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Abstract

In the aerospace industry the trend for light-weight structures and the resulting
complex dynamic behaviours currently challenge vibration engineers. In many
cases, these light-weight structures deviate from linear behaviour, and complex
nonlinear phenomena can be expected. We consider a cyclically symmetric sys-
tem of coupled weakly nonlinear undamped oscillators that could be considered
a minimal model for different cyclic and symmetric aerospace structures expe-
riencing large deformations. The focus is on localised vibrations that arise from
wave envelope modulation of travelling waves. For the defocussing parameter
range of the approximative nonlinear evolution equation, we show the possible
existence of dark solitons and discuss their characteristics. For the focussing
parameter range, we characterise modulation instability and illustrate corre-
sponding nonlinear breather dynamics. Furthermore, we show that for stronger
nonlinearity or randomness in initial conditions, transient breather-type dynam-
ics and decay into bright solitons appear. The findings suggest that significant
vibration localisation may arise due to mechanisms of nonlinear modulation
dynamics.

Keywords: Solitons, breathers, cyclic structures, vibration localisation

1. Introduction

Localisation of vibrations has received considerable attention from the struc-
tural dynamics engineering community over the last three decades (see e. g. pa-
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pers [1–8] and references therein). In a linear framework, localisation may arise
due to imperfections in the manufacturing process that result in a slightly disor-5

dered and inhomogeneous system. The localisation of vibrations has particular
relevance in the aerospace industry, where e.g. bladed-disks of turbo-machines,
reflectors, and antennas are usually composed of ideally periodic structures.
Linear localisation due to disorder in general was first observed in solid state
physics [9], and this community usually refers to the phenomenon as Anderson10

Localisation. In the aerospace and turbo-machinery community, localisation due
to imperfections is usually referred to as a mistuning [10, 11], when viewed from
a spectral framework. Mistuning plays a significant role in system dynamics
due to its importance in mechanical vibrations, fatigue, and even aerodynamics
[12].15

In the case of turbo-machinery applications, more and more so-called blisks
are used in current aero-engine designs. A blisk is a blade-integrated disk,
i.e. a rotating component in which the traditional separation between a disk
and attached blades is overcome enabling the whole structure to be formed
monolithically. Blisks thus do not have any internal mechanical joints, with their20

corresponding friction mechanisms, and they are usually considered undamped
structures [13]. Moreover, the dynamical response of blisks under operation
is often thought to be beyond the traditional range of applicability for linear
models due to the effect of geometric nonlinearity for large vibration amplitudes.

A number of publications (e.g. references [4, 7, 14–20]) have already shown25

that perfectly symmetric or perfectly periodic structures may localise vibra-
tions in the nonlinear regime due to: (i) the dependence of mode shapes on
displacement amplitude, which is usually referred to as non-similar modes; and
(ii) through bifurcations of main normal mode branches. The role and effects
of such localised solutions are still under study within the vibration engineering30

community, and also the relevance of geometric nonlinearities when manufac-
turing variability plays any role is a question of active research [21].

The emergence of travelling wave vibration states in aerospace structures has
already been studied extensively, e.g. due to Coriolis effect [22] or aeroelastic
excitation [12]. However, there is also a vast body of knowledge and literature on35

the weakly nonlinear dynamics of nonlinear travelling waves from the physics
community that does not seem to be reflected widely in the present context
[23, 24]. Especially in the optics community the study of modulation instability
has lead to substantial progress in understanding and influencing the systems
under study [25]. The aim of this research is to investigate the mechanisms of40

vibration localisation that may arise due to modulation of travelling waves. We
therefore study the stability of plane wave vibration states and the subsequent
nonlinear evolution here with a view to structural dynamics engineering.

We use a highly idealised model for which we numerically study localised
solutions inspired by insights from the Nonlinear Schrdinger Equation (NLSE).45

We find that depending on the wavelength of the travelling wave under study,
the system becomes self-modulating, in the focussing parameter range, or the
system can self-demodulate, in the defocussing parameter range [26]. In the self-
modulating regime, the travelling nonlinear waves are linearly unstable against
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long-wavelength perturbations, in accordance with the general theory of mod-50

ulation instability. Only in the self-demodulating regime are travelling waves
linearly stable against long modulations. With a view to vibration localisation,
the stable regime allows so-called dark solitons to arise, where spatially confined
parts of the system do not vibrate, while the rest of the system is filled with
a travelling wave. The unstable regime, as has already been reported in Ref.55

[27], shows bright solitonic structures, but also a complex nonlinear evolution
of modulation dynamics. Depending on system parameters and initial condi-
tions, either breather-like vibration states emerge, complex dynamics involving
breathers or soliton chaos. In all cases our numerical simulations suggest that
very strong vibration localisations may arise when the weakly nonlinear system60

properties are taken into account.
The paper is organized as follows. Section 2 introduces the analysed phys-

ical model and presents the physical framework required to deal with modu-
lated nonlinear travelling waves. Solutions based on numerical integration are
presented in Sec. 3. Dark solitons are introduced for defocussing range of pa-65

rameters while, for the focussing parameter range, modulation instability and
corresponding nonlinear breathers emergence are discussed in detail. Subse-
quently, Sec. 4 investigates the evolution of random initial conditions in the
defocusing and focusing ranges. Finally, Sec. 5 summarises the conclusions and
suggests directions for future investigations.70

2. The model and solution methods

The system under study consists of Ns identical masses m cyclically con-
nected through linear springs with constant kc. Each mass is also connected to
the ground by a linear spring kl, and a nonlinear one knl of cubic behaviour. The
corresponding configuration is depicted in Fig. 1. Physical systems similar to
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Figure 1: Mechanical system studied. On the left hand side, an illustration of the full system,
while the right hand side displays any three neighbouring degrees of freedom.

