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Fast and Accurate Multiplicative Decomposition for
Fringe Removal in Interferometric Images

Daniel-Chen Soncco, Clara Barbanson, Mila Nikolova, Senior Member, IEEE, Andrés Almansa, Member, IEEE,
Y. Ferrec

Abstract—Airborne Hyperspectral images can be efficiently
obtained with imaging static Fourier transform spectrometers.
However, to be effective on any location, this technology requires
to know the relief of the scene. This is not a straightforward
process, as the horizontal interference fringes on the images,
which are necessary for spectrum construction, prevent efficient
stereoscopic processing. We present a novel variational model
for multiplicative image decomposition to separate the fringes
from the panchromatic image of the scene. This multiplicative
model is much more physically accurate than previous additive
decomposition models inspired by cartoon-texture decomposi-
tion. It combines fully smoothed total variation operators and
1D Fourier transform. Smoothed total variation is adopted to
avoid staircasing artifacts caused by traditional total variation
regularisation. The use of a 1D Fourier transform is suggested
by the geometry of the fringes, in order to circumvent the lack
of horizontal periodicity in the interferometric pattern. We also
present an optimization algorithm. Finally, a second algorithm is
introduced, whose convergence is not mathematically guaranteed.
However it systematically approaches the solution of the first
one in much less computation time. Our experimental evaluation
on real and simulated images shows that the proposed model
separates fringes from the panchromatic image very accurately
and that this accuracy significantly improves subpixel stereo
matching results.

Index Terms—computational hyperspectral imaging, interfero-
metric imaging, inverse problems, multiplicative image decompo-
sition, image restoration, nonconvex variational models, bi-convex
optimisation, proximal algorithms, multi-view stereo

I. INTRODUCTION

HYPERSPECTRAL imaging is a much sought-after tech-
nology, as it provides both detailed spatial and spectral

information from the object of interest, with a spectral range
that may go, depending on the instrument, from ultraviolet
to thermal infrared. Such technology is widely used in Earth
sciences; for instance, geology employs it on airborne or
spaceborne vehicles for remote sensing [1], where infrared
wavelengths are especially useful for prospection [2], [3],
soil composition determination [4], [5] and even gas plumes
analysis in vulcanology [6]. Other gases such as water vapor
for atmospheric research can be identified [7]. Visible and
near-infrared are used in hydrology to assess water contami-
nation [8] and, in relation to agriculture, to identify different
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crop fields and monitor water use [9]. Biology is also well-
known for using infrared bands for vegetation classification
[10]. Outside Earth sciences, applications also include urban
planning [11] and military intelligence [12]. Finally, elevation
data are sometimes coupled with hyperspectral imagery to
improve detection and analysis [13], [14]

Imaging static Fourier transform spectrometers (ISFTS) are
a family of imagers which deliver hyperspectral data. They
offer a series of interesting advantages, including large photon
collection capability, that allow for a small ground sampling
distance, and sturdy optical systems. These instruments can
be operated from ground [15], [16] to space [17], but they
are more often airborne systems, like Lasis, developed by the
Xi’an Institute of Optics and Precision Mechanics [18], that
operates in the visible domain, Sieleters, developed by Onera
[19], in the midwave infrared (MWIR) and the longwave
infrared (LWIR) domain or THI, developed by the University
of Hawai’i [20], in LWIR.

The optical design of ISFTS is based on the association of
an imaging system with a lateral shearing interferometer (apart
from a few instruments employing a wedge interferometer).
The incident beam emitted from the observed scene therefore
proceeds through the interferometer, where it is split into
two paths. Two identical images are produced, but they later
interfere at a varying optical path difference (OPD) thanks to
the interferometer. The resulting image is that of the overflown
scene on which interference fringes are superimposed, as
shown in Fig. 1.

On the figure, the OPD is different on each row of the
image: the fringes are oriented perpendicularly to the linear
flight path. Furthermore, the established OPD values do not
change over time, which is why such an interferometer is
qualified as static. The fringes are thus still. For this reason,
spectrum acquisition is not snapshot, but temporal: it is the
motion of the aircraft which ensures that any element in the
observed scene is seen through different interference states (at
different vertical positions in the image). A dense sequence
of images, where each one is translated from the former one
by about 1 pixel, is required for this purpose. Then, matching
each scene element through the sequence of images constructs
an interferogram, where each value corresponds to the quantity
of detected light for each optical path difference. Computing
the Fourier transform of the interferogram gives access to
the spectrum for the corresponding element. This process is
summarised in Fig. 2.

However, in presence of non-flat scenes (containing for
example buildings or natural slopes), artifacts may appear as a
consequence of changing the point of view during acquisition.
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For instance, due to parallax, elevated objects appear to move
at a faster speed than the elements of lesser height. Without a
precise estimate of the scene relief, the position of an elevated
object across the sequence of images is miscalculated and
matching errors occur. The resulting interferograms may then
be erroneous, as shown in Fig. 3.

