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Abstract. Computer-Supported Collaborative Learning (CSCL) technologies 
play an increasing role simultaneously with the appearance of the Social Web. 
The polyphonic analysis method based on Bakhtin’s dialogical model reflects 
the multi-voiced nature of a CSCL conversation and the related learning 
processes. We propose the extension of the model and the previous applications 
of the polyphonic method to both collaborative CSCL chats and individual 
metacognitive essays performed by the same learners. The model allows a tight 
correlation between collaboration and textual complexity, all integrated in an 
implemented system, which uses Natural Language Processing techniques. 
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1 Introduction 

In recent years, Computer-Supported Collaborative Learning (CSCL) grew as an 
alternate solution to Intelligent Tutoring Systems (ITS) in supporting learning with 
computers. One of the explanations is the huge spreading of collaborative tools on the 
web, empowering social knowledge building: discussion forums, instant messenger 
(chat), social networks, and wikis. The transition from ITS to CSCL may be seen as a 
change of focus from learning as knowledge acquisition to learning as discourse 
building [1] or, from a higher abstraction level, from a cognitive to a socio-cultural 
paradigm. A theoretical basis for CSCL is Bakhtin’s dialogism, multi-vocality and 
polyphony [2, 3, 4]. We further consider that these concepts are present not only in 
any CSCL dialogical text (e.g., forum posts or chat utterances), but also in texts 
written by students, in manuals read by them and even in their inner thinking and they 
can be used for analyzing complex assignments [4]. 

We propose a model and a system based on the polyphony idea, which considers 
both the semantic content (at the individual level related to an expert standard, like in 
ITSs) and the social dimension (at a collaborative level, in CSCL) by analyzing the 
relationships between texts in a corpus (of the considered domain), texts 
collaboratively written by students in CSCL chat sessions and their individual 
metacognitive essays written afterwards, commenting their collaborative activity. To 



 Textual Complexity and Discourse Structure in Computer-Supported    2 

achieve this aim we used Natural Language Processing (NLP) techniques enabling the 
computation of both distances between voices and the overall complexity of threads. 

2 Theoretical Considerations 

Let us consider students engaged in a distance learning situation (e.g., through an 
Internet-based platform). Typically, their main goal is to build knowledge through 
two lines of activities [3], individual (read texts, write out notes, essays, summaries 
from course material) and collective (discussions about the course material), which 
can both be supported either by a teacher or computer-based feedback. All the 
stakeholders (the computer included) performing these activities ‘say something’ in 
natural language, in other words, emit ‘utterances’ [5] that may become ‘voices’ 
populating the distance learning platform, responding to each other. The way a 
student can, upon a given question (from herself or others), gather information from 
multiple textual sources (either from course material or chat utterances) in order to 
compose her own piece of text (mainly, summaries or syntheses) might be viewed as 
“contexts” in which they try to handle the polyphony of voices. 

This framework allows us assume that each utterance can be analyzed by some 
NLP or Social Network Analysis (SNA) techniques, thus leading to the production of 
(semi-) automated support of learners’ activities [6]. The achievement of the aim of 
supporting learning with computers should start from a model of how people learn. 
The development of any model usually begins with deciding the main ingredients to 
be considered as essential. The core model of ITSs was influenced by Knowledge-
Based Systems, taking knowledge as major ingredient. The ITS model is centered on 
a knowledge base of the target domain, which may be seen as a model of what should 
be learned. Learners are modelled by the knowledge they acquired, either correct, 
usually a subset of the domain knowledge base, or erroneous, to be corrected 
(sometimes also described in knowledge bases). Some other types of knowledge 
about the particular learner may be considered, as her cognitive profile, emotional 
state, goals or other motivational facts. 

We keep the ITS idea that students’ knowledge should be compared with a ‘gold 
standard’: experts’ knowledge. However, for comparing students’ performance 
(content of chat utterances and written essays) with the desired one (content of a 
corpus of reference texts), we are using NLP techniques like Tf-Idf or Latent Semantic 
Analysis (LSA) [7]. We consider that a deficiency of the ITS model is its relation to 
the transfer of knowledge model of learning, that learning is in a very important 
degree also socially built [1, 3]. Therefore, in addition to keeping an ITS-type 
semantic based content analysis, a CSCL-like analysis is also needed, because dialog, 
conversation, and multi-voiced discourse in natural language have major roles: “rather 
than speaking about ‘acquisition of knowledge,’ many people prefer to view learning 
as becoming a participant in a certain discourse” [1]. 

