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Hypoelliptic stochastic

FitzHugh-Nagumo neuronal model:

mixing, up-crossing and estimation of

the spike rate

José R. León∗,†,‡ and Adeline Samson†

Abstract: The FitzHugh-Nagumo is a well-known neuronal model that
describes the generation of spikes at the intracellular level. We study a
stochastic version of the model from a probabilistic point of view. The
hypoellipticity is proved, as well as the existence and uniqueness of the sta-
tionary distribution. The bi-dimensional stochastic process is β-mixing. The
stationary density can be estimated with an adaptive non-parametric esti-
mator. Then, we focus on the distribution of the length between successive
spikes. Spikes are difficult to define directly from the continuous stochastic
process. We study the distribution of the number of up-crossings. We link it
to the stationary distribution and propose an estimator of its expectation.
We finally prove mathematically that the mean length of inter-up-crossings
interval in the FitzHugh-Nagumo model is equal to its up-crossings rate. We
illustrate the proposed estimators on a simulation study. Different regimes
are explored, with no, few or high generation of spikes.

MSC 2010 subject classifications: Primary 60J70; secondary 62M05,
60H10, 60J60, 62P10, 35Q62, 37A50.
Keywords and phrases: Hypoelliptic diffusion, FitzHugh-Nagumo model,
invariant density, non-parametric estimation, up-crossings, pulse rate, spike
rate estimation.

1. Introduction

Neurons are excitable cells that are linked thanks to synapses into a huge net-
work. If the electric membrane potential, the voltage, of a neuron is sufficiently
high, the neuron is able to produce an action potential, also called a spike,
which is a stereotype all-or-non fast and large electric signal. Spikes allow the
neuron to activate its synaptic contacts and to modulate their voltage. Spikes
can be viewed as the basic element of information traveling from one neuron to
another in the network. It is therefore of tremendous importance to understand
and describe the individual voltage and the generation of spikes.

Neuronal spiking (also called firing) is a complex process that involves in-
teractions between numerous cells. Modeling this mechanism mathematically
is therefore difficult. Several neuronal models have been developed, the most
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famous is the 4 equations dynamical system of [12] that accurately describes
the electrical mechanism of a single neuron. The model has an oscillatory be-
havior to reproduce the alternance of spiking phases and non spiking phases.
To produce such behavior, the differential equations driving the potential (de-
noted Xt in the following) is coupled to differential equations related to the
fraction of open ion channels of different kinds (conductances). However this
chaotic system is difficult to study from a mathematical point of view. Several
relaxed models have then been proposed, most of them reducing the dimen-
sion of the system. We can cite the Morris-Lecar model that simplifies the
three channel equations of the Hodgkin-Huxley model into only one non-linear
equation modeling the membrane conductance evolution [19]. Another model is
the FitzHugh-Nagumo (FHN) model, which has a polynomial drift. FitzHugh-
Nagumo and Morris-Lecar models share the properties of sub-threshold and
supra-threshold response, that is they intrinsically model the regenerative firing
(spiking) mechanism in an excitable neuron. FitzHugh-Nagumo model is less
plausible than conductance-based models: it has been built as an oscillatory
system, not from physical assumptions. It has however the advantage of being
more directly amenable to a mathematical analysis than Hodgkin-Huxley or
Morris-Lecar thanks to its polynomial drift. Note that another class of neuronal
models is the class of Leaky-Integrate-Fire (LIF) models [see 10, for a review],
where voltage is modeled by a one-dimensional process. The main drawback is
that spikes are not generated automatically and a (fixed) threshold has to be
introduced, which is unrealistic.

Stochastic versions of neuronal models have been proposed to describe various
sources of randomness [10, 17, 2] . Stochastic noise can be introduced in the
first equation mimicking noisy presynaptic currents [see among others 23, 18,
10]. In the second class of stochastic models, noise affects the other differential
equations, describing the randomness of the conductance dynamics, like random
opening and closing of ion channels [16, 17]. This second class of models can be
viewed as a diffusion approximation of ion channels modeled by point processes
[see among others 20].

In this paper, we focus on the second class of stochastic FitzHugh-Nagumo
(FHN) model. It is defined as follows. Let Xt denote the membrane potential of
the neuron at time t and Ct a recovery variable that models the channel kinetics.
We assume that ((Xt, Ct), t ≥ 0) is governed by the following Itô stochastic
differential equation (SDE):{

dXt = 1
ε (Xt −X3

t − Ct − s)dt,
dCt = (γXt − Ct + β) dt+ σ̃dWt,

(1.1)

where Wt is a standard Brownian motion, ε is the time scale separation usually
very small (X has a much faster time scale than C), s is the magnitude of
the stimulus current, σ̃ the diffusion coefficient, β, γ are positive constants that
determine the position of the fixed point and the duration of an excitation. FHN
has already been studied extensively in physical papers [see among others 17, 2].
Our objective is to revisite theoretically some of these results and to propose
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non-parametric estimators.

The three objectives of the paper are the followings. In Section 2, we study
some probabilistic properties of the FitzHugh-Nagumo model: hypoellipticity,
Feller, invariant probability, mixing property. To prove these results, we take
advantage of the fact that the stochastic FitzHugh-Nagumo model with noise on
the second equation is a generalization of van der Pol equations and belongs to
the class of stochastic Damping Hamiltonian systems. One of the main reference
is [24] for an overview of the theoretical properties of these models, [see also
13, 5].

In Section 3, we consider the questions related to the neuronal modeling.
As said previously, spikes are the essential element of information exchange in
the neural network. It is thus very important to understand their distribution.
The distribution of spikes is difficult to study from scratch. Attempts have been
proposed using point processes, but describe only the spike trains and not the
neuronal voltage [21, 22]. When using voltage data, the first difficulty is the
definition of the spike itself. In the pioneer work of [16], a spike is described as a
”long” excursion on the phase space before returning back into the neighborhood
of the fixed point. The pulse rate is measured by time averaging the number
of pulses during time interval [0, T ] and the mean time between two pulses can
also be estimated. They show that the pulse rate is the inverse of the mean
length. But to our best knowledge, this has not be proven theoretically for
the hypoelliptic FHN. Attempts have been based on Gaussian approximation
of the voltage process [23, 8] leading to a Gaussian stochastic modeling. This
Gaussian approximation does however not fit with real data. In this paper,
we propose to study spike generation through the modeling of the voltage by
the FitzHugh-Nagumo model, avoiding any normal approximation or a vague
definition of a spike. The idea is the following. A spike occurs when Xt crosses
a certain threshold, the spike shape being then almost deterministic. Note that
it is known from voltage data that the threshold is not fixed: the voltage Xt has
not always the same value when entering the spiking phases. We thus focus on
the distribution of the process of up-crossings of Xt at a large level u. If a spike
occurs, the distribution of up-crossings should remain the same for any level
value u in a given interval. Finally the distribution of the length of the interval
between two successive spikes is studied and we prove that its expectation is the
inverse of the up-crossing rate. Note that [3] also study the generation of spikes
for a bi-dimensional FitzHugh-Nagumo model. Their model, although based
on the same deterministic system as ours, has noise in both components. This
fact implies that the solution (Xt, Ct) is a classical diffusion (elliptic). Hence
each coordinate is a continuous but non-differentiable function. The number of
crossings of such a function is infinity in every bounded interval (allowing for
instance the existence of local time). This prevents defining the spikes via the
up-crossings. The authors define the spikes as large excursions in the space of
phases and study their distributions. Their method is therefore very different
than ours.