As a result, an accurate estimation of ground elevation is
needed in order to identify and correct flawed interferograms.
A Digital Elevation Model (DEM) can be achieved by stere-
oscopy techniques. However, the fringes are a hindrance to
stereoscopic methods. The fact that they remain at the same
position on all images interferes with relief retrieval algo-
rithms, which exploit the changes between images taken from
different positions. Moreover, the fringes induce variations in
radiometry that are uncorrelated to relief. As a consequence,
before proceeding with relief estimation, the fringes need to
be removed from the images. This problem is the topic of this
article: how can one remove the interference fringes while best
preserving the details of the underlying panchromatic image?

A similar problem has been studied in [21]: in this paper,
based on images from Lasis, the authors also aim at separating
fringes from background, but with the view of image com-
pression. To do this, they use an additive model, with a further
one-dimensional total variation (TV) regularization to suppress
the residual fringes from the background image. However, the
images presented in [21] to illustrate their algorithm have
a very smooth texture. In this particular setting an additive
image model is sufficient, but not in the more general setting
we are interested in, which includes irregular textures and
contrasted edges. The problem of fringe separation has also
been studied in a more general context by [22], there again
with an additive model, and using an adaptive norm to deal
with spatial variations of the fringes orientation or frequency.
Applications are various, for instance fingerprint analysis or
3D-imaging by strucured-light projection [23].

The main contribution of our paper consists in the use of a
multiplicative model for image decomposition. This model is a
better approximation of images obtained by an ISFTS than an
additive model. It provides outstanding results for separating
the fringes from the image of the scene. The paper is arranged
in the following manner. Section II presents the model for
interferometric image formation and related work on the
texture removal problem. Our proposed solution is presented
in Section III. It is declined in two different algorithms using a
multiplicative image model. The advantages and drawbacks of
the different solutions are also discussed. Section IV presents
experimental results and gives a comparison of the various
solutions in terms of stereoscopic performance. Finally, con-
clusion and future work are exposed in Section V.

II. PRELIMINARIES

A. Observation model

The primary objective of our hyperspectral interferometric
system is to measure the spectral radiance L(x, y, σ) coming
from a point (x, y) in image or ground coordinates in a domain
D and at a particular wavenumber σ. Color image sensors
measure L(x, y, σ) for three wavenumbers σ corresponding to

(a)

(b)

Fig. 1. On top, an image obtained with Sieleters. Subimages are magnified to
show the interference fringes overlaid on the scene. In red, an area with highly
contrasted fringes. In blue, an area with blurred fringes. In green, an area with
slightly contrasted fringes. The area with high contrast fringes is limited to the
area around the zero optical path difference, due to the broadband observed
spectra. Nonetheless, fringes are actually present over the whole image. Image
(b) shows the Fourier spectrum of picture (a). The frequencies of the fringes
are clearly seen as two very bright vertical lines. These frequencies constitute
an area we call Ω0.

Fig. 2. Image processing flow of an airborne static Fourier transform
spectrometer. All elements of the scene, like the one pointed out by the red
cross on each picture, are matched through the sequence of images to build
their corresponding interferogram as a function of optical path difference.
Computing the Fourier transform provides the spectrum.

the red, green and blue wavelengths by means of optical filters
that only let the desired wavelength intervals through. In hy-
perspectral imaging, where we do not only want to distinguish
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(a)

(b)

Fig. 3. On Fig. a, two images of a sequence acquired by the ISFTS CaHyD
[24] are shown. Values from matching scene elements are used to construct
the interferogram, as on Fig. b. The crosses on the images correspond to
matches made without taking the height and geometry of the building into
account. Hence, in the case of the red cross, part of the rooftop and part of
the wall are used to construct a flawed interferogram. The green crosses are
also mismatched, but are contained in an homogeneous area, thus providing
a correct interferogram.

three, but hundreds of different wavelengths, filtering methods
can be substituted by interferometers.

The geometry of the lateral shearing interferometer [25]
shows that the acquired image w(x, y) is related to the
apparent spectral radiance 1 L by:

w(x, y) =

∫
L(x, y, σ)

(
1 + F (x, y, σ)

)
dσ (1)

where σ is the wavenumber and F introduces the fringe
oscillations in the acquired image w(x, y). More precisely,

F (x, y, σ) = C(σ) cos
(
2πδ(x, y)σ + φ(σ)

)
(2)

where C is a contrast term, δ(x, y) is the optical path differ-
ence (OPD) and φ accounts for phase perturbations. In ISTFS,
φ has a little influence and the OPD is nearly planar,

δ(x, y) = ax+ by + ε(x, y) (3)

1By apparent we mean that the sensitivity of the detector is included in
this term.

where the variations of ε are known to be very small. Without
loss of generality, we consider that a � b. Consequently,
the fringes are nearly horizontal straight lines as seen in
Fig. 1. From (2), the wavenumber σ creates fringes at the
spatial frequencies −σ(a, b)∪ σ(a, b) (assuming a flat scene).
The sensitivity of the imaging device is given by an interval
[σmin, σmax]. Then the fringes are contained in the spatial
frequency domain Ω0:

Ω0 = Ω0x×Ω0y =
{
−σ(a, b)∪σ(a, b) : σ ∈ [σmin, σmax]

}
The goal is to extract the fringe pattern introduced by F .

