noté tha
the assumption th&tP, ¢,.,®,,0p,1p) is a semiring is not
very restrictive sincdDarwiche and Ginsberg, 19B2who
IThis notion must not be confused with the Dempster-Shafer nols€ similar properties to define symbolic probability, have
tion of plausibility function. shown that it subsumes many representations of uncertainty
2In [Chu and Halpern, 2003z2an expectation domain is written such as probability theory, possibility theory and othepdm
(U, P, V,H,X). This structure can be simplified here sifée= U. tant calculi used in Al.



Now that the general framework has been defined, we) to justify a dynamic programming approach.
can follow the usual approach in MDPs and define a valuggposition 1 If (C;) and (C») hold, then fi is non-
function for policies. The accumulated reward for a hiStorydecreasing foralbi € A, i.e '
v = (8¢, 1,81, -, a1,50) IS R(7) = ®'_, R(si,a;). For n ; ;
an initial states, a ¢-step policyr = (d;,...,4d1) induces a Yo,y €V", (zzvn y = f(@) Zve 1Y)
plausibility measurePl; (s, -) over histories. Such a policy Proof. Letz,yin V" stz =yn y. Fors; € S, we have
will be evaluated with respect to the generalized expeutati ZE T(s7,8%(s7), s*) Ry, =y Zf T(s7,8%(s7), s*) Ry,

of accumulated reward, which writes: by (C1) and(C3). Thanks to distributivity of2,, over®,,,

- 22] ™ i i i %
vF(s) = Xser, (o) PIF (5,7) R R(7) we havef!(z) =v fi(y). Thereforef!(z) =y~ fi(y). =
The policies can be compared with respect to the componen- .
twise dominance relatior -~ between vectors i ": Moreover, the value of a policy can be computed recur-

2 yn y Vi=1,...,n @ =v ) sively thanks to the following result:

forall z = (z1,....20), 4 = (Y1, ... yn) € V. Proposition 2 Let 7 = (8%, ') a (¢ + 1)-step policy, and
Most of g[hé MDPs )in;;JI’OdL(nged preg</i())usly in the literature 8SSUMe thatg = ,(1‘/; - y). If (Cs), (Ca) and (C5)

are instances of our algebraic MDP: hold, themvf, ; = f*(v ) forall ¢ > 0.

- In standard MDPs, the underlying algebraic structureProof. Let s be a state and denoted’(s). We note

on Pis (P,®,,®,,0p,1p) = ([0,1],+,%,0,1), and  ~; = (s¢,a4,...,a1,50) andy,y1 = (s, a, s, a4, - - ,a1,50)-

operatorsHH = + and X = x are used to define We have:

the classic expectation operation. When rewards are de-_ -

fined on(V, @, ,®,,0v,1y) = (R, max, +, —0o, 0) where vin(s) = D0 Pla(sme1) B R(41)
R = R U {-oo}, we recognize the total reward crite- Tl ()

rion. With (R, max, 4., —00,0) (Wherez +, y = = + yy), —
we recognize the weighted total reward criterion. With 7
(R, max, +p, —00,0) wherea+ b = +;a+b, we recognize it B ,
the average reward criterion assuming that there is amliniti = R(s,a)®, Z Z (T'(s,a,8")®,PIf (s, %)) KR (7))
dummy step with zero reward. 5'€S 1€l (s")
- Qualitative MDPs, introduced ifBonet and Pearl, 2002 by (C4) .

are AMDPs where the rewards and the plausibility measures , o

are defined on the semiring of two-side% infinite >1:ormal se-— fis,0) ®y Z T(sias)® (Y7 / PIE (', %) B R(72))
ries, which is a subset of the extended r¢u¥ison, 1993. by () and(Coy €l (e)

In order to assign functions to the arcs in the decision rule y (Ca) and( 55)3

graph, we first definéj’f : V" — V (the update function after _ R(s,a) ®, Z T(s,a,5') X vf/(s')

applying decision rulé’ in states’), for allz € V™, by: oes
fi@) = B(s, 6 @, (T2, T(s7,0(s)), ') Ra;).  Therefore, foralk? & 8, ofy, (s7) = fj(oF) .