In Section 4, we propose a non-parametric estimation of the stationary density
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based on a kernel estimator. The 2-dimensional bandwidth is selected automat-
ically from the data with a Goldenshluger and Lepski’s approach. We deduce an
estimator of the up-crossing rate. These estimators are illustrated on simulations
in different excitation regimes of the neuron.

2. Properties of the FitzHugh-Nagumo model

Model (1.1) follows a non-linear drift with singular diffusion coefficient (no noise
on the first coordinate). It is not easy to study directly this kind of models be-
cause standard probabilistic tools assume a non degenerate diffusion coefficient.
To take advantage of probabilistic tools that have already been developed for
some hypoelliptic systems, we introduce a change of variable of the second co-
ordinate. This allows us to enter the class of stochastic Damping Hamiltonian
systems, that have been widely studied [see among others 24, 13, 5]. We can then
prove some useful properties of the FitzHugh-Nagumo model (hypoellipticity,
Feller, existence of a stationary distribution, β-mixing). Let us first introduce
the change of variable.

2.1. A stochastic Damping Hamiltonian system

The change of variable is the following. Let Yt = 1
ε (Xt−X3

t −Ct− s). Applying
Itô’s formula, the FitzHugh-Nagumo system (1.1) can be rewritten:{

dXt = Ytdt,
dYt = 1

ε

(
Yt(1− ε− 3X2

t )−Xt(γ − 1)−X3
t − (s+ β)

)
dt− σ̃

ε dWt,
(2.1)

Thanks to this transformation, we can notice that system (2.1) is a stochastic
Damping Hamiltonian system. These systems have been introduced to describe
the dynamics of a particle with Xt referring to its position and Yt to its velocity.
The movement of the particle is guided by a potential V (x) and by a damping
force c(x): {

dXt = Ytdt,
dYt = −(c(Xt)Yt + ∂xV (Xt))dt+ σ dWt

(2.2)

Its infinitesimal generator L is

L =
σ2

2
∂yy + y ∂x − (c(x) y + ∂xV (x))∂y .

These models have been studied by [24] under some conditions for V (·), c(·) and
the diffusion coefficient, that we recall here:

(H1) The potential V (x) is lower bounded, smooth over R, V and ∇V have
polynomial growth at infinity.

(H2) The damping coefficient c(x) is continuous, for all N > 0, sup|x|≤N |c(x)| <
+∞ and for all x ∈ R, c(x) ≥ c.

(H3) There exists σ1 > 0 such that 0 < σ < σ1.
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In our case, the damping force is c(x) = 1
ε (3x2 − 1 + ε), the potential is

V (x) = 1
ε (x

4

4 + γ−1
2 x2 +(s+β)x) and the diffusion coefficient is σ = σ̃

ε > 0. One
can prove easily that conditions (H1), (H2) and (H3) are fulfilled under weak
assumptions. Indeed

• The potential V (x) = 1
ε (x

4

4 + γ−1
2 x2 + (s + β)x) is continuous, goes to

∞ when x → ±∞ and is thus lower bounded, smooth over R, V and
∇V = 1

ε (x3 + (γ− 1)x+ (s+ β)) have polynomial growth at infinity. This
implies (H1).

• The damping coefficient c(x) = 1
ε (3x2−1+ε) is continuous, upper bounded

on sets {x| ≤ N} and for all x ∈ R, c := 1− 1
ε implies (H2).

• The diffusion coefficient is σ = σ̃
ε . We assume that the (unknown) param-

eters ε and σ are such that ε ∈ [ε0, ε1] and σ̃ ∈ [σ̃0, σ̃1]. This implies (H3)
with σ1 := σ̃1

ε0
.

We can also notice that

x.∇V (x)

|x|
→ +∞ , as |x| → +∞.

This is condition (0.5) of [24]. It can be interpreted as follows: the force −∇V (x)
is ”strong enough” for |x| large to ensure a quick return of the system to compact
subsets of R2.

2.2. Hypoellipticity and β-mixing

In this section, we prove some theoretical properties for process (Zt) = (Xt, Yt):
(Zt) is strong Feller, hypoelliptic, the existence of a unique invariant probability
and a β-mixing property. The main reference used in all the proofs is [24].

Hypoellipticity and stationary distribution We first focus on the hypoel-
lipticity of (Zt).

Proposition 2.1. (Hypoellipticity) Let Zt = (Xt, Yt) be the solution of sys-
tem (2.1). The stochastic process (Zt) is hypoelliptic and strong Feller.

Hypoellipticity can be interpreted as the fact that the one-dimensional noise
entering the second coordinate propagates to the two-dimensional space. It en-
sures that the distribution Pt(z, ·) of the process Zt starting from Z0 = z has a
smooth density, denoted pt(z, ·) in the following.

Proof. of Proposition 2.1. We start by proving the hypoellipticity. Let us denote
A0, A1 the differential operators

A0 = y ∂x − (∇V (x) + c(x)y) ∂y

A1 = σ∂y
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Let [A,B] denote the Lie bracket between operators A and B. We have

[A0, A1] = −σ ∂x + σc(x) ∂y

Thus
Span(A0, A1, [A0, A1]) = Span(∂x, ∂y).

This implies that the system is hypoelliptic.
Second, we prove that the stochastic process (Zt) is strong Feller. Let us de-

note Ptf(z) = Ez(f(Zt)) =
∫
f(u)pt(z, u)du where pt(z, ·) is the transition

density of the system. We want to prove that if f is L∞(R2) then Ptf(x)
is continuous. The coefficients of the infinitesimal generator L are C∞. By
Hrmander’s theorem, this implies that pt(z, u) is C∞. Thus as f is bounded,∫
f(u)pt(z, u)du = Ptf(z) is continuous. So finally (Zt) is strong Feller. �

We now prove the existence and uniqueness of an invariant probability.

Proposition 2.2. (Stationary distribution) Let (Xt, Yt) be solution of sys-
tem (2.1).

1. The process (Xt, Yt) is positive recurrent with a unique invariant probabil-
ity measure µ.

2. Moments of any order of µ exist: for all k1, k2 ∈ N,

E(Xk1
t Y

k2
t ) =

∫
xk1yk2dµ(x, y) < +∞

Proof is given in Appendix.

Proposition 2.2 ensures that the invariant measure has a smooth density
µ(dz) = p(z)dz [4]. In the following, we will denote px and py the marginal of p
with respect to x and y.

Mixing We now study the mixing property of the stationary distribution. We
first recall the definition.

Definition 2.1. Let {Zt}t∈R+ a stationary stochastic process. Introducing the
σ-algebra Ft = σ({Zs : s ≤ t}) and F t = σ{Zs : s ≥ t}. We say that Z is
β-mixing, with mixing coefficient βt, if

βt = E[sup{|P(U |Fu)− P(U)| : U ∈ Fu+t}]

and βt → 0 when t→∞.

We can prove that the process Z is β-mixing.

Proposition 2.3. (Mixing) Let (Xt, Yt) be solution of system (2.1).
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1. There exist constants D > 0 and 0 < ρ < 1 such that for all z,∣∣∣∣Ptf(z)−
∫
fdµ

∣∣∣∣ ≤ D sup
a

(∣∣f(a)−
∫
fdµ

∣∣
Ψ(a)

)
Ψ(z) ρt . (2.3)

where Ψ is a Lyapounov function defined by (A.2).
2. The skeleton chain Z̃k = Zkh for h > 0 is exponentially β-mixing with

β-mixing coefficient βkh such that

βkh ≤ D′′||Ψ||1ρkh

Note that the large deviation principle also applies for the occupation em-
pirical measure Lt = 1

t

∫ t
0
δZsds, this is a direct consequence of Theorem 3.1 of

[24].