Based on (1), two tractable simplifications can be derived.

a) Additive model: The simplest way to approximate the
model in (1)-(2) is given by

w(x, y) = u(x, y) + v(x, y)

where

u(x, y) =

∫
L(x, y, σ)dσ (4)

v(x, y) =

∫
L(x, y, σ)F (x, y, σ)dσ (5)

where u is the sought-after panchromatic image and v is the
fringe pattern image.

If we now assume that the scene u only contains smooth
objects, then, in the spatial frequency domain, the Fourier
transform v̂ of the fringe pattern will be limited to a small
area Ω around Ω0.

b) Multiplicative model: Assuming that all points in D
have the same spectral response B(σ), one has :

L(x, y, σ) = B(σ)I(x, y)

By setting the constant Btot :=
∫
σ
B(σ)dσ, we obtain from

(1)

w(x, y) = I(x, y)Btot

(
1 +

1

Btot

∫
B(σ)F (x, y, σ)dσ

)
(6)

We then get the following image model :

w(x, y) = u(x, y)
(
1 + v(x, y)

)
(7)

where the panchromatic image u and the fringe image v are
given by :

u(x, y) = I(x, y)Btot (8)

v(x, y) =
1

Btot

∫
B(σ)F (x, y, σ)dσ (9)

Since B does not depend on (x, y), and F only has
frequencies contained in Ω, we can deduce that the spectral
support of v should be exactly limited to Ω0. Nevertheless,
with real images, our hypothesis that all points have exactly
the same spectrum is obviously imprecise, and that is why we
still have to enlarge Ω0. The finite size of the images also
leads to a broadening of Ω0.
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c) Additive versus Multiplicative model: Even though it
is still an approximation, the multiplicative model matches
much better the actual image formation than the additive one.
Indeed, the hypothesis for the latter is quite strong, although
it does not appear at first glance when looking at Fig. 1b.
From this figure, it is clear that the low spatial frequencies are
much more significant than high spatial frequencies. However,
on the one hand, depending on the observed scene, or on the
area of the observed zone, the content in medium or high
spatial frequencies can be much higher. This is for instance
the case on Fig. 1b, where we can note that some directions
are favoured. For this image, these directions are far enough
from the one of the interference fringes, but for other scenes,
there could be an overlap with the Ω domain assigned to
the interference fringes. On the other hand, the image details
at a fine scale are often very useful. This is especially our
case, since, as mentioned in the introduction, our further
goal is to perform stereoscopy, for which the information
content at the pixel scale is quite useful. Thus, the additive
model may lead to inadequate results, as it will be shown
in the next subsection. Regarding the multiplicative model,
we first note from equation (1) that, at each wavenumber,
there is indeed a multiplication between the scene radiance
and the interference pattern. The assumption that all points
have the same spectrum is then obviously a simplification,
but it is verified at first order for remote sensing images.
The first reason, which is quite basic, is that the apparent
spectrum of all the points is limited by the spectral sensitivity
of the instrument. Besides, the atmospheric transmission and
radiance is also shared by all the observed points. Lastly, even
if there are spectral variations in natural scenes, we never
have very sharp differences between the spectra. Therefore, the
multiplicative model is more appropriate for our framework.
However, it leads to non-convex restoration models, which are
numerically difficult to deal with. This is why the common
approach in the literature is to use the simpler additive model,
which has the flaw of requiring a much larger dilation of Ω0

than the multiplicative one. Furthermore, in regions where
the image contains sharp and highly contrasted edges, the
spectral support assumption for v is no longer valid and
additive models introduce artifacts, as it will be seen in the
next subsection.

B. Related work

Decomposing an image into an oscillatory and a structure
components has been intensely explored through the cartoon-
texture model [26]. Such a decomposition aims at separating
an image in the following manner: w = u + v, where u is
smooth and v contains the oscillating patterns of the image.
This is done by representing u as a smooth function of
bounded total variation and v by an object of a Hilbert space.
The resulting minimisation problem is of the form:

inf
u

∫
|∇u|+ λ||w − u||2H

Other representations for v have been proposed, depending on
the properties that are sought. [27] suggests that the texture
and structure are not correlated, and minimises the oscillating

term using a correlation criterion. [28] determines the structure
and texture by identifying them with low-pass and high-pass
components respectively.

In the case of interference fringe removal, the desired result
is not a smooth image, but an image without fringes, keeping
the texture and the edges in the scene. Inspired from cartoon-
texture decomposition, the idea in [29] is to apply an additive
model to the measured images w, where this time u is the
image of the scene not perturbed by fringes, and v contains
solely the interference fringes. It provides an approximation
that allows for a simple convex optimisation scheme.