75

the one presented in Fig. 1 may be understood as a minimal model of different
aerospace structures, such as space reflectors [3], disk antennas [28] and bladed-
disks of aero-engines [6, 7]. In the case of bladed-disk vibrations, the model
presented in Fig. 1 is obtained when the Von Karman theory is applied to a
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system of Ns beams or plates that are cyclically coupled by massless springs,80

taking into account only the first term of a Rayleigh-Ritz approximation for
the displacement field [15, 16]. In this case, nonlinearity arises due to large
deformations and a positive (or negative) value of knl represents a hardening
(or softening) effect.

The mathematical model for the n-th displacement un in Fig. 1 is described85

by
mün + (kl + 2kc)un − kc(un−1 + un+1) + knlu

3
n = 0. (1)

The latter equation can be rewritten for convenience as

ün + ω2
0un + ξu3n − ω2

c (un−1 + un+1 − 2un) = 0, (2)

where ω2
0 = kl/m, ω2

c = kc/m, and ξ = knl/m.
In the linear regime (ξ ≡ 0), Eq. (2) has exact plane harmonic wave solutions

[15, 16, 27]90

un(k) = Uk exp{i[k(n− 1)a− ωkt]} + c.c., (3)

where Uk is the amplitude, a = 2π/Ns is the sector parameter, k is the wave
number, ωk =

√
ω2
0 + 2ω2

c (1− cos(ka)) is the dispersion relation, i is the imag-
inary unity, and c.c. states the complex-conjugate of the first expression. It
should be noted that Eq. (3) is usually valid when k is an integer number and,
consequently, u1 = uNs+1, due to cyclic symmetry, fulfil the cyclic system. For95

nonlinear vibrations we focus on modulations of the constant amplitude wave,
using a continuous envelope function Ψ, such that

un(t) = εΨ(X,T ) exp{i[k(n− 1)a− ωkt]} + c.c., (4)

where X = εx = ε(n − 1)a and T = εt denote scaled space and time variables,
respectively. In Eq. (4), the term ε has been introduced as a small parameter
such that for asymptotically weak nonlinearity a NLSE can be derived. It has100

been demonstrated that the slowly varying weakly nonlinear regime of Eq. (2)
is governed by the following NLSE [26, 29]

i
∂Ψ

∂τ
+ P

∂2Ψ

∂η2
+Q|Ψ|2Ψ = 0. (5)

In Eq. (5), τ = ε2t is a slowly varying time scale, η = X − cgT is the spatial

variable in a frame moving with the group velocity cg =
dωk

dk
, P =

1

2

d2ωk

dk2
is the

dispersion parameter, andQ = − 3ξ

2ωk
is the term that accounts for nonlinearities105

[27]. Equation (5) only considers first-order nonlinear terms and is based on the
continuous approximation. In practical terms, the approach works well when
the modulation Ψ varies much slower in time and space than the carrier wave
period 2π/wk and the lattice parameter 2π/Ns, respectively.

Through the paper we use solutions of the continuous NLSE heuristically,110

and then study these solutions and their evolution in the context of the discrete
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physical system. Therefore, values from the continuous expression, obtained
from the solution of Eq. (5), are discretely sampled to generate initial condi-
tions for Eq. (2). In this paper we are interested in the fundamental localised
solitons and the breathers illustrated in Fig. 2. Panels (a) and (b) present115

stationary bright and dark solitons, respectively. They consist of spatial local-
isation patterns that move around the system keeping a constant profile, with
bright solitons arising for the focusing parameters, while dark solitons emerge
for the defocusing parameters. Panels (c), (d) and (e) display Akhmediev, Pere-
grine and Akhmediev-Peregrine solutions, respectively, each of which arises for120

the focusing parameters only. They represent spatio-temporal modulation at
which vibrations do not localise only in space but also in time. These features
are investigated more fully in the next sections.

Figure 2: Localised solutions. Panels (a) and (b) illustrate the bright and dark solitons,
respectively. Panels (c) and (d) display the Akhmediev breather, for α = 0.4, and the Peregrine
solution. Panel (e) depicts the second-order rational expression, also known as the Akhmediev-
Peregrine solution. All values are obtained following the scales presented in Sec. 3 and
assuming an unit background amplitude.

One should note that the approach developed in this paper is based on a
semi-discrete approximation, and therefore it has some limitations. Firstly, since125

it considers only the first-order nonlinear term, it has physical relevance only in
the low amplitude regime. Another feature, also induced by the first-order ap-
proximation, is the limitation for long times predictions. Since the system is non-
linear, it intrinsically generates infinite higher-order harmonics which can, due
to instabilities, deviate the predictions for long simulations (see Refs. [30, 31]).130

The additional limitation is the continuum approximation for the envelope func-
tion, which does not consider discreteness induced by the lattice dynamics. In
fact, a more rigorous approach should consider localised solutions of Eq. (2)
without any prior approximation. It has been demonstrated already, for weakly
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coupled oscillators, that Eq. (2) admits exact discrete breather solutions [32].135

Experiments in micro-mechanical oscillators arrays have already observed very
strong localisation phenomenon arising from modulation instability [33]. The
phenomenon seems to be very robust, and results based on lattice dynamics
demonstrate that localised states do exist even when interactions are not re-
stricted to neighbours oscillators [34]. In addition, the persistence of localised140

travelling and standing states were observed for more general nonlinearities,
such as those modelled by Frenkel-Komogorova lattices [35].

