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ABSTRACT
We propose a fast and automatic inpainting technique for
high-definition videos which works under many challenging
conditions such as a moving camera, a dynamic background
or a long lasting occlusion. Built upon the previous work
by Newson et al. [1] which optimizes a global patch-based
function, our method makes a significant improvement, es-
pecially in motion preservation, by incorporating the optical
flow in several stages of the algorithm. Moreover, code par-
allelization and a modification in the process of patches pair-
wise matching yield a significant reduction of computation
time. Experimental results on both classical and challenging
datasets show that our algorithm outperforms other state-of-
the-art approaches.

Index Terms— Video inpainting, video restoration,
patches, optical flow, video editing.

1. INTRODUCTION AND PRIOR WORKS

Video inpainting aims to fill in a missing region (an occlu-
sion) in a video using the rest of that video to produce a
“plausible” result. Video inpainting has numerous applica-
tions, ranging from restoring error concealment [2] or remov-
ing undesired objects [3] to restoring scratches or damages
in vintage films [4]. While image inpainting has attracted
much attention over the last two decades [5], video inpaint-
ing remains an underdeveloped and challenging field due to
the difficulty of dealing with complex motions, the high sen-
sitivity of our visual system to temporal inconsistencies, and
the computational complexity. Most recent methods found in
the literature addresses these issues using either object-based
or patch-based approaches.

Under object-based approach, a preprocessing step is re-
quired to split the video into background and foreground ob-
jects, followed by an independent reconstruction of each part
and the merging of the results at the end of the algorithm.
Examples which fall under this category are the layered mo-
saic technique of Jia et al. [6], the homography-based algo-
rithm using graph cut by Granados et al. [3] and the posture
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mapping scheme by Ling et al. [7]. Typically, object-based
methods can provide reasonable results for reconstructing a
specific object, e.g. a human. However, these techniques re-
quire some strict conditions such as periodic motion [6] or
user assistance [3]. Furthermore, as the foreground and back-
ground completion procedures are performed independently,
blending one with the other may cause artifacts.

In patch-based methods, patches from source regions are
used to fill in the occlusion in a greedy or global fashion.
Greedy methods inpaint incrementally the occlusion pixel by
pixel, the reconstruction order is defined by a priority term.
For example, Patwardhan et al. [8] extend to 3D space the
well-known image inpainting technique in [9], whereas Daisy
et al. [10] employ a tensor voting term to calculate the pri-
ority and focus on a geometry-guided blending technique to
reduce space-time artifacts. In general, these greedy methods
are very sensitive and, most importantly, do not have the ca-
pacity to reconstruct motion over a large occlusion and in a
coherent way.

To ensure the global consistency, a global approach is
needed. A natural strategy is to minimize a global patch-
based function. In their seminal contribution [11], Wexler
et al. pioneer the optimization of a global energy based on
3D spatio-temporal patches to preserve temporal coherency.
Subsequent contributions propose various improvements. In
[1], a significant step forward is made by using the 3D Patch-
Match to strengthen the coherence and speed up the patch
matching. In [12], Granados et al. focus on identifying a shift
map in 3D space using graph-cut. Recently, Huang et al. [13]
modify Wexler’s energy by adding an optical flow term to en-
force the temporal coherency. These methods not only pro-
vide very impressive results but they are also compatible with
many scenarios. However, they have several drawbacks such
as huge computation time [12], inability to deal with motion
within large occlusion [1] or unpleasant artifacts [13].

In order to fix these issues, we propose a fast video in-
painting technique which builds upon [1] with three major
improvements. The first and most significant advancement is
the heavy use of optical flow in several stages of the algo-
rithm. Optical flow has already been used in some previous
works in video inpainting. For example, Strobel et al. [14]
inpaint the optical flow field first and use the result to guide



Fig. 1. Our patches are parallelepipeds with x− y skew con-
trolled by the optical flow field.