Proof of Proposition 2.3. Let us start with the proof of 1. Theorem 2.4 of
[24] shows the existence of constants D > 0 and 0 < ρ < 1 such that for all z,
inequality (2.3) holds. Then, since Ψ is µ integrable and larger than 1, inequality
(2.3) implies that the Markov chain (Zi)i∈N , Z0 ∼ ps(z)dz is exponentially β-
mixing.

Now we prove 2. First, we remark that the Liapunov function Ψ is integrable
with respect to the invariant measure [see 24]. Property 1 of Proposition 2.3
implies that

||Pt(f)−
∫
fdµ||1 ≤ ρtD sup

a

(∣∣f(a)−
∫
fdµ

∣∣
Ψ(a)

)
||Ψ||1,

where || · ||1 denotes the L1 norm with respect to the invariant measure. We can
deduce the following inequality in norm of total variation

||Pt(z, ·)− µ||TV ≤ D′′Ψ(z)ρt.

One can apply this inequality to the skeleton chain Z̃k = Zkh for a certain h.
Let us denote P̃k the discrete semi-group associated to Z̃. Then we get

||P̃k(z, ·)− µ||TV ≤ D′′Ψ(z)ρkh.

We can deduce from [9] Chapter 2, Section 2.4, that the β-mixing coefficient
βkh is equal to

βkh =

∫
||P̃k(z, ·)− µ||V T dµ(z) ≤ D′′||Ψ||1ρkh.

So we have βkh ≤ D′′||Ψ||1ρkh. Hence the skeleton chain is exponentially β-
mixing. �
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3. Number of up-crossings and spike rate

When a spike is emitted, it has a deterministic shape. The emission of a spike
occurs when the voltage crosses a certain level, this level being not fixed. This
means that when the voltage is high enough, there is no way back and a spike
occurs with probability 1. We thus focus on describing the spike generation
process.

3.1. Spikes and previous results

Spiking regime In the literature, spikes of FitzHugh-Nagumo have been de-
fined as a long excursion in the phase space. One of the main references is [16].
An example of a phase space is given in Figure 1 for three different sets of pa-
rameters: left: ε = 0.1, middle: ε = 0.4, right: ε = 0.5. Let us comment first the
left plots (ε = 0.1) that generates automatically spikes. As explained in [16],
the fixed point is on the left bottom of the phase space. It corresponds to the
dynamic of the potential between two pulses. Then the trajectory reaches the
right branch, that belongs to the excited state: X increases while C remains
almost constant. Then it moves along this branch upwards until it reaches its
top, with C that increases. Then it switches to the left branch, that belongs to
a refractory phase of the neuron: X decreases and C stays high. Finally, the
trajectory relaxes into the fixed point with X back to the resting potential and
C which decreases. When such a long excursion occurs, a ”spike” or a ”pulse”
is observed in the voltage variable.

Now, let us comment the right plots of Figure 1 with ε = 0.5. In that case, the
potential stays in the vicinity of the fixed point and no excursion in the excited
state occurs. Finally, let us comment the middle plots of Figure 1 with ε = 0.4.
We can observe excursions on the right branch, as when ε = 0.1, but these
excursions are less large. It is less clear if one should consider these excursions
as spikes or pulses. The definition of a spike is therefore not clear.

Spike rate Nevertheless, given this definition of a spike, spike rate has been
studied. We recall some results provided by [16]. Let Nt denote the number of
pulses during time interval [0, t]. The spike rate is defined as

ρ := lim
t→∞

Nt
t
. (3.1)

The process Nt is random and the limit above is to be understood almost surely.
It is the expected number of spikes by unit of time. The spike rate can also be
defined as follows. Let us denote Ti the ith interspike interval, i.e. the time
between the i and i + 1 spikes (or pulses, or long excursions). The mean time
< T > between two spikes, i.e. the mean length of interspike intervals, can be
defined using the ergodic theorem as

< T >= lim
N→∞

1

N

N∑
i=1

Ti. (3.2)
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Fig 1. Simulations of the FitzHugh-Nagumo. Voltage variable Xt versus time (top line) and
the corresponding trajectory in phase space Ct versus Xt (bottom line) for s = 0, β = 0.8,
σ̃ = 0.3, left: ε = 0.1 and γ = 1.5, middle: ε = 0.4 and γ = 1.5, right: ε = 0.5 and γ = 0.2.
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[16] state the following relationship between these two quantities:

ρ = lim
N→∞

(
T0

N
+

1

N

N∑
i=1

Ti +
TN+1

N

)−1

=
1

< T >
, (3.3)

where T0 and TN+1 are the time intervals until the first or after the last spike.
The spiking times (Ti) are also random and the above limit is in the almost
sure sense. Relation (3.3) means that the limit in t is equal to the limit in N
of the random processes (Nt, t ≥ 0) and (Ti, i ≥ 1). This relation is intuitive as
explained by [16]. It is true for a Poisson process. However, it is not straight-
forward for any point process. Moreover, the two processes (Nt, t ≥ 0) and
(Ti, i ≥ 1) are difficult to define from the stochastic process (Xt, Ct) or (Xt, Yt),
and consequently to prove (3.3).

The objective of the next two subsections is to give a formal mathematical
framework to formula (3.1), (3.2) and (3.3). The starting point is a precise
definition of the objects of study: spikes are difficult to define from (Xt, Ct) or
(Xt, Yt) (should one take the beginning of the spike ? the maximum ?).

An alternative is to study the number of spikes occurence through the number
of up-crossing of process Xt at a certain (large) level u. This has the advantage
of defining the occurence of a spike through a precisely defined random variable
(see below). Hence, theoretical results can be derived. This is the methodology
we consider in this paper.

3.2. Number of up-crossings

Process Zt = (Xt, Yt) defines a mesure Pz in the space Ω := C(R+,R2). This
means that Xt is an a.s. continuously differentiable process and Ẋt = Yt. Let us
define the number of up-crossings of process X· at level u in [0, t] as

UX·t (u) = #{s ≤ t : Xs = u, Ys > 0}.

Note that the natural model to study the up-crossing is model (2.1) rather than
model (2.2) because it only requires the second coordinate to be positive.

Heuristic of up-crossing process Let us first give an intuition why UX·t (u)
is a process linked to the generation of spikes. If we forget the boundary effects,
the random variable Nt will be equal to the number of up-crossings UX·t (u) at
level u, for a set of large values u. Indeed, when a spike occurs, we expect UX·t (u)
to be constant for all values u that correspond to the right branch of the phase
space (Figure 1), ie to the (deterministic) increase phase of the potential. Note
that for too large values of u (larger than the maximum of the spikes), UX·t (u) is
expected to be zero. We therefore expect the distribution of UX·t to be stable for
an interval of values of u and then to decrease abruptly to 0. On the contrary, if
a neuron is not in a spiking regime (when ε is large for example, see middle plots
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of Figure 1), (small) excursions do not correspond to spikes and up-crossings
will vary with u. These two very different behaviors of UX·t imply that knowing
how process UX·t (u) varies with u gives automatically a definition of a spike and
the fact that the neuron is in a spiking regime or not. Process UX·t (u) can there-
fore be seen as a properly defined stochastic process that describes generation
of spikes. Note that a spike occurs the first time process (Xt, Yt) hits the plan
{Xs = u, Ys > 0} of R2.