3. Nonlinear solutions

The system depicted in Fig. 1 is numerically investigated by assuming
Ns=100, ω2

0 = 1 s−2, ω2
c = 1 s−2, and ξ = 0.1 m−2s−2. Figure 3 displays145

the values of the linear natural frequency ωk, the group velocity cg, the disper-
sion parameter P , and the nonlinear coefficient Q, both as functions of the wave
number k. One should note that the physical system is cyclically symmetric,
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Figure 3: The system parameters as a function of the wave number k: (a) linear natural
frequency ωk; (b) group velocity cg ; (c) dispersion parameter P , where the vertical dashed
line states the transition from defocusing (P > 0) to focusing (P < 0) range; (d) nonlinear
coefficient Q.

which means that the initial conditions also need to be chosen accordingly, which
is usually the case when k is an integer number. The values of k are bounded150

between [1,Ns], but only values between [1,Ns/2] are investigated, since the sys-
tem is cyclic and all the values in Fig. 3 are symmetric with respect to k=50.
In addition, from Fig. 3, a transition from positive values of P to negative ones
between k = 18 and k = 19 is observed. This transition delineates the bound-
ary between the defocusing range, when PQ < 0, and the focusing one, when155

PQ > 0. All subsequent simulations are obtained through numerical integration
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of Eq. (2) by using a standard Runge-Kutta method, and initial conditions are
extracted from analytic solutions calculated from the NLSE. It should be noted
that, usually, NLSE reported results are obtained by considering an infinite line
as its spatial domain rather than a finite and cyclic system. However, we only160

study modulations that are sufficiently localised to fulfil the cyclic system and
thus boundary effects do not need to be considered here, as will be seen also
from the results, as described below.

3.1. Dark solitons

It has already been shown in Ref. [27] that the proposed system has bright165

(or envelope) solitons in the focusing range. In this subsection we complement
this finding by demonstrating the existence of dark (or hole) solitons in the
defocusing parameter range. Dark solitons are well known from many other
physical systems, such as fibre optics [36], plasmas [37], or water waves [38],
and this discussion for completeness describes how dark solitons look in the170

present context. We also would like to note that we here focus on so-called
black solitons only [39].

Firstly, the NLSE in Eq. (5) is investigated in a dimensionless form such
that

i
∂Φ

∂ζ
+
∂2Φ

∂ϑ2
− 2|Φ|2Φ = 0, (6)

where ϑ =
η√
2P

, ζ =
τ

2
, and Ψ(τ, η) =

Φ(ζ, ϑ)√
−Q

. It is well-known that Eq. (6)175

has dark soliton solution such that [40, 41]

Φ = iV tanh(V ϑ) exp{−2iV 2ζ}, (7)

where V is the amplitude of the background wave. The expression in Eq. (7)
represents a wave depression that keeps its stationary shape while it moves
around the system with the group velocity, see Panel (a) of Fig. 2. Initial
conditions obtained from Eq. (7) have a characteristic phase shift of π centred180

in the wave train, see Panels (a) and (d) of Fig. 4. This means that an integer
wave number, k, which originally fitted the cyclic system, would not fulfil the
dark soliton initial conditions. This issue is solved by assuming a carrier wave
number that does not fit the initial conditions due to a discontinuity of π in
phase, but due to the phase shift induced by the dark soliton solution does185

fit the cyclic system. Figure 4 displays the obtained numerical results. In this
case, nonlinearity and dispersion are perfectly balanced and the hole in the initial
conditions keeps a constant shape while it moves around the system with almost
the value of the group velocity. For comparison, note that if the nonlinear terms
in the system are ignored, the hole modulation spreads out when it propagates190

around the cyclic system due to dispersion only.

3.2. Modulation instability

After investigating bright and dark solitons, it is useful to consider the linear
stability of the plane wave solution itself. In the context of the NLSE this
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Figure 4: Dark solitons obtained by assuming an amplitude
V
√
−Q
∼ 0.39 m, while the carrier

wave is k = 1.5, for the left side plots, and k = 3.5, for the right side plots. Panel (a) illustrates
the initial conditions for the system displacement (the unfolded graph is also plotted), Panel
(b) depicts the displacement of a specific mass obtained from the nonlinear model, while Panel
(c) displays the same quantity obtained with the equivalent linear model. Panels (d), (e), and
(f) show the same quantities obtained by assuming k = 3.5.

investigation can be started as follows. The nonlinear plane wave Ψ is written195

as [26]
Ψ = V exp{iθ(τ)}, (8)

where V is a constant amplitude and θ(τ) is an unknown phase function. After
substituting Eq. (8)) into Eq. (5)), the plane wave solution is written as

Ψ = V exp{iQV 2τ}. (9)

The calculated expression illustrates that the physical system oscillates with the
linear travelling wave frequency ωk corrected by a term proportional to V 2 due200

to the inherent nonlinearity. Figure 5 displays the numerical results obtained
by assuming V = 0.25 for two different wave numbers: (1) k = 5 simulates the
system in the defocusing range; and (2) k = 20 computes results in the focusing
range. The plotted curves show that a plane wave solution with constant and
finite amplitude moves around the cyclic structure.205

Indeed, it is well-known from studying the NLSE that plane waves are not
always linearly stable [26, 29]. Therefore, the stability of plane waves due to
small perturbations is investigated by assuming the following NLSE solution
[26]:

Ψ(η, τ) = (V + εVpert(η, τ)) exp{i[θ(τ) + εθpert(τ, η)]}+ c.c. (10)
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Figure 5: Plane wave solutions calculated by assuming the amplitude V=0.25 m for two
different wave numbers: k = 5 and k = 20. Panel (a) displays the spatial configuration for
two different time values, while Panel (b) shows the displacement of two different degrees of
freedom for k = 5. Panel (c) and (d) illustrate the same quantities for k = 20.