As explained in II-A, the frequencies of the fringes are
mainly contained in a small area, called Ω. Only the fre-
quencies inside Ω are considered to be altered by fringes, so
the rest of the spectrum is kept intact. To proceed, the total
variation operator [30] is used. It allows to smooth the image
by penalising oscillations and is also useful to extrapolate
the frequencies of the spectrum inside Ω, [31], [32]. This
procedure is expressed in the following convex minimisation
problem, as presented in [33]:

inf
u
TV (u) subject to û|Ωc = ŵ|Ωc (10)

where the symbol ”hat” stands for Fourier transform. Although
the results are good for many images, residuals can remain
in areas containing sharp contrasted edges, see, e.g., Figs.
4a and 4b. This image was acquired when a building with
a periodic pattern was in the area of the highly contrasted
fringes. In the Fourier domain, such a building creates a DC
term, a fundamental and multiple harmonics, all aligned along
a roughly horizontal direction. The interference fringes v then
act as a modulation term, with the carrier frequency inside
the Ω domain (in white on Fig. 4d). Thus, each frequency of
the building pattern is replicated (see Fig. 4c or Fig. 12b).
When applying the additive model, only the Ω domain (the
white rectangle on Fig. 4d) is modified. Consequently, only
the replica of the DC term is regularized, but not the replicas
of the fundamental or of the harmonics, which creates artifacts
in the final image (Fig. 4b). Moreover, since these replicas are
retained, the TV regularization creates spurious information
inside Ω. This is visible on Fig. 4c, or on Fig. 12c.

The fact that the scene is modulated by the frequency of the
fringes corresponds, in the spectral domain, to a convolution
of the interference term by the frequencies of the scene.
Therefore, if the observed scene contains elements with high
gradients, frequencies of the fringes will be found not only
on the lower frequencies of the spectrum where Ω is set (Fig.
4d), but also on higher frequencies, as is shown in Fig. 4c.

One possibility is to use a larger domain Ω, but this is
at the expense of the loss of some high frequency details in
u. A better solution is to adopt a physically more accurate
multiplicative image model as explained in Section III. Multi-
plicative data-fitting along with TV regularization has been
considered in the context of Poisson denoising (see [34]);
in the quite different context of fringe removal the solution
proposed here is one-of-a-kind.

Another issue concerns the discrete total variation operator
used and the 2D-Fourier transform, which are bound to pro-
duce artifacts such as staircasing, [35]. All in all, this scheme
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(a) Extract from the measured image

(b) Extract from the regularised image

(c) Fourier transform associated to (b)

(d) Ω region associated with (a)

Fig. 4. Extract from an image with fringe residuals. The fringes correspond
to the horizontal stripes. It can be seen that most have been removed in image
(b). Yet, some remain on the objects with high radiometric variations. These
correspond in (c) to the harmonics of the fundamental frequency which lay
outside Ω.

is not accurate enough but provides an example of mainstream
algorithms for comparison in Section IV.

C. Main contributions

In this work we propose a new variational approach for
removing fringes from the images acquired by an ISFTS.
Our approach introduces key ingredients that have a radical
implication on the restored image. A summary is given next.
• Our method is robust with respect to sharp edges. In

comparison with usual additive models, our multiplicative
model has important advantages: it is much more accurate
when restoring regions near sharp edges – a scenario
where additive models cannot clearly separate the fringes
v from the panchromatic image u.

• Fringe frequencies estimation. Since the quality of the
image restoration critically depends on the accuracy of
the fringe pattern frequencies, we provide a simple and
robust algorithm for their estimation based only on the
image content.

• Oracle estimation. The spectral constraint on v is en-
forced only in the direction orthogonal to the fringes.
Compared to two-dimensional constraints, the one-
dimensional constraint alleviates some possible artifacts
arising from the DFT approximation. Furthermore, using
the fringe pattern frequencies for an observed scene w,
we reconstruct quite a faithful oracle image which is used
as initialization in the subsequent algorithms.

• Frugal regularization. Our variational model is composed
out of a multiplicative data term, a spectral penalty on
the fringes along with a smoothed TV term on the rows

of the observed image and on the columns of the fringe
pattern which is more efficient in our setting and less
expensive to compute than a standard two-dimensional
TV regularization.

• Absence of staircase artifacts. The smoothed TV avoids
the well-known staircase artifacts (commonly associated
to non-differentiable TV minimization) that are particu-
larly damaging for subpixel stereo correspondence of the
resulting restored images.

• Convergent algorithm with explicit proximal iterations.
Our model is biconvex and we alternate iterations with
proximal functions which, explicitly computed, become
simple.

• Simple filtering algorithm. We provide a simple and fast
algorithm for which no convergence proof is available. An
extensive experimentation on a large dataset shows that
the result of the fast algorithm is always extremely close
to the solution of the bi-convex multiplicative model.

III. DESCRIPTION OF OUR METHOD

Assuming the multiplicative model, the relationship between
the measured image w and both the panchromatic image u and
the fringe image v can be summarized as

w = u ◦ (1 + v) + η (11)

where ◦ stands for the Hadamard (componentwise) product
and η accounts for noise perturbations.

The method presented in this work was optimized on a set of
nine ground-truth images where the decomposition into fringes
component v and panchromatic component u is known exactly.