the nearest neighbor search. Huang et al. [13] rely on optical
flow path to find the best patches and reconstruct pixel inten-
sities. As their method uses only 2D patches, optical flow is
the only part contributing to the preservation of temporal co-
herency, therefore the inaccurate synthesis of optical flow will
generate artifacts. Our method, on the other hand, maintains
the temporal consistency by using both 3D spatio-temporal
patches and an optical flow term. This term is incorporated in
several stages: it is inserted in the patch distance, controls the
patch shape, supports the nearest neighbor search, and serves
as a guide in coarse initialization. All these stages enable
us to ensure the temporal coherency and the reconstruction
of objects with complex motions occluded for long time pe-
riods. The second contribution is a significant reduction in
computation cost achieved by parallelizing the algorithm and
modifying the patch matching process. The final improve-
ment is the integration of a confidence map and a separation
map in the pixel reconstruction step to reduce artifacts. We
evaluate our method under various conditions and compare it
with some other state-of-the-art approaches using their public
datasets. The results can be found in a dedicated website.

2. PROPOSED METHOD

2.1. Overview

Our method is based on a non-local patch-based energy, in
the spirit of [11, 1]. The energy is minimized thanks to an
iterative procedure embedded in a coarse-to-fine pyramidal
scheme. Our algorithm involves two core steps: the com-
putation of a nearest neighbor field in the occlusion which
approximates the patches best pairwise matches, and a recon-
struction step using this field to determine the values of all
occluded pixels.

Within this framework, it is essential to address many
problems such as the coherent preservation of motion, the
searching strategy to find the appropriate patches, the com-
putational complexity and the border artifacts. These prob-
lems are addressed in our method by modifying patch shapes
and patch metric, integrating a novel optical flow-driven ini-
tialization scheme, parallelizing the algorithm, speeding up
the nearest neighbor search and enhancing the reconstruction
step. These techniques will be presented in the following sec-
tions.

2.2. Energy

To handle the instability caused by camera movements, a
stabilization pre-processing is performed using the method
in [15]. After stabilization, we minimize a Wexler-like energy
E(u, φ) to find the inpainted sequence u and the correspond-
ing patch correspondence (or shift map) φ. Denoting Wp(u)
the patch centered at a pixel p in the given occlusion domain
H, the shift φ(p) at p is defined as the spatial offset q−pwhere
q is a minimizer inHc of the patch distance d(Wu

p ,W
u
q ) (see

below for the definition of d). The energy E associated with
an image u (known outside a given occlusion domainH) and
a shift map φ is defined as
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∑
p∈H
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u
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)
Minimizing this energy ensures that each patch Wu

p cen-
tered around a pixel p in the occlusion domain H is as close
as possible to its nearest neighbor Wu

p+φ(p) outside the occlu-
sion (in the sense that p + φ(p) /∈ H). We use a metric d
between patches defined by:
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In this expression, Np indicates a spatio-temporal neighbor-
hood of p. It is a parallelepiped whose shape is controlled by
the optical flow vector as indicated in Figure 1. This adap-
tive shape, different from a classical rectangle cuboid, en-
ables us to reduce the number of patches which contain both
background and foreground data. Following [1, 16], our dis-
tance incorporates texture features T = (

∣∣∂u
∂x

∣∣ , ∣∣∣∂u∂y ∣∣∣). In ad-
dition, to enhance temporal coherency, we use motion fea-
tures O = (|Ox|, |Oy|), which is composed of the modulus of
the optical flow vector coordinates. Values of weights α, β, γ
must be set according to the data (automatic setting is the pur-
pose of ongoing work).

Our energyE is high dimensional and highly non-convex,
but as observed in [17] a good local minimum can be obtained
by alternate minimization w.r.t u and φ, coupled with a good
initialization and a coarse-to-fine multiscale scheme. Texture
and motion features in the similarity metric are key to guiding
the algorithm towards a good local minimum from the coars-
est scale. The general structure of our algorithm is as follows:
• Build multiscale pyramids for color u, occlusion do-

mainH, texture features T and motion features O.
• Initialization at coarsest scale (see section 2.3).
• From coarsest to finest scale do:

– Iterate until convergence:
∗ minφ (nearest neighbor search, section 2.4).
∗ minu (pixels reconstruction, section 2.5).
∗ features reconstruction.

– If not finest scale: Upsample φ, u, and features.