In Eq. (10), the term ε is a small parameter that controls the perturbation210

amplitude Vpert(η, τ) and phase θpert(τ, η). After inserting Eq. (10) into Eq.
(5), the standard plane wave solution is obtained at zeroth order. To order ε a
set of coupled linear partial differential equations such that

V
∂θpert
∂τ

− 2QV 2Vpert − P
∂2Vpert
∂η2

= 0, (11)

∂Vpert
∂τ

+ PV
∂2θpert
∂η2

= 0, (12)

has to be solved. Equations (11) and (12) admit a pair of harmonic solutions
[26]215

Vpert(η, τ) = Vp exp{i(Kη − Ωτ)}+ c.c., (13)

θpert(η, τ) = θp exp{i(Kη − Ωτ)}+ c.c., (14)

where Vp and θp denote two constants, while K and Ω state the wave number
and its corresponding frequency. After inserting Eqs. (13) and (14) into Eqs.
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(11) and (12), the dispersion relation

Ω2 = (K2 − 2
Q

P
V 2)P 2K2 (15)

for the perturbation wave is obtained. Two characteristic scenarios for Eqs.
(13) and (14) are possible based on Eq. (15):220

1. if Q/P<0, all the possible values of Ω are real and perturbations only
travel with a constant shape around the system. The system is therefore
neutrally stable;

2. if Q/P>0, Ω assumes imaginary values if 0 < K < V
√

2Q/P . In this
case, perturbations grow exponentially in time and modulation instability225

refereed to as self-modulation or side-band instability arises.

Figure 6 displays the instability diagram for different carrier wave numbers
and amplitudes calculated from Eq. (15) and based on the parameters assumed
for the system, as described in Fig. 1. The obtained results state that the
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Figure 6: The imaginary part of Ω as a function of the carrier wave number for different
values of K and V . Panels (a), (b), (c), and (d) display the values of Im{Ω} for V = 0.025 m,
V = 0.10 m, V = 0.25 m, and V = 0.40 m, respectively. The curves of each panel represent
the same quantities for different values of k.

system is stable for almost all values of k when the background amplitude is230

small and the system is almost in the linear regime. In the example in Panel
(a) of Fig. 6, calculated by assuming V = 0.025 m, the only unstable solution
is obtained for k = 20. All other curves predict instability for K < 1, which
would represent modes that do not verify the cyclic condition. The regime of
instability is increased in Panels (b), (c), and (d) since the values of V are bigger235

and the effects of nonlinearities are stronger.
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In order to compare the NLSE prediction with the full model system, a
modulationally unstable plane wave is simulated and the corresponding results
are shown in Fig. 7. The initial condition consists of a plane wave, with V =
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Figure 7: Stability of plane waves for V = 0.25 m and k = 30 when a small perturbation
with K = 3 is added as an initial condition. Panel (a) displays the displacement of a specific
degree of freedom, Panel (b) is the corresponding spectrum, in logarithmic scale, while Panel
(c) illustrates the spatial envelope function in a frame moving with the group velocity.

0.25 m and k = 30, onto which a small perturbation of wave number K = 3 is240

added. This choice of parameters corresponds to the maximal growth rate from
the NLSE theory (see Panel (c) of Fig. 6). The result in Panel (a) shows very
interesting features. At first, the perturbation grows exponentially in time, as
expected from the linear stability analysis. Subsequently, the solution reaches
a maximum vibration amplitude and decays to a state very close to the initial245

plane wave condition. After reaching this configuration, recurrence is observed
and an apparently regular vibration pattern seems to be achieved. This type of
dynamics can be attributed to the Fermi-Pasta-Ulam recurrence [42, 43]. The
same response is investigated in the frequency domain, as plotted in Panel (b).
The initial condition shows basically the main carrier wave frequency and its first250

harmonic (f2 = 3f1 ∼ 0.91 Hz), which is an intrinsic nonlinear feature for the
simulated plane wave. The initial perturbation grows and reaches the maximum
amplification, as seen for t ∼ 1000 s, when the displacement spectrum becomes
broader. When decaying to the initial configuration, the spectrum narrows again
and looks very similar to the initial condition. The spatial configuration of the255

system and its evolution is investigated in Panel (c), where the envelope function
Ψu, obtained from the Hilbert transform [44], is displayed in a frame moving
with the linear group velocity cg. Firstly, it is possible to clarify that the system
self-localises vibrations in three-humps equally spaced over its spatial domain in
the co-moving frame. This pattern is usually referred to as breather dynamics260

in the literature, and it will be the focus of further investigation in the next
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subsection. It is important to point out that similar results, concerning breather
dynamics and recurrence, were already observed in Ref. [31] by simulating a
chain o Duffing oscillators subjected to random initial conditions.

The stability analysis discussed in this subsection was developed in the NLSE265

framework. However, a more rigorous approach should consider discreteness ef-
fects induced by the lattice dynamics. In the weakly dispersive and weakly
nonlinear regime, discreteness can be included in the analysis by means of the
discrete NLSE [45]. Two important results were already demonstrated within
the discrete NLSE approximation [30, 31]: (1) the instability region is actu-270

ally a function of the carrier wave k, contrary to the prediction obtained from
the continuum limit (see Eq. (15)); and (2) discreteness slightly increases the
number of unstable modes.