It is therefore important to study the number of up-crossings. In this section,
we first prove the Rice’s formula that links the expectation of UX·t (u) with the
stationary density of process Zt = (Xt, Yt). Then, we prove an ergodic theorem
for UX·t (u): the expected value of UX·t (u) by unit of time converges to an integral
with respect to the stationary density. This limit, that depends on u, will be
used in section 3.3 to estimate the spike rate.

Rice’s formula Let us denote BΨ the space of measurable functions

BΨ = {f : R2 → R : sup
(x,y)

|f(x, y)|
Ψ(x, y)

<∞}.

We consider the norm ||f ||Ψ = sup(x,y)
|f(x,y)|
Ψ(x,y) . We first prove the Rice’s formula

on the expectation of the number of up-crossings.

Proposition 3.1. (Rice’s formula) Let Zt = (Xt, Yt) be the stationary solu-
tion of the FitzHugh-Nagumo system. The Rice’s formula holds true

EUX·t (u) = t

∫ ∞
0

yp(u, y)dy. (3.4)

Proof. of Proposition 3.1. The first step is the proof of a technical lemma.

Lemma 3.1. Let us define the function Gy1
(x, y) := |y − y1|. Set z = (x, y).

The semigroup {Pt}t≥0 satisfies

PtGy1
(z)→ Gy1

(x, y), if t→ 0

uniformly in x.

The proof of Lemman 3.1 is given in Appendix. Then, Rice’s formula is proved
using the following result from [1]’s book, that we recall now.
Let {Xt}t∈R+ be a stochastic process and Y its derivative. Let us first introduce
the Rice’s formula. For any u ∈ R and for I an interval of time, where the
crossings are counting, the Rice’s formula is

E(UXt (u)) =

∫
I

dt

∫ ∞
0

ypXt,Yt(u, y)dy,

It holds true under the following conditions:
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(C1) Function (t, x) → pXt(x) is continuous for t ∈ I, x in a neighborhood of
u.

(C2) (t, x, y)→ pXt,Yt(x, y) is continuous for t ∈ I and x in a neighborhood of
u and y ∈ R.

(C3) Let define A1(t1, t2, x) =
∫
R2 |y1−y|pXt1 ,Yt1 ,Yt2 (x, y, y1)dydy1. The process

satisfies condition A41 in page 76 of [1]’s book if A1(t1, t2, x) tends to zero
as t2−t1 → 0 uniformly, for t1 and t2 in a compact and x in a neighborhood
of u.

We must now verify if conditions (C1), (C2), (C3) hold. Under the stationary
regime, the two marginal densities, px(x) and py(y), of the invariant density
p(x, y) correspond to the density of Xs and the density of Ys respectively. They
are both C∞ functions. By stationarity, the density of (Xs, Ys) is p(x, y). Then
(C1)-(C2) hold true.

Consider the vector (X0, Y0, Xs, Ys). It has a density ps(x, y, x1, y1)p(x, y). To
prove (C3), let us observe that for any s > 0, thanks to the stationary regime,

A1(s, x) := A1(0, s, x) =

∫
R2

|y1 − y|
(∫

R
ps(x, y, x1, y1)p(x, y)dx1

)
dydy1.

Then we can write

A1(s, x) :=

∫
R

(PsGy) (x, y)p(x, y)dy.

Lemma 3.1 implies that Pt(Gỹ)(x, y)→ Gỹ(x, y) uniformly in x, where (x, y)
is the point of depart of our process. In the particular case ỹ = y we get
Pt(Gy)(x, y) → Gy(x, y) = 0. This yields, by using the Bounded Convergence
Theorem, that A1(s, x)→ 0 uniformly in x and the Rice’s formula for the first
moment of the number of up-crossings holds true.

Ergodic theorem We now prove that the Ergodic theorem can be applied.

Theorem 3.1. Let Zt = (Xt, Yt) be the stationary solution of the FitzHugh-
Nagumo system. For any u ∈ R:

UX·t (u)

t
→
∫ ∞

0

yp(u, y)dy a.s. (3.5)

This result gives the limit of the expected number of up-crossings by unit of
time. The fact that it is an integral with respect to the invariant density allows
us to estimate this quantity (see Section 4). This limit will also be used in the
estimation of the mean length between two spikes, as explained below.

Proof. of Theorem 3.1. We follow [7]’s book section 11.5. Proposition 2.2 states
that process (Xt, Yt) is exponentially ergodic. Let us define the two processes
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of the number of up-crossings in interval (s, s + 1] and in interval (s − 1, s]
respectively:

ζ1(s) = UX·s+1(u)− UX·s (u) := UX·(s,s+1](u), s ≥ 0

ζ2(s) = UX·s (u)− UX·s−1(u) := UX·(s−1,s](u), s ≥ 1.

These two processes are stationary. Let θ· denote the shift operator for the
stationary Markov process (Xt, Yt). It holds ζ1(s) = θs ◦ ζ1(0) and ζ2(s) =
θs ◦ ζ2(1). The Ergodic Theorem and Rice’s formula (3.4) assure that

1

t

∫ t

0

ζ1(s)ds→
∫ ∞

0

yp(u, y)dy a.s. (3.6)

and similarly for ζ2. Let us prove the following chain of inequalities from [7]
(Cramer & Leadbetter (1967) pag. 238).∫ t−1

0

ζ1(s)ds ≤ UX·t (u) ≤
∫ t+1

0

ζ2(s)ds (3.7)

holds. Let us show the left inequality∫ t−1

0

UX·(s,s+1](u)ds =

∫ t−1

0

(
UX·s+1(u)− UX·s (u)

)
ds

=

∫ t

1

UX·s (u)ds−
∫ t−1

0

UX·s (u)ds

=

∫ t

t−1

UX·s (u)ds−
∫ 1

0

UX·s (u)ds ≤ UX·t (u),

where we have used that function UX·t (u) is nondecreasing. The right inequality
can be proved similarly. Gathering (3.6) and (3.7) implies the theorem.

3.3. Spike rate

Now we want to link the spike rate ρ with the up-crossing process. We start by
the intuition and some heuristic and then, we formalize this link.

Heuristic As explained earlier, the up-crossing process gives a definition of a
spike: if the up-crossing process is constant for any level u in a (large) interval, a
spike occurs. Then, for a given level u in this interval, the number of up-crossing
UX·t (u) is equal to the number of spikes. This naturally gives an approximation
of the variable Nt introduced by [16]. Let us define λ(u) the limit of the number
of up-crossings at level u:

λ(u) = lim
t→∞

UX·t (u)

t
.
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The ergodic theorem (Theorem 3.1) gives an explicit formula of this limit:

λ(u) =

∫ ∞
0

y p(u, y) dy. (3.8)

Finally, we can naturally link the spike rate obtained via the random variable
Nt (excursions rate) and the rate of up-crossings:

λ(u) ≈ ρ. (3.9)

Formal link This heuristic reasoning may be led by a more formal way. We
want to describe formally the time between successive up-crossings of level u.
Time between successive up-crossings has been studied by [7] (Chapter 11).

The idea is the following. Let CX·[0,t](u) denote the number of all crossings at

level u on the interval [0, t]. Let us define for all k ∈ N∗ the set:

Hk(τ, t) = P{UX·(−τ,0)(u) ≥ 1, CX·(0,t)(u) ≤ k}.