2.3. Coarse initialization

Due to the non-convexity of the functionals which are typi-
cally used in global patch-based methods, having a reliable
initialization is crucial for the local minimization. Neverthe-
less, this step is often left unspecified in the literature, with the
exception of [1] where a greedy inpainting technique using
onion peel priority is proposed at coarsest scale. Such method
can produce a good initialization for small occlusions. How-
ever, it tends to wipe out moving objects in long lasting occlu-
sions. To solve this issue, we propose to use the optical flow
in the priority term, which somehow extends to space-time
the 2D inpainting approach of Criminisi et al. [9]. More pre-
cisely, the priority term at pixel i is defined as Pri = Ci.Di,
where Di is the average of the optical flow magnitude in the
patch centered at i, and Ci ∝ exp {−d2(i,Hcoarse)} mea-
sures how close the pixel i is to the border of the original
occlusionHcoarse at coarsest scale).

The coarse initialization is then obtained as follows. Start-
ing from H′ = Hcoarse, we repeat the following procedure
until there remain only ”background” pixels, defined as all
pixels i such that Di ≤ S, where S is an adaptive threshold
obtained by Otsu’s method.
• Let B′ = H′ \ (H′ 	 B(0, 1)), i.e. B′ is the one-pixel

wide outer boundary ofH′. Calculate Pri for i ∈ B′.
• Select patch Pi with highest priority term Pri, and de-

fine the region to inpaint Ri = Pi ∩ B′.
• InpaintRi and get new occlusion regionH′ → H′\Ri.

Thereafter, the rest of the occlusion (i.e. background pixels)
is inpainted following onion peel order.

2.4. Nearest neighbor patch search

Since its introduction by Barnes et al. [18], PatchMatch has
become a classical tool for approximate nearest neighbor
search in patch spaces, especially in the context of image
and video inpainting, not only for computational speed but
also for spatial consistency. The core part of the algorithm
includes a propagation step to spread out good matches and
a random search step to jump out of the local optima. These
two steps are repeated in several iterations. In our video
inpainting context, the spatio-temporal extension of Patch-
Match by Newson et al. [1] is adopted with two important
modifications to improve its efficiency:

• The first modification is a speedup of PatchMatch by
parallelization, following the jump flooding technique
of Barnes et al. [18]. To save even more computa-
tional cost, we use a sparse grid during the random
search step. For PatchMatch searching in video, it
is not necessary to perform the random search step
for every occluded pixel; instead, we can apply this
step only for pixels on a sparse grid, without los-
ing the efficiency. The final improvement is to use
foreground/background patch clustering to reduce the

search space. Combining these factors enables our
PatchMatch algorithm to run 5-7 times faster than the
traditional one with the same accuracy.

• The second modification is to guide the propagation
step using the optical flow. From the assumption that
adjacent patches are more likely to have similar nearest
neighbor offsets, PatchMatch achieves a good preserva-
tion of the spatial coherency. For temporal coherency,
this assumption is only valid if the background is static
or in periodic motion. Otherwise, it may not hold true.
To enforce the temporal consistency, instead of propa-
gating offsets to a fixed temporal neighbor, we propa-
gate it following the optical flow direction. To be more
formal, in the propagation step, the temporal neigh-
bor for the patch centered at pixel (x, y, t), P(x,y,t), is
P(x+Ox,y+Oy,t+1) rather than P(x,y,t+1) where Ox and
Oy are the optical flow components in the x and y di-
rections.

2.5. Pixel reconstruction

In this step, all pixels in the occlusion H are reconstructed
using the following weighted average:

u(p) =

∑
q∈Np

spqu (p+ φ(q))∑
q∈Np

spq
,

where the weight spq is defined as:
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)
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p
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p
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In this expression, the first term is the original weight of [11]
based on patches similarity. We combine it with two other
factors ψq and ϕpq . The first one is a confidence map inspired
by Fedorov et al. [19], and given by

ψq =

{
(1− C0) exp

(
−d(q,H

c)
σ2

)
+ C0 if q ∈ H

1 otherwise

where d(q,Hc) is the distance from pixel q to the occlusion
border, and C0, σ2 are tuning parameters. This map is used
to guide the information from the border towards the center
and enables us to eliminate some border artifacts. The sec-
ond term ϕpq relies on a distinction between foreground and
background pixels, obtained by thresholding the modulus of
the optical flow. It is set to 1 if p and q are of same type
(background or foreground), otherwise it is set to 0. There-
fore, when we reconstruct background pixels, we use only
background patches and similarly for foreground pixels. This
is a simple way to avoid the common but undesirable effect
of blending between background and foreground in the final
result.