A. Nine ground-truth panchromatic images

To obtain noise-free simulated data, we proceeded in the
following way. We used two co-registered high resolution
infrared images, to deduce, for each pixel, a temperature and
an emissivity. Note that these values are neither the actual
temperature nor the true emissivity of the pixels, however
they are realistic values, which is quite enough. From these
temperature and emissivity maps, and taking into account the
Planck’s law and a standard atmosphere transmission and self-
emission, we computed a spectral cube, corresponding to the
spectral radiance at entrance pupil level. This spectral cube
was then converted to a high resolution interferometric im-
age, based on instrumental characteristics of Sieleters-MWIR
(optical path difference map, spectral sensitivity, contrast and
phase) and on equations 1-2. Lastly, this image was spatially
filtered and downsampled, to obtain an image with the same
size and resolution as Sieleters-MWIR. We thus obtained a
set of images, based on the physical model. We later refer to
these images as measured images, for they simulate the images
obtained with an ISFTS. We also computed a panchromatic
image, by suppressing the interference term in equations 1-2,
and a fringe image, from the average spectrum of all objects in
the scene. The panchromatic image will later be called ground
truth, as it is true enough to be used as such. One example is
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Fig. 5. Simulated data. Top: measured image. Middle: fringe pattern. Bottom:
ground truth.

given in Fig. 5. These images are given on a discrete grid of
size m × n where m = 424 and n = 1000. In these images,
the noise perturbation can be neglected, i.e., η ≈ 0 in (11).

B. Notation

For a m × n matrix u, its rows are denoted by ui,∗ and
its columns by u∗,i. We use the vertical mirror function
M : Rm×n → R3m×n given by Mu = (ū, u, ū)

T where
T stands for transpose and ū is the matrix consisting of rows
m,m−1, . . . , 1 of u. Its left-inverse, denoted by M†, extracts
u from z = Mu by taking rows m + 1, . . . , 2m of z. Im is
the identity operator on Rm. A vector or an image with ones
of arbitrary dimension will be denoted by 1. The notation F
will signify the Hamming windowed 1D Discrete Transform
Fourier applied to the columns an image.

C. On the Fourier domain constraint

Our focus is on methods that constrain the Fourier transform
of the image to vanish on the frequencies interval produced
by the fringe pattern.

The fringe pattern v is nearly horizontal, typical of interfer-
ometric images. The 1D Fourier transform of the rows of the
measured image w are not expected to change a lot except for
some low frequencies. Thus the 1D Fourier transform of the
rows of the measured image w and the rows of the ground
truth u should be nearly the same; see Fig. 6 left and middle.
The main difference is in the 1D Fourier transforms of the

columns of the ground truth u and the measured image w; see
Fig. 6 right. Therefore, we focus on using only the 1D Fourier
transforms of the columns.

a) Estimation of the spectral support of the fringe
pattern: From the observation model in (1) and (2) it is
known that the fringes are concentrated in a region delimited
by fmin and fmax, the frequencies of the spectral support of
v. These can be determined analytically from the optical path
difference map from Eq.(3). However, they usually shift during
the acquisition. Since the restoration quality critically depends
on the accuracy of fmin and fmax we propose a robust method
for their estimation for each image w. The method is motivated
by Fig. 6 and the algorithm is described next.

Algorithm 1: Estimation of (fmin, fmax)

INPUT: w
w =

(
Im ⊗ ( 1

3 ,
1
3 ,

1
3 )

)
column mean

(
log |F(M ◦w)|

)
{where ⊗ is the Kronecker product}

ŵ =


wb 1

2m+1c, ∗

· · ·
wm, ∗

 {where b 1
2ac ≤ a is the nearest

integer to a }
c = robust fitting(ŵ) {using a cubic curve with Cauchy
weighting for parameter 1 }
[fmin, fmax] = the largest interval such that c > ŵ
OUTPUT:[fmin, fmax]

The constraint set Ω is given by a binary m × n mask
where the only null rows correspond to the frequencies in
[−fmax,−fmin] ∪ [fmin, fmax]

b) An oracle image: Using the measured data w and
the estimated constraint set Ω, one can build a initial oracle
image u(0). It amounts to a filtering of the columns of w:

u(0) = M†
(
F−1

(
Ω ◦F(Mw)

))
(12)

and v(0) = (w/u(0)) − 1, with ”/” denoting the pointwise
division.

D. Variational formulation

One notices the good reconstruction done in the oracle
image u(0) as seen in Table I. An image showing the oracle
u(0) is given in Fig. 15. The restoration approach is based on
an inspection of the oracles u(0) and v(0) for all 9 simulated
images. The main facts we notice are listed next.
(a) The columns of u(0) have noticeable oscillations especially
in the region of the fringes; the rows of u(0) are very close to
those of the ground truth and do not need particular smoothing.
(b) The 1D DFT of the fringe columns oracle are still perturbed
in the frequency range −[fmax, fmin]∪ [fmin, fmax] hence we
need to penalize Ω ◦F(Mw).
(c) The rows of v(0) are quite more perturbed than its columns;
this together with (b) leads us to apply a smoothing on the
rows of v.
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Fig. 6. Log of 1D Fourier transforms of the ground truth (blue) and the measured image w (in red). The plot on the left shows the mean spectrum of rows.
The one in the middle is a zoom of the first around the zero frequency. The plot on the right shows the mean spectrum of columns.

(d) Finally, we want to keep close to the measured image w
since the noise in the multiplicative model, see (11), is very
small.