3.3. Breathers

Breathers are a class of localised solution that has recently attracted con-275

siderable attention in the literature [46, 47]. They consist of exact analytic
solutions that describe the evolution of modulationally unstable plane waves in
the NLSE context. Nonlinear modulation dynamics in general deals with spa-
tial, temporal, or spatio-temporal localisation during the time evolution. Before
addressing specific solutions, the standard NLSE presented in Eq. (5) is rewrit-280

ten in another dimensionless form. This transformation is obtained by assuming
that both P and Q have negative values, such that

i
∂Φ

∂ζ
+

1

2

∂2Φ

∂ϑ2
+ |Φ|2Φ = 0, (16)

where ϑ =
η√
−2P

, ζ = −τ , and Ψ(τ, η) =
Φ(ζ, ϑ)√
−Q

. It is possible to show that

Eq. (16) admits the following localised solution

Φ(ζ, ϑ) = V

{
1 +

2(1− 2α) cosh(V 2bζ) + ib sinh(V 2bζ)√
2a cos(V κϑ)− cosh(V 2bζ)

}
× exp{iV 2ζ},

first reported in Refs. [48, 49]. In Eq. (17) the variable V denotes the solution285

amplitude, while b = [8α(1− 2α)]
1/2

and κ = 2(1 − 2α)1/2 are two other con-
stants. The solution dynamics is fully controlled by the free parameter α, which
basically sets the amount of energy localisation. In this case, if α < 1/2 the
solution is known as an Akhmediev breather (see Panel (c) of Fig. 2), while if
α > 1/2 the solution is known as a Kuznetsov-Ma breather. Several configura-290

tions are possible for Eq. (17), depending on the number of solution humps and
the maximum amplification. For the case of Akhmediev breathers a required
configuration is implemented, considering the argument periodicity in the cosine
function of Eq. (17), as

V κϑ =
2V (1− 2α)1/2η√

−2P
= nh and α =

1

2

{
1 +

Pn2h
2V 2

}
, (17)
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where nh represents the number of localised humps in the proposed solution.295

One should note that, due to the finite number of discrete oscillators, the solu-
tion does not have physical meaning for an arbitrary high number of localised
humps. Figure 8 illustrates the dynamics of a simulated result calculated by
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Figure 8: Akhmediev breather simulated in the cyclic symmetric system. Panel (a) shows a
degree of freedom displacement at which maximum amplification is expected, while Panels
(b), (c), (d), (e) and (f) illustrate the spatial configuration at t = −2250 s, t = −500 s, t = 0 s,
t = 500 s, and t = 2250 s, respectively.

using k = 30, nh = 3, and
V√
−Q

∼ 0.2 m. The initial condition is character-

ized by a carrier wave with an arbitrarily small perturbation. The perturbation300

grows over time and results, at t ∼ 0 s, in three very localised humps sym-
metrically spaced over the spatial domain. The observed amplification factor
is around 1.98, which is in good agreement with the theoretical solution of Eq.
(17), which predicts the amplification as 1.92 for the same system parameters.
In addition, Panel (a) of Fig. 8 also indicates that the maximum amplification305

factor is not observed for t = 0 s, but later. This feature indicates that the
simulated results move more slowly than the linear group velocity. In fact, dis-
crepancies like this are often observed when NLSE results, which are valid only
for asymptotically weak nonlinearity, are compared to results obtained from full
system models with weak, but non-zero nonlinearity [26].310

For the special case when α = 1/2, it is possible to write down a limiting
case, known as a Peregrine breather, expressed by the rational doubly-localised
solution [41] such that

Φ(ζ, ϑ) = V

[
1− 4(1 + 2iV 2ζ)

1 + 4V 4ζ2 + 4V 2ϑ2

]
exp{iV 2ζ}, (18)

where V is, again, the background amplitude. This equation has important
features since it corresponds to the maximum localisation regime with an am-315
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plification factor of 3.00 at ζ = ϑ = 0 (see Panel (c) of Fig. 2). In addition,
it consists of a hump that breathes only once in space and time, reflecting a
single event that “appears from nowhere and disappears without a trace”[50].
This solution has been proposed as a prototype for rogue waves, a class of very
extreme and rare events well-known from optics and hydrodynamics and also320

recovered in laboratories [50–52]. Figure 9 displays the obtained results calcu-

lated by assuming k = 30 and
V√
−Q

∼ 0.12 m. The maximum displacement

consists of an amplification factor of 3.03, which is in very close agreement with
the value 3.00 expected from the Peregrine solution.
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Figure 9: Peregrine breather simulated in the cyclic symmetric system. Panel (a) shows the
temporal evolution for the mass at which maximum amplification factor is expected, while
Panels (b), (c), (d), (e) and (f) depict the spatial configuration at t = −2000 s, t = −500 s,
t = 0 s, t = 500 s, and t = 2000 s, respectively.

In the context of vibrations the Peregrine breather is a remarkable solu-325

tion too. When starting with a plane wave in the focusing wave regime, an
arbitrarily small perturbation, if chosen appropriately, can lead to substantial
spatio-temporal localisation of vibration amplitude. For the inexperienced ob-
server it might seem as if a travelling wave undergoes a spontaneous nonlinear
distortion, at which a strong amplitude focusing with displacements three times330

higher than the original plane wave appears. Finally, the modulation disappears
and the system experiences plane wave dynamics again.