The function of interest for us is when k = 1. Assume an up-crossing occurs at
time τ = 0. Then the trajectory is over level u just after τ . If CX·(0,t)(u) = 1,

the crossing is a down-crossing and no up-crossing occurs in interval [0, t]. Thus
H1(τ, t) is the probability to have a up-crossing in the interval (−τ, 0) and no
up-crossing in interval [0, t].

To study the interval between two spikes or up-crossings, we are interested
in defining a conditional probability. For that purpose, let us introduce the
following probability

ω(t) := P{there exists at least one upcrossing in time t}.

We know by using the ergodic theorem that

UX·[0,t](u) = tλ(u) + o(t) when t→∞. (3.10)

As process X is continuous and differentiable, the stream of upcrossings, i.e.
the times when the process crosses level u with positive derivative, is stationary
and regular. This implies that P{UX·[0,t](u) > 1} = o(t). From [7] (page 54), we

can prove that
ω(t) = t`(u) + o(t) when t→ 0,

for a certain constant `(u). The property of a regular up-crossing process implies
that `(u) = λ(u). This important fact links the ergodic limit (3.10) with the
behavior of ω(t) in a neighborhood of zero. This result will be very useful for
us.

Then, [7] prove that for all k, there exists a finite function Φk defined by the
following limit:

Φk(t) := lim
τ→0

Hk(τ, t)

ω(τ)
. (3.11)
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This last function represents the conditional probability of no more than k cross-
ings in the interval (0, t), given that an up-crossing occurred “at” time zero. For
k = 1, Φ1(t) is the conditional probability that no up-crossing occurs in interval
[0, t], given that an up-crossing occurred “at” time zero.

It is then natural to introduce the following function:

F2(t) := 1− Φ1(t). (3.12)

The first remarkable fact is that F2(·) is a real distribution function.

Proposition 3.2. The function F2 defined by (3.12) is a distribution function.

Moreover, it may be regarded as the distribution function of the length of the
interval of an arbitrarily chosen up-crossing and the next up-crossing’, following
[7].

Proof. of Proposition 3.2. It holds easily that 0 ≤ F2(t) ≤ 1.
Then to prove that it is a distribution function, set u0(t) = P{UX·(0,t) = 0}.

We have

u0(t)− u0(t+ τ) = P{UX·(0,t)(u) = 0} − P{UX·(−τ,t)(u) = 0}

= P{UX·(−τ,t)(u) ≥ 1, UX·(0,t)(u) = 0}
= H1(τ, t) + o(τ).

where we use [7] (page 225) for the last equality: “the probability of more than
one crossing in (−τ, 0) is o(τ), whereas if the only crossing in (−τ, 0) is an up-
crossing, then UX·(0, t) = 0 when (and only when) CX·(0,t)(u) = 0”.

Thus

lim
τ+→0

u0(t+ τ)− u0(t)

τ
= − lim

τ→0

H1(τ, t)

ω(τ)

ω(τ)

τ
= −λ(u)Φ1(t). (3.13)

Thus the function u0 has right-hand side derivative: D+u0(t) = −λ(u)Φ1(t).
Moreover the Lebesgue theorem gives

u0(T )− u0(0) =

∫ T

0

D+u0(t)dt.

As u0 is bounded, the derivative D+u0(t) is integrable over (0,∞). This in
particular implies that D+u0(t) → 0 whenever t → ∞, thus limt→∞Φ1(t) = 0
and therefore F2(t) → 1 when t → ∞. Finally as F2 is non-decreasing it is a
real distribution function.

As F2 can be interpreted as the distribution function of the length of an
inter-up-crossings interval (interval between two successive up-crossings), we
are interested in computing its first two moments. Always following [7], page
227, we get
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Proposition 3.3. The expectation of distribution F2, that is the mean length
of the interval between two successive up-crossings, is given by:∫ ∞

0

tdF2(t) =
1

λ(u)
.

The second moment of F2 is:∫ ∞
0

t2dF2(t) =
2

λ(u)

∫ ∞
0

u0(t)dt, (3.14)

where u0(t) = P{UX·(0,t) = 0}.

The expectation of the length of an inter-up-crossings interval is equal to the
inverse of the rate of up-crossings at level u (formula (4.6)) and thus to the
spike rate. This the principal advantage of our approach. We give a theoretical
justification to the link between length of the excursions and the spike rate.

Proof. of Proposition 3.3. Start with the mean of F2. Given formula (3.13), one
easily obtain:∫ ∞

0

tdF2(t) =

∫ ∞
0

[1− F2(t)]dt =
1

λ(u)
[u0(0)− u0(∞)].

Then we use that u0(0) = 1 and u0(∞) = 0 to obtain∫ ∞
0

tdF2(t) =
1

λ(u)
.

For the second moment, we simply apply twice an integration by parts to
obtain ∫ ∞

0

t2dF2(t) =
2

λ(u)

∫ ∞
0

u0(t)dt.

Finally, estimating λ(u) gives a direct estimation of the mean length of inter-
spike intervals, as well as its variance. This is detailed in Section 4.

4. Estimation of invariant density and spike rate

The objective is to estimate the invariant density p and to deduce estimators of
the spike rate and λ(u). We start with the invariant density.
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4.1. Invariant density estimation

In the neuronal context, the ion channel coordinate Yt can not be measured
and only discrete observations of X at discrete times iδ, i = 1, . . . , n with
discretization step δ are available. The density p has no explicit formula. We
therefore use the non-parametric adaptive estimation of p from observations
(X1δ, . . . Xnδ), proposed by [6].

Let us detail their estimator. Let K be some kernel C2 function with compact
support A such that its partial derivatives functions ∂K

∂x and ∂K
∂y are in L2(R),∫

K(x, y)dxdy = 1 and
∫
K2(x, y)dxdy < ∞. For all bandwidth b = (b1, b2)

with b1 > 0, b2 > 0, for all (x, y) ∈ R2, we denote

Kb(x, y) =
1

b1b2
K

(
x

b1
,
y

b2

)
.

When both coordinates are observed, the natural estimator of p for all z =
(x, y) ∈ R2, is:

p̃b(z) = p̃b(x, y) :=
1

n

n∑
i=1

Kb (x−Xiδ, y − Yiδ) =
1

n

n∑
i=1

Kb(z − Ziδ). (4.1)

When only X is observed, we replace Y by increments of X. Indeed, for any
i = 1, . . . , n, when δ is small enough, we have

X(i+1)δ −Xiδ =

∫ (i+1)δ

iδ

Ytdt ≈ δYiδ (4.2)

Let us thus define the following approximation of Yiδ:

Ȳiδ =
X(i+1)δ −Xiδ

δ

and define the 2-dimensional kernel estimator by

p̂b(x, y) :=
1

n

n∑
i=1

Kb

(
x−Xiδ, y − Ȳiδ

)
. (4.3)

The bandwidth b = (b1, b2) has to be chosen to realize a trade-off between the
bias of p̂b and its variance. This is automatically achieved using the adaptive
estimation procedure proposed by [6]. We can apply their procedure because we
have already proved that the invariant density p decreases exponentially and
is β-mixing (Section 2). Their procedure, inspired by [11], is the following. Let
Bn = {(b1,k, b2,`), k, ` = 1/

√
n, . . . , c/

√
n} be the set of possible bandwidths. Set

for all z = (x, y) and all b, b′ ∈ Bn

p̂b,b′(z) = Kb′ ? p̂b(z) =
1

n

n∑
i=1

Kb′ ? Kb(x−Xiδ, y − Ȳiδ).