Combining all these observations leads to a variational
model of the form J(u, v) given by

λΦα1
(u)+Ψα2

(v)+β
||T (v)||22

2
+γ
||w − u ◦ (1 + v)||22

2
(13)

where we set T (v) := Ω ◦F(M ◦v) and

Φα1(u) :=
∑

ϕα1(ui,j − ui−1,j), (14)

Ψα2(v) :=
∑

ϕα2(vi,j − vi,j−1). (15)

The choice of ϕ is important. We focus on a convex edge
preserving ϕ [36]. A popular choice is ϕ(t) = |t| which
amounts to median prior [37] and to a particular discretization
of the TV model. It is well known that such a ϕ introduces
constant segments in the column and the row estimates of
u and v, respectively, which is not desired. Therefore, we
have to choose a smooth approximation of |t|. A frequent
choice is ϕα(t) =

√
t2 + α, but its derivative is involved for

numerical implementation. Another choice that leads basically
to the same solution is

ϕα(t) = |t| − α log

(
1 +
|t|
α

)
. (16)

Its derivative ϕ′α(t) = t
α+|t| is simple to compute which saves

up to 20% running time compared to the square-root function
[38].

The parameters in (13) were fixed using the simulated
images. It is quite obvious that β and γ should be large
numbers by (b) and (d) because they represent ”constraints”.
The others (quite simple from the simulated images) are given
in a subsequent section.

E. Minimization Algorithm

The objective J in (13) is biconvex. A common practice
for solving biconvex problems is the Alternate Convex Search
where u and v are updated alternatively by fixing one of
them [39]. More precisely, our algorithm follows a proximal
regularization of the Gauss-Seidel scheme, see also [40]. The
objective J in (13) is of the form F (u) +G(v) +H(u, v):

J(u, v) = F (u) +G(v) +H(u, v), (17)

where

H(u, v) =
γ

2
||u ◦ (v + 1)− w||22,

F (u) = λΦα1
(u),

G(v) = β
||T (v)||22

2
+ Ψα2

(v).

Let Dh and Dv denote the horizontal and vertical difference
operators on m× n images. Using vector notation, one has

∇F (u) = λDT
v ϕ
′
α1

(Dvu),

∇G(u) = βTTTv +DT
hϕ
′
α2

(Dhv),

which gradients are used in the forward step in Algorithm 2
given next.

This algorithm is initialized with the oracle image u(0) and
the corresponding v(0). For practical reasons the algorithm
below is applied with w normalized as in steps (a)-(b) below.
This means we apply Algorithm 1 with the normalized input
w to obtain the corresponding values fmin and fmax. Further,
τ1 / 2

Lip∇F and τ2 / 2
Lip∇G , see [40]. The Lipschitz

constants here are calculated as the upper bounds of ∇2F and
of ∇2G, respectively. Using that ‖DT

hDh‖ = ‖DT
v Dv‖ / 4,

they read as Lip∇F = 4λ
α1

and Lip∇G = β + 4
α2

.

Algorithm 2
INPUT: fmin, fmax, u(0), v(0), τ1, τ2, niter, α1, α2, λ, β,
γ
(a) Compute c1 := mean(w) and c2 := 8 s.t.d.(w)

(b) Normalize w ← 1 + w−c1
c2

u(0) ← 1 + u(0)−c1
c2

for k = 0 to niter − 1 do
u(k+1) = proxτ1H(·,vk)(u

(k) − τ1∇F (u(k))) {minimize
in u }
v(k+1) = proxτ2H(uk+1,·)(v

(k)− τ2∇G(v(k))) {minimize
in v}

end for
OUTPUT: recovered image û = c1 + (uniter − 1) c2

The proximity operators have a simple closed-form expres-
sion. Noticing that ∇uH(u, v) = γ(v + 1) ◦ ((v + 1) ◦u− w)
and that ∇vH(u, v) = γu ◦ (u ◦ (1 + v)− w), one obtains

proxτ1H(.,v)(z) =
z + τ1γ ◦ (v + 1) ◦w

1 + τ1γ(v + 1) ◦ (v + 1)
,

proxτ2H(u,.)(z) =
z + τ2γu ◦ (u− w)

1− τ2γu ◦u
,

where division is componentwise.
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The convergence of the algorithm to a critical point of J
can be found in [41].

Remark 1. Using the normalization in (a)-(b), the new mea-
sured image (or sequence of images) has mean 1 and standard
deviation 0.125. This is helpful for two reasons: (1) one
can process some erroneously measured images w involving
negative pixels; and (2) one can fix the ”free” parameters α1,
α2, λ, β and γ so that they can be applied to any image
recorded with a similar device. At the end of the iterations,
this normalization is restituted in the recovered image û.