Then, for any decision rul&’, we define the update function | order to establish the algebraic version of Bellman equa-
J* V" — V™ which associates to any vectore V" the  tions, we define the subset of maximal elements of a set with
vector(fi(x),..., fi(x)). respect to an order relation as:

Dynamic consistency in AMDPs is guaranteed by specific vy < X, M(Y,=)={yeY: VzeY,not(z > y)}

properties on functiong’. The fulfillment of these properties .
strongly relies on the following conditions: Furthermore, we denote”(X, =) the set{Y C X : V' =

_ M(Y,>)}. When there is no ambiguity, these sets will be
(1) pR(z&, y) = (PR ) &, (PHY) denoted respectively/(Y) and P*(X). Besides, for any

@ B
Z (T(S7 a, s/)®PPlf/ (s, %))IX (R(S, a)®vR(%))
€S vt (s")

B

(C2) 2B (y @, 2) = (¢By) @, (z82) functionf : V» — V", forall X € P*(V"), f(X) denote

(C3) pR (¢ z) = (p®, q) Wa {f(z):z € X}.

C B K (z 0. y;) = ®, B o Ky We define the semiringP*(V"), ®,®,0,1) where0 =

2043 Zgg(’;aa (f_v( yéx)"g}( éz)’ Pi B y:) {(Ov,...,00)}, 1 = {(1y,...,11)}, and for all X, Y €
P v b=y P(V™): X&Y =MXUY)

fora”pvq’pi €Pxy, 2y €V. X@Y:M({x@vym€X7y€Y})

Conditions(C4 ) and(C5) are two distributivity properties
entailing a kind of additivity of>-y w.rt. X andH (i.e.,
xryy= (z*xx =y zxy) for x € {K H}). Condition
(C3) enables the reduction of lotteries. Conditi@i,) en- Vi =1
ables to isolate a sure reward in a lottery and is similar ¢o th Vo =@N, fLvE) t=1...H
distributivity axiom used iffiLuce, 2003. Condition(Cs) is ! =L IMA T _

a distributivity condition as in classic expectation. Wewno where fi, : P*(V") — P*(V™) is defined byf;,(X) =
establish a monotonocity result that will be used later gPro M (f*(X)) forall X € P*(V™).

withz ®, vy = (21 ®, y1,-..., 2, ®, yn). Hence, the alge-
braic generalization of Bellman equations (1) writes:



4 Generalized path algebra for AMDPs

Following the construction proposed in Section 2, a denisio
rule graph can be associated to an AMDP. Clearly, solving a
gebraic Bellman equations amounts to searching for optim

paths with respect to the canonical order associated e
now show how to solve this problem.
Consider the sef of functions fromP* (V™) to P*(V")
satisfying for allf € F, X € P*(V"),Y € P*(V"™):
f(XeY) J(X) e f(Y)
f(0) 0
The @ operation orP* (V™) induces ap operation onF de-
fined, forallh, g € F andX € P*(V"™), by:

(h® g)(X) = h(X) & g(X)

Let o denote the usual composition operation between func-

tions,id the identity function, and (for simplicity)) the con-
stant function everywher@. It has been shown bMinousx,
1977 that the algebraic structurer, @, o, 0,id) is a semi-
ring. We now prove that update functioffi§,’s belong to.

Proposition 3 (C1) and(Cy) imply (V6° € A, fi, € F).

Proof. For anys®, we havefi,(0) =0 sinceZEE pi X0y =

SEp R (0y @, 0y) = 0y @, (X7 p; X 0y) = Oy by
(C4) and absorption. Now, we show th#t, (X @ V) =
fi,(X)eo fi,(Y),VX,Y € P*(V"). ConsiderX,Y in
P*(V™). First, we havef{(M(X UY)) C fi(X UY) (%).
Second, we prove that/(f{(X UY)) C f{(M(X UY))
(xx). Letz € M(f(X UY)). Thenitexistsw € X UY
such that fi(w) = 2. If w € M(X UY) then
z € fAM(XUY)). f w ¢ M(XUY) then it exists
w* € M(X UY) such thatw* >y w. As f*is non-
decreasing, we havé!(w*) =y f'(w). By assumption,
fi(w) € M(f{(XUY)), thereforefi(w*) = fi(w). Finally,
z € fAM(X UY)) sincez = fi(w*). By () and (xx),
we haveM (fi(X UY)) C F(M(X UY)) C F(X UY).
Therefore M (f4{(X UY)) = M(f{(M(X UY))), which
means, by definition, that,, (X &Y) = fi,(X)® fi, (V). =