J. León and A. Samson/Hypoelliptic FitzHugh-Nagumo 18

Now let
A(b) = sup

b′∈Bn

(
‖p̂b,b′ − p̂b′‖2 − V (b′)

)
+

with

V (b) = κ1
1

nb1b2

n−1∑
i=0

β(iδ) + κ2
δ

b1b32
,

where κ1, κ2 are numerical constants and β(iδ) are the β-mixing coefficients.
The selection is then made by setting

b̂ = arg min
b∈Bn

(A(b) + V (b)) (4.4)

[6] prove an oracle inequality for the final estimator p̂b̂.

Theorem 4.1 (Comte et al’s result). Set pb(z) = Kb ? p the function that is
estimated without bias by p̂n. We have

E(‖p̂b̂ − p‖
2) ≤ C inf

b∈Bn

(
‖pb − p‖2 + V (b)

)
+ C

log(n)

nδ

As explained by [6], the Goldenshluger and Lepski’s procedure (4.4) is nu-
merically demanding due to the double convolutions p̂b,b′ , especially in the mul-
tidimensional case. They propose a simplified procedure based on [15], that we
also implement in this paper. The selection of the bandwidth is the following:

ˆ̂
b = arg min

b∈Bn

(
‖p̂b − p̂bmin‖2 + V (b)

)
(4.5)

with κ1 = 0.1 and κ2 = 0.001 and bmin = (1/
√
n, 1/

√
n), as given in [6]. By

plugging
ˆ̂
b into 4.3 we obtain p̂ := p̂ˆ̂

b
which is the final estimator of p.

4.2. Spike rate estimation

Equation (3.8) provides a good start to estimate the spike rate. The quantity
that we estimate is λ(u) for a large level u. By plugging the kernel estimator p̂
of the invariant density, we define the following estimator of λ(u):

λ̂(u) =

∫ ∞
0

yp̂(u, y) dy.

For some specific choices of kernel K, estimator λ̂(u) has an explicit ex-
pression. More precisely, let us consider a multiplicative two-dimensional kernel
K(x, y) = k(x)k(y), where k is a continuous and bounded kernel, such that∫
k(v)dv = 1. Then we have

p̂(u, y) =
1

nb̂1b̂2

n∑
i=1

k

(
u−Xiδ

b̂1

)
k

(
y − Ȳiδ
b̂2

)
,



J. León and A. Samson/Hypoelliptic FitzHugh-Nagumo 19

with b̂1, b̂2 the bandwidth estimated adaptively by (4.5). We get

λ̂(u) =
1

nb̂1b̂2

n∑
i=1

k

(
u−Xiδ

b̂1

)∫ ∞
0

yk

(
y − Ȳiδ
b̂2

)
dy

=
1

nb̂1

n∑
i=1

k

(
u−Xiδ

b̂1

)b̂2 ∫ ∞
− Ȳiδ
b̂2

yk(y)dy + Ȳiδ

∫ ∞
− Ȳiδ
b̂2

k(y)dy


For a Gaussian centered kernel k, we obtain:

λ̂(u) =
1

nb̂1

n∑
i=1

k

(
u−Xiδ

b̂1

)(
b̂2√
2π
e
− 1

2

(
Ȳiδ
b̂2

)2

+ Ȳiδ

(
1− Φ

(
− Ȳiδ
b̂2

)))
,

(4.6)
where Φ(·) is the cumulative distribution function of the centered and reduced
normal distribution.

Note that a CLT can be concluded for λ̂(u).

The next step is the estimation of the variance, and more precisely of the
second moment of F2, given by (3.14). First, we need to estimate u0(t) =
P{UX·(0,t) = 0}. The idea is to link this function with the survival function of

inter up-crossings interval.
For a fixed level u, let us assume that one up-crossing occurs at time 0 and

let denote {Tui , i ≥ 0} the successive times of up-crossings after time 0 with
Tu0 = 0.
Thanks to the stationarity of the process, the (Tui+1 − Tui , i ≥ 0) are identically
distributed. For any i ≥ 0, we can rewrite u0(t) as follows

u0(t) = P(UX(0,t) = 0) = P(Tu1 > t) = P((Tui+1 − Tui ) > t).

A natural estimator of u0(t) from observations on interval [0, T ] is

ûT0 (t) =
1

UX(0,T )

UX(0,T )∑
i=0

1(Tui+1−Tui )>t, (4.7)

where UX(0,T ) is the number of up-crossings in the interval [0, T ].

Lemma 4.1. Estimator ûT0 (t) (4.7) based on observations on interval [0, T ] is
a consistent estimator of u0(t) when T goes to infinity.

Proof. of Lemma 4.1. Set [·] for the integer part. Let us rewrite ûT0 (t) as

ûT0 (t) =
1

UX
(0,T )

T

1

T

UX(0,T )∑
i=0

1(Tui+1−Tui )>t.
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By the ergodic theorem, we have UX(0,T ) ∼ T
∫∞

0
yp(u, y)dy a.s. We can thus

deduce that∣∣∣∣∣∣ 1

T

UX(0,T )∑
i=0

1(Tui+1−Tui )>t −
[T
∫∞
0
yp(u,y)dy]∑
i=0

1(Tui+1−Tui )>t

∣∣∣∣∣∣ ≤
∣∣∣∣∣U

X
(0,T )

T
−

[T
∫∞

0
yp(u, y)dy]

T

∣∣∣∣∣→ 0.

Thus we have lim
T→∞

ûT0 (t) = lim
T→∞

1
UX

(0,T )

T

1

T

[T
∫∞
0
yp(u,y)dy]∑
i=0

1(Tui+1−Tui )>t.

We now focus on studying the RHS. The stationarity and the ergodic theorem
imply that

1

T

[T
∫∞
0
yp(u,y)dy]∑
i=0

1(Tui+1−Tui )>t →
∫ ∞

0

yp(u, y)dy P(Tu1 > t) a.s.

So finally, we obtain:

lim
T→∞

ûT0 (t)→ 1∫∞
0
yp(u, y)dy

∫ ∞
0

yp(u, y)dy P(Tu1 > t) = P(Tu1 > t) = u0(t) a.s.(4.8)

To estimate the second moment of F2, we plug ûT0 (t) into formula (3.14):

2

λ̂(u)

∫ ∞
0

ûT0 (t)dt =
2

λ̂(u)

1

UX(0,T )

UX(0,T )∑
i=0

(Tui+1 − Tui ) =
2

λ̂(u)

Tu
UX

(0,T )

UX(0,T )

.

The final estimator of the variance of the length between two successive up-
crossings at level u based on observations on the interval [0, T ] is thus

V̂ u =
2

λ̂(u)

Tu
UX

(0,T )

UX(0,T )

− 1

λ̂(u)2
. (4.9)

5. Simulation

Three sets of parameter values of the FitzHugh-Nagumo are used in the simu-
lations. A set that allows spike generation: ε = 0.1, s = 0, γ = 1.5, β = 0.8,
σ = 0.3; a set that generates small excursions s = 0, β = 0.8, σ̃ = 0.3, ε = 0.4
and γ = 1.5 and a set that does not generate spikes s = 0, β = 0.8, σ̃ = 0.3,
ε = 0.5 and γ = 0.2. Trajectories are simulated with time step δ = 0.02 ms,
n = 20000 and a Itô-Taylor scheme of order 2 of system (1.1). Figure 2 shows
an example of such a simulation with trajectories of (Xt, Ut) for the first set of
parameters that generates spikes ((s = 0, β = 0.8, σ̃ = 0.3, ε = 0.1 and γ = 1.5),
as well as the transformed coordinate Yt = 1

ε (Xt −X3
t −Ct − s) between 0 and

200ms (n = 1000).
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Fig 2. FitzHugh-Nagumo simulation. Left: coordinate X along time. Middle: coordinate
C. Right: transformed coordinate Y . Simulations are performed with δ = 0.02, n = 2000.
Parameters are ε = 0.1, s = 0, γ = 1.5, β = 0.8, σ = 0.3.