Theory has long suggested that there are even more extreme nonlinear mod-
ulation effects, and solutions with higher localisation features have recently been
observed e.g. in optics [53] and water waves [54, 55]. The phenomenon basi-335

cally consists of a nonlinear superposition of fundamental localised solutions,
and analytical expressions are usually obtained by applying Darboux transform
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techniques. Solutions can be written down in a generic form as

Φ(ζ, ϑ) = V

[
1− G(ζ, ϑ)− iH(ζ, ϑ)

D(ζ, ϑ)

]
exp{iV 2ζ}, (19)

whereG(ζ, ϑ), H(ζ, ϑ) andD(ζ, ϑ) are three functions stated in Refs. [48, 50, 56]
and they are presented in the Appendix. Equation (19) represents an infinite340

hierarchy of localised solutions (see Panel (e) of Fig. 2) which can, theoretically,
represent unlimited amplification factors [57]. An example for a higher-order
simulation result, known as the Akhmediev-Peregrine solution, is depicted in
Fig. 10. In this case, the observed amplification factor is around 4.4, while the
theoretical one is 5.0 for the corresponding NLSE solution. The discrepancies345

are probably due to higher-order nonlinearities and discreteness effects that are
not considered in the NLSE approximation. Simulations have been calculated

by assuming
V√
−Q
∼ 0.09 m and k = 30.
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Figure 10: Akhmediev-Peregrine solution. The panels of this figure illustrate the same infor-
mation of Fig. 9.

4. Evolution of random initial conditions

The evolution of random initial conditions can be regarded as highly relevant350

for practical applications in vibrations, where initial conditions come as a result
of a multitude of uncontrolled factors. In the following we thus report simulation
results for our model system subject to random initial conditions. The study
has also been motivated by several recent similar studies in optics [25, 58],
where authors have reported very strong self-modulation when random initial355

conditions are considered.
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All simulated random initial conditions urandn (t = 0) consist of plane waves
uPW
n (t = 0) on which random perturbation are added such that

urandn (t = 0) = uPW
n (t = 0) + σNn, (20)

where Nn is a Gaussian random variable with zero mean and unit standard
deviation. The noise level is fully controlled by the free parameter σ, which sets360

the final standard deviation of σNn. In order to obtain a very broad-band noise
spectrum, the random signals Nn and Nn±1 are taken as uncorrelated for all
the following investigations.

Firstly, a perturbed plane wave is simulated in the defocusing range. In
this scenario, the system is known to be linearly stable with respect to all365

perturbation wave numbers. The respective results, calculated by assuming
plane wave parameters V = 0.25 and k = 10, and noise level σ = 0.01, are
displayed in Fig. 11. The displacement of a specific degree of freedom, depicted
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Figure 11: Stability of plane waves for V = 0.25 m and k = 10 when a small Gaussian noise
of zero mean and standard deviation σ = 0.01 is added as an initial condition. Panels (a), (b)
and (c) illustrates the same quantities of Fig. 7.

in Panel (a), shows that the small noise does not grow or decay significantly
over time. This conclusion is confirmed looking at the results in the frequency370

range, as illustrated on the plot in Panel (b). It is shown that the spectrum
consists of a main signal corresponding to the plane wave, at f1 ∼ 0.19 Hz, and a
weaker response bounded between [ω2

0 ,
√
ω2
0 + 4ω2

c ]. The initial pattern does not
change significantly over the simulation. The envelope function, in Panel (c),
shows that no localisation mechanism is observed in the spatial configuration375

while the system evolves in time.
A very similar investigation is performed in the focusing range by using the

same parameters as in Fig. 11, except for the wave number which is assumed
as k = 30. Figure 12 depicts the obtained results. From Panel (a) it is observed
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Figure 12: Stability of plane waves for V = 0.25 m and k = 30 when a small Gaussian noise
of zero mean and standard deviation σ = 0.01 is added as an initial condition. Panels (a), (b)
and (c) illustrate the same quantities of Fig. 7.

that the displacement at first consists of an Akhmediev breather-like solution380

that breathes only once before the system goes to an irregular regime. In the
frequency domain, shown in Panel (b), the results are also interesting. The
initial condition grows in a similar way to Akhmediev breathers, as seen for
t ∼ 1500 s, although energy is transferred from the main signal to reach an
almost flat response between [ω2

0 ,
√
ω2
0 + 4ω2

c ] at the end of simulations. The385

spatial configuration is shown in Panel (c). Again, it is possible to confirm
that the Akhmediev breather consists of three localised humps equally spaced
over the system. The single and isolated perturbation wave number K = 3
dominates the system dynamics and leads, as expected, to an exponentially
growing modulation, followed by a dynamics very similar to the corresponding390

Akhmediev breather. Moreover, the transition from a breather response to
an irregular one shows strong localised vibrations which consist of wave-packets
travelling around the system with a certain constant velocity. Reconsidering the
soliton solutions discussed earlier (see Ref. [27]), it seems that the breather-type
dynamics has given way to a dynamics consisting mainly of envelope solitons.395

The latter is sometimes called soliton chaos or soliton turbulence [59].
The results in Fig. 7 also display collisions of solitons. In contrast with

the continuum theory, which does not predict any change of energy between
collisions of localised humps [26], the observed results show that collisions tend
to transfer energy from lower solitons to larger ones. This feature was already400

observed and discussed in Ref. [60], where authors suggest that collisions of
localised states are important mechanisms to observe strong energy localisation
in nonlinear lattices.

It should be noted that the observed transition from breather dynamics to
soliton solutions has been thought to be unusual from a NLSE perspective. The405
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NLSE is an integrable equation, and many insights for its solution are based
on the Inverse Scattering Technique (IST). One of the major contributions,
obtained from the IST, is that breathers and solitons might be seen as nonlinear
modes of the problem and no transition from breathers to solitons would be
expected within the NLSE context [59, 61]. However, a transition might be410

observed when higher-order effects are included within the NLSE approximation
[62]. For example, the NLSE approach is a very useful framework for soliton and
breather turbulence in optics [58], but it does not consider Raman scattering.
In order to take this effect into account, a modified NLSE is required [63, 64].
For such cases it has been observed that a transition from breather to soliton415

turbulence is possible [62]. The time-integration results, obtained from the
proposed physical system, seem to show similar features.