Propositions 2 and 3 prove that the algebraic generalizaf—n
tion of Jacobi algorithm solves algebraic Bellman Equation
(3) and (4)[Minoux, 197%. Thanks to the particular struc-
ture® of the decision rule graph, the Jacobi algorithm take

the following simple form:
ALGEBRAIC JACOBI ALGORITHM

1. Vo—1;t+0

2. Qi=0vt=1...Hji=1...N

3. repeat

4, t—t+1

5. fori=1to NdoQ: «— fi,(V;—1)
6. Vi — @, Q;

7. until t = H

accumulated rewards at stepmssociated to optimal paths.
The above algorithm is not efficient since lines 5 and 6

|require to considetN' = m™ decision rules in the com-

utation of the Bellman update. Actually, the complex-
ity of the algorithm can be significantly improved. In-
deed, remark thatL, {f/} = Ui~ {gF}, whereg}(z) =
R(sl )@, S8, T(s',a",s") K, and that/v € V",
UN {1 ()} = Up, {gh (0)} x . x U, {gk (v) ). Since the
maxima over a Cartesian product equals the Cartesian prod-
uct of maxima over components, we ha@" | fi,(Vi_1) =
DBocv,_, (B, 9 (v) x .. x P, gk(v)). Hence, lines 5
and 6 can be replaced by:

5.1. Vi—10

5.2. forveV,_;do

5.3. for j =1tondo

5.4, for k = 1tomdogf; — gF(v)
6.1. Vij < @Z;l qu

6.2. endfor

6.4. endfor

This algebraic counterpart of backward induction runs in
polynomial time when the reward scale is completely ordered
and algebraic operators can be compute@ ().

5 Examples

To illustrate the potential of the algebraic approach foriR&D
we now consider decision models that have not yet been in-
vestigated in a dynamic setting.

e Qualitative MDPs. In decision under possibilistic uncer-
tainty, [Giang and Shenoy, 20Dhave recently studied a new
qualitative decision model (binary possibilistic utilifyallow-

ing to handle weak information about uncertainty while im-
proving the discrimination power of qualitative utility o
els introduced byDubois and Prade, 1995The latter have
been investigated in sequential decision problemg3ab-
badin, 1999. We show here that the former can be exploited
sequential decision problems as well.

Possibilistic uncertainty is measured on a finite qualita-
tive totally ordered sef?, endowed with two operators

@and A (max and min respectively). We denot@p (resp.

1p) the least (resp. greatest) elementAn The structure
(P,V,N,0p,1p) is a semiring.

In Giang and Shenoy’s model, rewards are valued in an
ordered scaléUp, =) whereUp = {(\,u) : A € P,u € P,
AVp=1p}tand(\ u) = (N, ') < (A > N andu < p).

The relevant semiring is he(&, @,,, ®,,, 0y, 1) where:
V={\u): \€ P,uec P}
(a,B) @, (A, ) = (VA BApR)
(a,B8) ®, (A, p) =(aAXBV p)
Oy = (0p,1p), 1y = (1p,0p)

We recognize a standard optimal path algorithm on the delNote thatd,, and, are operatorsiax andmin onUp.

cision rule graph valued with functiong,. When the it-

The binary possibilistic utility model is a generalized

eration has finishedy; is the set of generalized expected €xpectation with operatofs andX taken as componentwise

Vv andA respectively. Note that this criterion takes values in

3The graph is layered; update functions labelling arcs issued/p. Thanks to distributivity of/ (resp.A) overA (resp.V),
from a same node are identical and invariant from a layer to anotheconditions (C4) to (Cs) hold, which proves that algebraic
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