We apply the adaptive estimation procedure (4.5) to estimate the invariant
density p. The true density p has no closed form. To compare the estimator with
the truth, we approximate p by numerically solving the associated hypoelliptic
Fokker-Planck equation. A finite difference method is used to solve the Fokker-
Planck equation [14]. The solver is very stable for the set of parameters that
does not generate spikes (ε = 0.5). This is illustrated in the bottom plots of
Figure 3. The density estimator p̂ (red dotted line) is very closed to the ‘true’
stationary density p (black plain line). However, the finite difference approxi-
mation of stationary density appears to be unstable for the set of parameters
that generates spikes or even small excursions (see black lines of top and middle
plots of Figure 3). We tried to decrease the step of the discretization grid but
the approximation remains unstable (recall that the PDE is hypoelliptic). We
then compare the estimator with a Monte Carlo approximation of the stationary
density. More precisely, 10 000 trajectories have been simulated on an interval
[0, T = nδ]. The last point of each trajectory is stored in a sample of iid simu-
lation under the stationary regime. Then a kernel estimation procedure for iid
data has been applied. The comparison with our estimation based on only one
trajectory of dependent data is shown on Figure 4. The estimation is very close
to the approximation of the stationary regime. Note also that in the spiking
regime, as expected, the estimator of the marginal density in x (red dotted line)
has two bounds, one corresponding to the subthreshold activity and the other
to the spiking activity. To conclude, our estimation procedure is stable whatever
the value of ε and fast to compute compared to the PDE solver of the Monte
Carlo approximation.

Then the spike rate is estimated by formula (4.6) for the three sets of pa-
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Fig 3. Invariant density estimation. Left: marginal in x of the estimation p̂̂̂b (red line) and
true density approximated by a finite difference scheme (black line). Right: marginal in y
of the estimation p̂̂̂b (red line) and true density approximated by a finite difference scheme
(black line). Top line: set of parameters that generate spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.1
and γ = 1.5). Middle line: set of parameters that generates few and small excursions (s = 0,
β = 0.8, σ̃ = 0.3, ε = 0.4 and γ = 1.5) . Bottom line: set of parameters that does not generate
spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.5 and γ = 0.2). The finite difference scheme is unstable
in the two first cases (black curve is very noisy).
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Fig 4. Invariant density estimation. Left: marginal in x of the estimation p̂̂̂b (red line) and
true density approximated by a Monte Carlo scheme (black line). Right: marginal in y of the
estimation p̂̂̂b (red line) and true density approximated by a Monte Carlo scheme (black line).
Simulations are performed with parameters that generate spikes (s = 0, β = 0.8, σ̃ = 0.3,
ε = 0.1 and γ = 1.5).

rameters that generate spikes, few spikes or no spikes. The expected number of
up-crossings is estimated for level u between −0.5 and 1.5. The three curves (as
functions of u) are plotted in Figure 5: black plain line for the set of parame-
ters that generate spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.1 and γ = 1.5); red
dotted line for the set of parameters that generates few and small excursions
(s = 0, β = 0.8, σ̃ = 0.3, ε = 0.4 and γ = 1.5); green dashed line for the set of
parameters that does not generate spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.5 and
γ = 0.2). As expected, when spikes occur, the estimator is stable for u ∈ [0; 0.8],
interval that corresponds to the amplitude of large excursions and then sud-
denly decreases to 0. When no spike occur, the estimator is null. When only
small sub-threshold excursions occur, the estimator decreases slowly to 0.

We now focus on the two first cases (large or small excursions with ε = 0.1
and ε = 0.4, respectively). For both cases, we estimate the spike rate with
the two approaches presented in the paper. First, we compute the mean of
λ̂(u) for u ∈ [0.1, 0.6], this value is denoted λ̄. Second, we compute ρ defined
as the number of spikes divided by the length of the time interval. As said
before, spikes are defined as excursions in the phase space. Different thresholds
v ∈ [0.1, 0.7] are used to define excursions Nt(v). The mean of the corresponding
spike rates is denoted ρ̄ and superimposed on Figure 5 (horizontal lines). Table
1 displays the estimations ρ̄, λ̄, as well as the estimated mean and standard
deviation (estimator (4.9)) of the length of intervals defined by two successive
up-crossings. One can see that the two estimators λ̄ and ρ̄ are of the same order
in both regimes. Recalling that λ̄ is based on the estimation of the stationary
density, this implies that its estimation is good. Therefore, the non-parametric
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Fig 5. Spike rate estimators λ̂(u) and ρ̂ computed as the mean of ρ(0.1), . . . , ρ(0.6). Black

plain curve: evolution of λ̂(u) with u and black plain line ρ̂ for a set of parameters that
generate spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.1 and γ = 1.5). Red dotted curve: evolution

of λ̂(u) with u and red dotted line ρ̂ for a set of parameters that generates few and small
excursions (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.4 and γ = 1.5). Green dashed curve: evolution of

λ̂(u) with u for a set of parameters that does not generate spikes (s = 0, β = 0.8, σ̃ = 0.3,
ε = 0.5 and γ = 0.2).

length of intervals
regime ρ̄ λ̄ mean (sd)
ε = 0.1 0.1568 0.1609 6.35 (6.32)
ε = 0.4 0.0115 0.0111 93.13 (82.70)

Table 1
FitzHugh-Nagumo simulation for two regimes (ε = 0.1 and ε = 0.4). Estimation of the spike
rate by up-crossings approach (λ̄) and by number of excursions (ρ̄ ) and estimation of the

mean and standard deviation of the length of intervals defined by two successive
up-crossings.
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estimation is a good alternative to the numerical approximation of the solution of
the hypoelliptic Fokker-Planck equation, especially when the numerical scheme
is not stable for ε small. The up-crossing approach allows to estimated some
characteristics of the length of inter up-crossings intervals (mean and standard
deviation). In the spiking regime, mean and standard deviation are close. This
is not the case when ε increases.

6. Conclusion

The FitzHugh-Nagumo is a neuronal model that describes the generation of
spikes at the intracellular level. In this paper, we study a stochastic version
of the model from a probabilistic point of view. The hypoellipticity is proved,
as well as the existence and uniqueness of the stationary distribution. The bi-
dimensional stochastic process is β-mixing. The stationary distribution can be
estimated with an adaptive non-parametric estimator. Then, we focus on the
distribution of the length between successive spikes. We propose to study this
distribution through the distribution of the number of up-crossings. The distri-
bution function of the length of the interval between two successive up-crossings
is defined through the stationary distribution. This allows to propose an esti-
mator of the expectation of this distribution. We also derive the second moment
of this distribution, that allows to estimate the variance.