5. Conclusions and outlook

This paper explores vibration localisation due to weak nonlinearity in a chain
of oscillators that allow dispersive travelling waves. The study focusses on the420

evolution of modulated travelling waves. The system under study may be seen
as a minimal model for different aerospace structures, and consists of a cyclically
connected chain of Duffing oscillators. In the defocusing range, dark solitons,
characterized by a drop in modulation amplitude that moves around the system
with a constant shape profile, do exist. In the focusing range, breather dynamics425

are computed and it is observed that they may be excited spontaneously when
a travelling wave is slightly perturbed by random initial conditions. Finally, a
transition from regular breather to irregular soliton dynamics is also observed.
The obtained results suggest that very strong vibration localisation in cyclic
structures might arise due to modulation instability and subsequent nonlinear430

evolution, potentially also including irregular soliton dynamics.
Our studies have been based on a combination of results for the NLSE and

numerical simulation for our model system. Future investigations will first need
to consider the effects of damping and external forcing. More work also needs to
be done on modelling. The results presented in this paper are based on a highly435

idealised minimal model, and obviously models capturing more realistic geom-
etry and system properties, e.g. based on finite element models, will be in the
focus of future work. For this case, the development of a NLSE based approach
might be impracticable, and so efficient numerical procedures are required.
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Appendix A. Higher-order solutions

The rational form of the Akhmediev-Peregrine solution investigated in this
paper is written, assuming that V is real, as follows [50, 56]:445

G(ζ, ϑ) = (V 2ϑ2 + 4V 4ζ2 +
3

4
)(V 2ϑ2 + 20V 4ζ2 +

3

4
)− 3

4
, (A.1)

H(ζ, ϑ) = 2V 2ζ(4V 4ζ2 − 3V 2ϑ2) + 2V 2ζ

[
2(V 2ϑ2 + 4V 4ζ2)2 − 15

8

]
, (A.2)

D(ζ, ϑ) =
1

3
(V 2ϑ2 + 4V 4ζ2)3 +

1

4
(V 2ϑ2 − 12V 4ζ2)2

+
3

64
(12V 2ϑ2 + 176V 4ζ2 + 1). (A.3)
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[39] Y. S. Kivshar, W. Królikowski, O. A. Chubykalo, Dark solitons in dis-
crete lattices, Physical Review E 50 (6) (1994) 5020–5032. doi:10.1103/570

PhysRevE.50.5020.

[40] N. Bekki, K. Nozaki, Formations of spatial patterns and holes in the gen-
eralized Ginzburg-Landau equation, Physics Letters A 110 (3) (1985) 133–
135. doi:10.1016/0375-9601(85)90759-5.

[41] D. Peregrine, Water waves, nonlinear Schrödinger equations and their575

solutions, The Journal of the Australian Mathematical Society. Se-
ries B. Applied Mathematics 25 (1) (1983) 16–43. doi:10.1017/

S0334270000003891.

[42] E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, Los Alamos
Report LA-1940 978.580

[43] O. Kimmoun, H. C. Hsu, H. Branger, M. S. Li, Y. Y. Chen, C. Kharif,
M. Onorato, E. J. R. Kelleher, B. Kibler, N. Akhmediev, A. Chab-
choub, Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Re-
currence (May) (2016) 1–9. arXiv:1602.01604, doi:10.1038/srep28516.

22

http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1016/j.physd.2012.08.011
http://dx.doi.org/10.1016/j.physd.2012.08.011
http://dx.doi.org/10.1016/j.physd.2012.08.011
http://dx.doi.org/10.1016/S0167-2789(03)00261-6
http://dx.doi.org/10.1016/S0167-2789(03)00261-6
http://dx.doi.org/10.1016/S0167-2789(03)00261-6
http://dx.doi.org/10.1016/0030-4018(87)90003-4
http://dx.doi.org/10.1016/0030-4018(87)90003-4
http://dx.doi.org/10.1016/0030-4018(87)90003-4
http://dx.doi.org/10.1103/PhysRevLett.96.245001
http://dx.doi.org/10.1103/PhysRevLett.110.124101
http://dx.doi.org/10.1103/PhysRevE.50.5020
http://dx.doi.org/10.1103/PhysRevE.50.5020
http://dx.doi.org/10.1103/PhysRevE.50.5020
http://dx.doi.org/10.1016/0375-9601(85)90759-5
http://dx.doi.org/10.1017/S0334270000003891
http://dx.doi.org/10.1017/S0334270000003891
http://dx.doi.org/10.1017/S0334270000003891
http://arxiv.org/abs/1602.01604
http://dx.doi.org/10.1038/srep28516


[44] M. Feldman, Hilbert transform in vibration analysis, Mechanical Systems585

and Signal Processing 25 (3) (2011) 735–802. doi:10.1016/j.ymssp.2010.
07.018.

[45] D. E. Pelinovsky, Localization in Periodic Potentials: From Schrdinger
Operators to the GrossPitaevskii Equation, London Mathematical Society
Lecture Note Series, Cambridge University Press, 2011. doi:10.1017/590

CBO9780511997754.

[46] M. Onorato, D. Proment, G. Clauss, M. Klein, Rogue waves: from non-
linear Schrödinger breather solutions to sea-keeping test., PloS one 8 (2)
(2013) e54629. doi:10.1371/journal.pone.0054629.

[47] B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhme-595

diev, F. Dias, J. M. Dudley, Observation of Kuznetsov-Ma soliton dynamics
in optical fibre, Scientific Reports 2 (2012) 1–5. doi:10.1038/srep00463.