3. EXPERIMENTAL RESULTS

Our algorithm is implemented in Matlab with the core parts
(nearest neighbor serch and pixel reconstruction) in C++. For
the optical flow computation, Liu’s method [20] is used.

Our method is evaluated under a wide variety of con-
ditions, including moving objects occluded by a fixed or
moving domain, static or moving camera, dynamic back-
ground, large occlusions, etc. To prove the effectivity of
our method, we compare its performances with other state-
of-the-art algorithms [1, 13] using their publicly available
datasets. Results can be found at http://perso.enst.
fr/˜gousseau/vid_inp_motion/.

3.1. Comparison with Huang et al. [13]

In this experiment, we remove undesired objects in videos
recorded with hand-held camera. The dataset used is the
same as in Huang et al. [13], obtained from a recent bench-
mark dataset in object segmentation [21]. It constitutes a very
challenging dataset due to the dynamic scenes, the complex
camera movements, the motion blur effects and the large oc-
clusions. The occlusion mask is constructed by dilating the
ground truth using a 15x15 structuring element.

Figure 2 (a) shows some representative frames of the re-
sult. From that figure, we can see that, similar with Huang et
al. [13], the spatial structure (e.g the letters in the panel) is
well-preserved with our approach. Figure 2(b) shows the re-
sult as an x-t slice of the video. It can be seen that our method
has the ability to preserve temporal consistency due to the
combination of 3D spatio-temporal patches and dense flow
field. This is also achieved in [13]; however, because only 2D
patches are used in [13], the quality of the output temporal co-
herency strongly depends on the accuracy of the optical flow
computation. Such accuracy cannot be guaranteed in several
complex sequences such as mallard, drift-chicante or break-
dance. Furthermore, the incorrect synthesis of optical flow
may lead to several displeasing artifacts. This is reported in
[13] with the sequence loulous; meanwhile, our method pro-
vides a very plausible result with that sequence.

Another advantgae of our method is its speed. While it
takes Huang et al. [13] approximately 3 hours to complete
one video in this dataset using 2D patches, our method takes
around 50 minutes.

3.2. Comparison with Newson et al. [1]

This experiment evaluates our performance in the context of
the reconstruction of moving objects. We consider several
videos in which moving objects cross a fixed or a moving oc-
clusion for a long period. Such objects can be partly or even
completely occluded (sequence jumping girl) and the back-
ground can be either static or dynamic.

Representative results are illustrated in figure 3. It is
clearly seen from this figure that our result outperforms that

(a) (b)

Fig. 2. (a) some representative result frames with sequences
tennis (left) and bmx-bump (right). From top to bottom: our
result with occlusion mask boundary in green, our result with-
out occlusion mask, result of Huang et al. [13]. (b) x-t slice
along the profile (green line) in the sequence elephant. From
top to bottom: position of the slice, occlusion mask, our re-
sult, result of Huang et al. [13].

(a) (b) (c)

Fig. 3. Sample cropped frames of the results for some se-
quences: (a) boat, (b) S2L1, (c) loulous. Top: result of [1],
bottom: our result.

of Newson et al. [1]. Figure 3 (a) and (b) show that Newson
et al.’s method [1] cannot reconstruct the foreground object
(e.g. the boat) within a long occlusion. Our method, on the
other hand, has the ability to fully reconstruct the background
and foreground in a consummate manner even though the
object is completely occluded. Moreover, by integrating the
confident map in the reconstruction step, our result has less
artifacts in the border than the one in [1], as can be seen in
figure 3 (c).

4. CONCLUSION

This paper presents a new video inpainting technique which
shows great performance in terms of both output quality and
computation time thanks to a thorough use of the optical
flow, a modified patch-based energy which incorporates com-
plex informations, a modified patch searching strategy using
sparse grid and patch clustering, and finally a suitable code
parallelization.

http://perso.enst.fr/~gousseau/vid_inp_motion/
http://perso.enst.fr/~gousseau/vid_inp_motion/


5. REFERENCES

[1] Alasdair Newson, Andrés Almansa, Matthieu Fradet,
Yann Gousseau, and Patrick Pérez, “Video inpainting of
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