We further assume that dialogism, multi-vocality and polyphony [2] are in any 
text, conversation and even thinking. The ‘glue’ of all these is the idea of voice in a 
generalized sense: as a word, a phrase, an utterance (written or thought), a discussion 
thread, a lexical chain, or even a whole text (‘utterance’ may be used for words with 
‘echoes’, phrases and texts, as Bakhtin mentioned [5]). In our view, an utterance may 
become a voice if it has an impact by its emission to the subsequent utterances. 
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3 The Implemented Model 

We implemented, using NLP tools, an evaluation model of learners’ utterances 
derived from Bakhtin’s dialogic, polyphonic model. The entire analysis process is 
centered on the utterance graph automatically built from the discourse and is 
customized for two different types of assessed text: multi-participant chat 
conversations, on one hand, and essays (texts in general), on the other. Utterances 
may be considered pieces of text whose boundaries are represented by the change of 
speech subject [5] and are the central unit of analysis of the discourse in our approach. 
Whereas in chat conversation we adopt Dong’s [8] perspective of separating 
utterances based on turn-taking events between speakers, in texts, in general, 
utterances are embedded within sentences that convey relevant information, units that 
can be separately and independently analyzed in the first phase of the evaluation. 

We start the processing with a typical NLP pipe (spell-checking, elimination of 
stop-words, stemming, part-of-speech tagging and lexicalized dependency parsing 
[9]). We seek a shallow perspective over each utterance seen individually and we 
provide them a quantitative mark by merging the concept of entropy from information 
theory with the Tf-Idf measure [9]. The combination of disorder and emphasis on 
diversity of concepts induced by the entropy of stems after stop words elimination, 
with summing up statistical importance of stems given a training corpus, provides a 
good surface indicator of the information withheld in each utterance (Eq. 1): 

ሻݑሺݐ݊ܽݑݍ ൌ ൭െ෍݌ሺ݉݁ݐݏ௜ሻ����ሺ݌ሺ݉݁ݐݏ௜ሻሻ
௜

൱ቌ෍ሺͳ ൅ ȁ݉݁ݐݏ௜ א ȁݑ
௜

ሻ ቆ ȁܦȁ
ȁ݉݁ݐݏ௜ א ȁܦ

ቇቍ (1)

where: ݌ሺ݉݁ݐݏ௜ሻ expresses the probability of a stem to occur in a given utterance; 
ȁ݉݁ݐݏ௜ א  ȁܦȁ denotes the number of occurrences of each stem within the utterance; ȁݑ
and ȁ݉݁ݐݏ௜ א  ȁ are related to the training corpus used also with LSA that comprises aܦ
multitude of documents closely related to the topics at hand and a general set of 
documents for common words. In this context, entropy is used rather as an inhibitor, 
where low quality or spam utterances have a lower score. 

The key-step is using the Directed Acyclic Graph (DAG) of utterances reflecting 
the sequential ordering. Our aim is to determine the semantic cohesion between two 
utterances by means of similarity and degree of inter-connection. Similarity between 
utterances can be expressed by combining repetitions of stems and Jaccard similarity 
as measures of lexical cohesion, with semantic similarity computed by means of LSA. 
Therefore, Eq. 2 covers the general approach of measuring cohesion: 

ǡݑሺ݄݋ܿ ሻݒ ൌ ȁݏ݊݋݅ݐ݁݌݁ݎȁ ൈ ȁݏ݉݁ݐݏ ݅݊ ݊݋݉݉݋ܿ ǡݑ ݏ݉݁ݐݏȁȁݒ ݅݊ ݑ ݎ݋ ȁݒ ൈ ሻǡݑሺݎ݋ݐܿ݁ݒሺݏ݋ܿ  ሻሻݒሺݎ݋ݐܿ݁ݒ

ሻݑሺݎ݋ݐܿ݁ݒ ൌ෍ሺͳ ൅ ȁ݀ݎ݋ݓ௜ א ȁݑ
௜

ሻ ൈ ቆ ȁܦȁ
ȁ݀ݎ݋ݓ௜ א ȁܦ

ቇ ൈ ܷ௞ሾ݀ݎ݋ݓ௜ሿ 
(2)

where ܷ௞ሾ݀ݎ݋ݓ௜ሿ is the vector of ݀ݎ݋ݓ௜  in the ܷ௞ matrix obtained after SVD 
decomposition and projection over k most meaningful dimensions are performed. As 
a result, for a given conversation the DAG in Figure 1 is obtained automatically. 