We illustrate the proposed estimators on a simulation study. Different regimes
are explored, for different values of ε: regime with no, few or high generation
of spikes. The true stationary density has no explicit distribution. It can be
approximated numerically by solving the Fokker-Planck equation. We consider
a finite difference scheme, which is however unstable in spiking regime. At the
other hand, the non-parametric estimation of the stationary distribution reveals
to be stable even in spiking regime. We also implement the estimator of the
mean length of the interval between two successive up-crossings. This estimator
is based on the estimator of the stationary distribution. It reveals to be close to
mean spiking rate in the spiking regime.

It would be of interest in the future to apply the same approach to other
stochastic intra-cellular neuronal models and to estimate the characteristics of
their spiking process.

Appendix A: Proofs

A.1. Proof of Proposition 2.2

The proof follows the proof of Theorem 3.1 from [24] for the specific FHN model.
Steps are the followings: 1/ find a Lyapounov function that is lower bounded,
2/ show that this function is greater than the exponential of the Hamiltonian
of the system, 3/ apply Theorem 2.4 of [24] to prove the existence and unicity
of the invariant probability, the existence of the moments.
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1. The first step is finding a Lyapounov function Ψ(x, y) such that there exist
a compact K ∈ R2 and constants C, ξ > 0, such that

− LΨ

Ψ
≥ ξ1Kc − C1K . (A.1)

The choice of the Lyapounov function is not trivial. Following [24], we
choose

Ψ(x, y) = eF (x,y)−infR2 F (A.2)

with

F (x, y) = aH(x, y) + by G(x) + yW ′(x) + b U(x)

= a

(
1

2
y2 + V (x)

)
+ by G(x) + yW ′(x) + b U(x)

whereH(x, y) = 1
2y

2+V (x) is the Hamiltonian and the functionsG(x),W (x), U(x)
will now be defined, such as the two constants a and b. With this form of
Ψ(x, y), we have

−LΨ

Ψ
= −LF − 1

2
σ2|∂yF |2.

We have to compute −LΨ
Ψ . We have:

LF =
a

2
σ2 − ay2c(x) + y2(bG′(x) +W ′′(x))

−y(bc(x)G(x)− bU ′(x) + c(x)W ′(x))

−V ′(x)(bG(x) +W ′(x))

1

2
σ2(∂yF (x, y))2 =

1

2
σ2 (ay + bG(x) +W ′(x))

2

We will now detail our choice of functions G(x), U(x),W (x) and constants
a, b. We can bound 1

2σ
2(∂yF (x, y))2 by

1

2
σ2(∂yF (x, y))2 ≤ 2σ2

(
a2y2 + (bG(x) +W ′(x))2

)
Thus

−LΨ

Ψ
≥ −a

2
σ2 + y2(ac(x)− 2σ2a2 − 2(bG′(x) +W ′′(x)))

+y (b (c(x)G(x)− U ′(x)) + c(x)W ′(x))

+V ′(x)(bG(x) +W ′(x))− 2σ2(bG(x) +W ′(x))2

We consider a function G(x) such that

G(x) = Φ(|x|) x
|x|
, for x 6= 0

with Φ : R+ → R+ is a non decreasing smooth function equal to zero on
a small neighborhood of 0 and equal to 1 for |x| ≥ 1.
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We choose a such that 0 < a < c
2σ2 where c = 1− 1

ε is the lower bound of
c(x). Then we choose b such that

bG′(x) <
1

8
(ac− 2σ2a2)

We choose the function W , of compact support, concave such that for all
x

−W ′′(x) ≥ −1

8
(ac− 2σ2a2)

This allows to control the term in y2:

(ac(x)− 2σ2a2− 2(bG′(x) +W ′′(x))) ≥ (ac− 2σ2a2− 1

2
(ac− 2σ2a2)) > 0

Now, we bound the term in y. First note that by definition of W , there
exists a constant M1 such that

yc(x)W ′(x) ≥ −M1|y|

Then, we define the function U such that the term c(x)G(x)− U ′(x) can
be controlled. We choose U(x) verifying

sup
x∈R
|c(x)G(x)− U ′(x)| < +∞

Because c(x) = 1
ε (3x2 − 1 + ε), we can take U(x) such that

U ′(x) =

{
3
εx

2Φ(|x|) if x ≥ 0
− 3
εx

2Φ(|x|) if x ≤ 0

Thus, we obtain that there exists a constant M2 such that

y (b (c(x)G(x)− U ′(x)) + c(x)W ′(x)) ≥ −M2|y|.

Now, we want to control the constant term (bG(x) + W ′(x))(V ′(x) −
2σ2(bG(x) + W ′(x))). Given the form of function G and V ′(x) = x3 +
x(γ− 1) + (s+β), we have that V ′(x)G(x)→ +∞ as |x| → +∞ and that
G2(x) → +∞ as |x| → +∞. The function W has compact support thus
W ′(x)V ′(x)→ 0, W ′(x)G(x)→ 0 and W ′2(x)→ 0 as |x| → +∞. So, the
constant term is lower bounded.
Finally,

lim
|x|+|y|→∞

(−LΨ

Ψ
) = +∞.

We thus have the existence of a compact such that (A.1) holds.
2. We want to show that Ψ is lower bounded by 1. We can choose for any

fixed δ > 0 the constant a in ] c
2σ2 − δ

2 ,
c

2σ2 [. The Lyapounov function is
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defined as Ψ(x, y) = eaH(x,y)+by G(x)+yW ′(x)+b U(x)−infR2 F , we can prove
that there exists a constant B such that

Ψ ≥ B exp
(

(
c

2σ2
− δ)H(x, y)

)
.

Therefore Ψ ≥ 1.
3. Applying Theorem 2.4 of [24] leads to the fact that

• There is a unique invariant probability measure µ.

• µ satisfies
∫

Ψdµ < +∞. Given the exponential form of Ψ, this means
that µ integrates any polynom in (x, y) and thus the existence of any
moments.

�.

Proof. of Lemma 3.1. Let F ∈ BΨ and {Fn} be a sequence of bounded functions
such that Fn ↑ F . Inequality (2.3) gives ||PtF ||Ψ ≤ (Dρt + 1)||F ||Ψ < ∞.
Moreover, as in [24], let us introduce the exponential local martingale

Mt = exp
[
− 1

σ

∫ t

0

(c(Xs, Ys)Ys+∇xV (Xs))dWs+
1

2σ2

∫ t

0

(c(Xs, Ys)Ys+∇xV (Xs))
2ds
]
.

By using monotone convergence theorem first and then the probabilistic repre-
sentation as in [24], we get

EP0
z [MtF (σ

∫ t

0

Wsds, σWt)] = lim
n→∞

EP0
z [MtFn(σ

∫ t

0

Wsds, σWt)]

= lim
n→∞

∫
pt(z, z

′)Fn(z′)dz′ =

∫
pt(z, z

′)F (z′)dz′ = PtF (z) <∞.

Then we recover the representation PtF (z) = EP0
z [MtF (σ

∫ t
0
Wsds, σWt)]. Now

function Gy1
trivially belongs to BΨ. Hence PtGy1

(z) = EP0
z [Mt|σWt − y1|].

Thus by using the Levy modulus of continuity of Brownian motion we get

|PtGy1
(z)− |y − y1|| ≤ EP0

z [Mt|σWt − y|] ≤ C
√
t log

1

t
Ez[Mt] = O(t1/2−ε)

for ε > 0. This proves the lemma. Remark that the convergence is uniform in
z.
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