[48] N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, Generation of periodic
trains of picosecond pulses in an optical fiber: Exact solutions, Sov. Phys.
JETP 62 (5) (1985) 894 – 899.600

[49] N. N. Akhmediev, V. I. Korneev, Modulation instability and periodic solu-
tions of the nonlinear Schrödinger equation, Theoretical and Mathematical
Physics 69 (2) (1987) 1089–1093. doi:10.1007/BF01037866.

[50] N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere
and disappear without a trace, Physics Letters A 373 (6) (2009) 675–678.605

doi:10.1016/j.physleta.2008.12.036.

[51] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhme-
diev, J. M. Dudley, The Peregrine soliton in nonlinear fibre optics, Nature
Physics 6 (10) (2010) 790–795.

[52] A. Chabchoub, N. P. Hoffmann, N. Akhmediev, Rogue Wave Observation610

in a Water Wave Tank, Physical Review Letters 106 (20) (2011) 204502.
doi:10.1103/PhysRevLett.106.204502.

[53] M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J. M.
Dudley, G. Genty, Higher-order modulation instability in nonlinear fiber
optics, Physical Review Letters 107 (25) (2011) 14–18. doi:10.1103/615

PhysRevLett.107.253901.

[54] A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Super rogue
waves: observation of a higher-order breather in water waves, Physical
Review X 2 (1) (2012) 011015. doi:10.1103/PhysRevX.2.011015.

[55] A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev, A. Sergeeva,620

E. Pelinovsky, N. Akhmediev, Observation of a hierarchy of up to fifth-
order rogue waves in a water tank, Physical Review E - Statistical, Nonlin-
ear, and Soft Matter Physics 86 (5) (2012) 1–6. doi:10.1103/PhysRevE.

86.056601.

23

http://dx.doi.org/10.1016/j.ymssp.2010.07.018
http://dx.doi.org/10.1016/j.ymssp.2010.07.018
http://dx.doi.org/10.1016/j.ymssp.2010.07.018
http://dx.doi.org/10.1017/CBO9780511997754
http://dx.doi.org/10.1017/CBO9780511997754
http://dx.doi.org/10.1017/CBO9780511997754
http://dx.doi.org/10.1371/journal.pone.0054629
http://dx.doi.org/10.1038/srep00463
http://dx.doi.org/10.1007/BF01037866
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1103/PhysRevLett.107.253901
http://dx.doi.org/10.1103/PhysRevLett.107.253901
http://dx.doi.org/10.1103/PhysRevLett.107.253901
http://dx.doi.org/10.1103/PhysRevX.2.011015
http://dx.doi.org/10.1103/PhysRevE.86.056601
http://dx.doi.org/10.1103/PhysRevE.86.056601
http://dx.doi.org/10.1103/PhysRevE.86.056601


[56] N. Akhmediev, E. Kulagin, Generation of periodic trains of picoseconld625

pulses in an optical fiber: exact solutions, Soviet Physics Uspekhi 1 (April
1985) (1986) 894–899.

[57] N. N. Akhmediev, N. V. Mitzkevich, Extremely High Degree of N-Soliton
Pulse Compression in An Optical Fiber, IEEE Journal of Quantum Elec-
tronics 27 (3) (1991) 849–857. doi:10.1109/3.81399.630

[58] P. Walczak, S. Randoux, P. Suret, Optical rogue waves in integrable turbu-
lence, Physical Review Letters 114 (14) (2015) 33–35. arXiv:1410.6058,
doi:10.1103/PhysRevLett.114.143903.

[59] J. M. Soto-Crespo, N. Devine, N. Akhmediev, Integrable Turbulence and
Rogue Waves: Breathers or Solitons?, Physical Review Letters 116 (10)635

(2016) 103901. doi:10.1103/PhysRevLett.116.103901.

[60] M. Peyrard, The pathway to energy localization in nonlinear lattices, Phys-
ica D 119 (1-2) (1998) 184–199. doi:10.1016/S0167-2789(98)00079-7.

[61] N. Akhmediev, J. M. Soto-Crespo, N. Devine, Breather turbulence ver-
sus soliton turbulence: Rogue waves, probability density functions, and640

spectral features, Physical Review E 94 (2) (2016) 022212. doi:10.1103/

PhysRevE.94.022212.

[62] C. Mahnke, F. Mitschke, Possibility of an Akhmediev breather decaying
into solitons, Physical Review A - Atomic, Molecular, and Optical Physics
85 (3) (2012) 1–9. doi:10.1103/PhysRevA.85.033808.645

[63] K. B. Dysthe, Note on a modification to the nonlinear Schrödinger equation
for application to deep water waves, in: Proc. Royal Society of London
A: Mathematical, Physical and Engineering Sciences, Vol. 369, The Royal
Society, 1979, pp. 105–114.

[64] K. Blow, D. Wood, Theoretical description of transient stimulated Raman650

scattering in optical fibers, IEEE Journal of Quantum Electronics 25 (12)
(1989) 2665–2673. doi:10.1109/3.40655.

24

http://dx.doi.org/10.1109/3.81399
http://arxiv.org/abs/1410.6058
http://dx.doi.org/10.1103/PhysRevLett.114.143903
http://dx.doi.org/10.1103/PhysRevLett.116.103901
http://dx.doi.org/10.1016/S0167-2789(98)00079-7
http://dx.doi.org/10.1103/PhysRevE.94.022212
http://dx.doi.org/10.1103/PhysRevE.94.022212
http://dx.doi.org/10.1103/PhysRevE.94.022212
http://dx.doi.org/10.1103/PhysRevA.85.033808
http://dx.doi.org/10.1109/3.40655

	Introduction
	The model and solution methods  
	Nonlinear solutions
	Dark solitons
	Modulation instability
	Breathers

	Evolution of random initial conditions
	Conclusions and outlook
	Higher-order solutions