The next step in our analysis consists in determining the importance of each 
utterance within the discourse and two additional dimensions, besides quantitative 
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ሻݑሺ݁ܿ݊ܽݒ݈݁݁ݎ ൌ ���൫ݎ݋ݐܿ݁ݒሺݑሻǡ ሻ൯ܿ݋ሺ݀ݎ݋ݐܿ݁ݒ ൅ ���ሺݎ݋ݐܿ݁ݒሺݑሻǡ ܣܵܮ ݎ݋ݐܿ݁ݒ ݉݁ܽ݊ሻ
൅ ���ሺݎ݋ݐܿ݁ݒሺݑሻǡ  ሻሻݏܿ݅݌݋ݐሺݎ݋ݐܿ݁ݒ

ሻݑሺ݈ܽ݅ܿ݋ݏ ൌ ෑ ሺͳ ൅ ����ሺ݂ሺݑሻሻ
ௌே஺�௙௔௖௧௢௥�௙

 

ሻݑሺ݁ݒ݅ݐܽݐ݈݅ܽݑݍ ൌ ൮ ෍ ௜ǡݒሺ݄݋ܿ ሻݑ ൅ ͳ ൅ ෍ ǡݑሺ݄݋ܿ ௞ሻݒ
௞ୀଵǤǤ௡௨՜௩ೖ

௜ୀଵǤǤ௠௩೔՜௨

൲ ൈ ሻݑሺ݁ܿ݊ܽݒ݈݁݁ݎ ൈ  ሻݑሺ݈ܽ݅ܿ݋ݏ

(3)

Regarding the social factor, a normalization induced by the logarithm function 
provided a smoothing of results. The factor 1 in the coherence values sum expresses 
internal strength in a discussion thread and was induced by the cosine similarity 
measure applied between utterance u and itself. By combining the quantitative mark 
with the qualitative score, the overall rating of each utterance is obtained (Eq. 4): 

ሻݑሺ݈݈ܽݎ݁ݒ݋ ൌ ൮ ෍ ௜ǡݒሺ݄݋ܿ ௜ሻݒሺݐ݊ܽݑݍሻݑ ൅ ሻݑሺݐ݊ܽݑݍ ൅ ෍ ǡݑሺ݄݋ܿ ௞ሻݒሺݐ݊ܽݑݍ௞ሻݒ
௞ୀଵǤǤ௡௨՜௩ೖ

௜ୀଵǤǤ௠௩೔՜௨

൲

ൈ ሻݑሺ݁ܿ݊ܽݒ݈݁݁ݎ ൈ  ሻݑሺ݈ܽ݅ܿ݋ݏ
(4)

Eq. 4 clearly comprises all factors required for thoroughly evaluating an utterance: 
its local and individual formula, its importance within all discourse threads measured 
through semantic cohesion with previous and future inter-connected utterances, its 
relevance expressed in terms of semantic similarity with the entire document, topics 
of discussion and the LSA learning space, but also social networks analysis applied 
on the utterance graph in order to integrate centrality features in our approach. 

After having all previous assessments completed, textual complexity can be 
evaluated and gains the focus of the entire analysis. Due to the fact that textual 
complexity cannot be determined by enforcing a single factor of evaluation, we 
propose a multitude of factors, categorized in a multilayered pyramid, from the 
simplest to the more complex ones, that combined provide relevant information to the 
tutor regarding the actual “hardness” of a text [11]. The first and simplest factors are 
at a surface level and include readability metrics, utterance entropy at stem level and 
proxies extracted from Page’s [12] automatic essay grading technique. Slotnick’s six 
factors [13] of fluency, spelling, diction, sentence structure, punctuation and 
paragraph development are the main factors we implemented in our system. 

At the syntax level, structural complexity is estimated from the parsing tree in 
terms of max depth and of max width [14]. Moreover, entropy applied on parts of 
speech and the actual number of specific parts of speech (mostly pronouns, verbs and 
nouns) provide additional information at this level. Semantics is addressed through 
topics that are determined by combining Tf-Idf with cosine similarity between the 
utterance vector and that of the entire documents. The textual complexity at this level 
is expressed as a weighted mean of the difficulty of each topic, estimated in 
computations as the number of syllables of each word. The last level of pragmatics 
and discourse addresses textual complexity as cohesion determined upon social 
networks analysis metrics applied at macroscopic level. Discourse markers, co-
references, rhetorical schemas and argumentation structures are also considered, but 
are not included in current work. 
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By considering the disparate facets of textual complexity and by proposing 
possible automatic methods of evaluation, the resulted measurement vectors provide 
tutors valuable information regarding the hardness of presented texts. 

4 Conclusions and Future Research Directions 

Borrowing from Bakhtin’s dialogism and polyphony theories, we devised a 
framework that takes into account several dimensions of learners’ activities in CSCL. 
Reading course materials, understanding them, discussing about them produce 
utterances seen as polyphonic voices interacting to each other. Our model 
automatically assesses these utterances at multiple levels (cognitive, metacognitive, 
social), and accounts for learner’s comprehension of textual materials. 
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