F. Iterative filtering to solve the multiplicative model

Let us have another look at the observations (a)-(d) given
in section III-D. We want to use them in a different way to
improve the oracle image u(0) in (12). In the light of (a) and
(c), we want to minimize both Φα1

and Ψα2
for the same

values of (α1, α2) (assuming thus that our prior modeling on
u and v in Algorithm 2 was correct enough). Furthermore,
by (d) we want to closely satisfy the data-fidelity equation
in (11) and by (b) – the knowledge that the 1D columnwise
Fourier transform of the fringe pattern v belongs to the interval
−[fmax, fmin] ∪ [fmin, fmax]. Formally, this reads as

minimize Φα1
(u) + Ψα2

(v),

subject to w ≈ u ◦ (v + 1)

and v = M† ◦

(
F−1

(
(1− Ω) ◦F(M ◦v)

))
.

The first constraint is inexact (approximated) and nonconvex.
For the second constraint, we use the values fmin and fmax

estimated by Algorithm 1 with normalized input w as in (a)-
(b) below. We adopt an inexact gradient projection descent
approach with step-sizes satisfying δ1 / 2

Lip∇Φα1
and δ1 /

2
Lip∇Ψα2

. This is summarized in Algorithm 3.

Algorithm 3
INPUT: fmin, fmax, u(0), v(0), α1, α2, δ1, δ2, niter

(a) Compute c1 := mean(w) and c2 := 8 s.t.d.(w)

(b) Normalize w ← 1 + w−c1
c2

u(0) ← 1 + u(0)−c1
c2

for k = 0 to niter − 1 do
ū(k) = u(k) − δ1∇Φα1

(u(k)) {decrease Φ(u) }
v̄(k) = w/ū(k) − 1 {preserve data-fidelity}
ṽ(k) = M† ◦

(
F−1

(
(1 − Ω) ◦F(M ◦ v̄k)

))
{filtering v

to approach T (v) = 0 }

v(k+1) = ṽ(k) − δ2∇Ψα2(ṽ(k)) {decrease Ψ(v) }

u(k+1) = w/(1 + v(k+1)) {preserve data-fidelity}
end for
OUTPUT: recovered image û = c1 + (uniter − 1) c2

This algorithm amounts to a nonlinear filtering. We do not
have guarantees for its convergence and we use it just as a
filtering, a limited number of steps. This question is discussed
in detail in the next subsection.

G. Comparison of the Algorithms 2 and 3

The performance of Algorithm 2 is illustrated on Fig. 7
for the image 9 (see Table 1). On the left we observe that
the PSNR value at iteration 350 equals 59.6107 and at the
last iteration 500 its value is 59.6524. Further increase of
the iteration number would not yield much improvement. The
value of the objective J in (13) decreases but the decrease
becomes slower. The relative error between two consecutive
iterates, ‖u(k)−u(k−1)‖/‖u(k−1)‖ is 4.71×10−7 for k = 400
while it is 3.76 × 10−7 for k = 500. One can say that for
niter = 500 Algorithm 2 has nearly reached a minimum.

Fig. 7. Algorithm 2. Left: Increase of PSNR values with the iteration number.
Right: the value of the objective J in (13) in a log-log scale.

We tested the filtering Algorithm 3 on all 9 images with
ground truth, see subsection III-A, for 100 iterations. The best
PSNR value occurred for iterations between 33 and 57, with a
median value 41 and mean 41.44. What is more, its decrease
after the peak is slow – for 7 cases it was less then 0.5 dB. The
evolution of the PSNR for the image 9 (considered in Fig. 7)
is depicted on Fig. 8 left and the relative error between two
consecutive iterates on the right using a log-log scale. The
PSNR value is maximum for k = 41 and the relative error is
9.87× 10−6.

Fig. 8. Algorithm 3. Left: Evolution of the PSNR values with the iteration
number. Right: The relative error between two consecutive iterates in a log-log
scale.

Based on these observations, choosing niter = 20 seems
quite a safe decision. It is corroborated also by various
numerical tests in section IV, as well as in the subsequent
paragraph.

H. Normalisation and tools for comparing the algorithms

In many experiments we observed that starting from the
Oracle initialization in (12), Algorithm 2 and Algorithm 3
yield nearly the same solution (the relative error is always
less than 0.3% between the output of both algorithms as we
shall see below). This observation raises important theoretical
questions (when can we simplify a hard optimisation problem
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by a simple filtering-thresholding algorithm ?). This theoretical
question is out of the scope of this report.

In section IV, we give some numerical evidence that the
solution obtained by the algorithm 3 and by Algorithm 2 (see
the objective in (13)) are nearly the same.

For this purpose, the normalization in (a)-(b) in Algorithms
2 and 3 is important. It guarantees that the images are of mean
1 and standard deviation 0.125.

To compare the different algorithms, the relative error com-
puted in percents is computed. We can express it as follows,
with u∗ denoting the minimizer of the objective in (13) and û
the result of the Algorithm 2:

ε =
‖u∗ − û‖2
‖u∗‖2

× 100.

The Peak Signal-to-Noise Ratio (PSNR, in dB) is also
computed to quantify the difference between the algorithms.
It is defined as usual:

PSNR = 10 log10

maxx |u∗(x)|2

‖u∗ − û‖2
.

For the other datasets where no ground truth is available,
we directly compared the outputs of Algorithms 2 and 3.

IV. EXPERIMENTAL RESULTS

A quantitative evaluation of the different algorithms are
presented in this section. First, a comparison is made between
the results in terms of image quality and running time. Then,
some qualitative validations are presented and an assessment
of the quality of stereoscopic processing results allows to
further appraise the different methods. Using stereoscopy is
motivated by the need for relief estimation for the correction
of Fourier Transform spectrometers measures, which is the
reason behind the process of removing fringes, as explained
in Section I. Another reason that was be pointed out is that
elevation models can be complementary to hyperspectral data
for detection and analysis.

A. Available Data

Two types of data are used to compare results. First, the
simulated data, as presented in subsection III-A.

The second type of data are experimental images acquired
with Sieleters2 [19] which is a Fourier transform spectrometer.
Sieleters has two channels of acquisition for infrared MWIR
and LWIR. The sequences of images were obtained from an
airborne platform. The plane flew at 2000m, resulting in a
ground sampling distance of 50 cm. The scenes describe rural
and small urban areas in France in relatively flat areas.

B. Parameter Settings

The Algorithms 1, 2 and 3 presented in the previous sec-
tions require several parameters to be set. Different principles
are used to choose the right parameter values for different
parameter groups, namely:

2Developed by ONERA/DGA

• Initialization Parameters like fmin and fmax are chosen
by robust fitting to training data using Algorithm 1. Once
these are known the initial (oracle) values u(0) and v(0)

are chosen using Equation (12).
• Numerical Parameters like τ1 = 1.9

Lip∇F , τ2 = 1.9
Lip∇G

were chosen in Algorithm 2 to be as large as possible
while still ensuring theoretical convergence properties.
For Algorithm 3 we do not have convergence guarantees,
but by analogy to the similar Algorithm 2 we chose

these parameter values δ1 = 1.99
Lip∇Ψα1

, δ2 = 1.99
Lip∇Ψα2

in
the same manner.

• Model Parameters like α1 and α2, λ, β, γ and niter

should be chosen in such a way that the local minima
of the variational model in equation (13) fit the ground
truth solutions when available. We already know that:

– β and γ should have large values in order to enforce
the constraints T (v) = 0 and w = u ◦ (v + 1) as
strongly as possible without making the optimization
problem too stiff (we chose β = 2500 and γ = 104);

– α1 and α2 should have quite small for better edge
preservation in u and v (we chose α1 = 5 × 10−5,
α2 = 5× 10−3);

– λ should be relatively small in order to avoid re-
moving textures from u, but not too small otherwise
some fringes may go into u (we chose λ = 0.001);

– niter should be as large as possible for Algorithm
2 to reach convergence. In practice we have found
that after about niter = 500 iterations very little
was improved in terms of PSNR. For the filtering
Algorithm 3 the number of iterations can have a
stronger impact. We have found that optimal results
where obtained for niter = 20.

After the range of possible values for the different param-
eters was established according to the discussion above, the
near-optimality of the chosen parameter values was checked
with respect to the only Sieleters dataset, where a ground truth
was available (namely the 9 images described in III-A). As it
can be seen in Figures 9 and 10 neither Algorithm 2 nor 3 is
sensitive to the exact value of these parameters and the PSNR
is about 60 dB. Indeed the PSNR between the solution of
Algorithm 2 varied by less than 1 dB, and 2 dB for Algorithm
3 when any of the model parameters was modified by a factor
of 2.

C. Results

Experimental results and discussion on the Algorithms 2
and 3 are presented here. A comparison between results of
the additive and multiplicative image models is provided.

a) Validating Algorithm 3: Our first validation is to
compare the results of Algorithm 3 (Fast algorithm) with
Algorithm 2 (Optimization algorithm), because of the ensured
convergence of this one. Table I shows the difference in
performance and accuracy among the different algorithms
applied to the 9 simulated images. Accuracy is measured in
PSNR4 with respect to ground truth, whereas computational
performance is measured in terms of CPU5. We observe that
for all 9 simulated images the PSNR of Algorithms 2 and 3
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(a) λ (b) β

(c) α1 (d) α2

(e) γ (f) niter

Fig. 9. Sensitivity analysis of parameters for Algorithm 2: median of psnr on 9 simulated images. The plots show the variations of PSNR when the parameters
are moved around their optimal value on a range from half their value to twice their value. PSNR* corresponds to the PSNR of the optimum image found
by the algorithms. Globally, variations do not exceed 1dB, thus showing that the final result is robust to variations in parameter values. Parameters γ, β and
the number of iterations show an optimum. This is not the case for λ, α1 and α2, for which barely any difference is registered.

(a) niter

Fig. 10. Sensitivity analysis of parameters for Algorithm 3: median of psnr
on 9 simulated images. The plots show the variations of PSNR when the
parameters are moved around their optimal value on a range from half their
value to twice their value. PSNR* corresponds to the PSNR of the optimum
image found by the algorithms. The variations go up to 2dB, but vary very
slowly after niter = 20, our chosen value.

are nearly the same up to 0.2 dB, meaning that their solutions
cannot be more than 0.4 dB apart in terms of PSNR. These
values thus indicated the excellent behaviour of Algorithm 3:
the difference between the PSNR obtained with Algorithm 3
and with Algorithm 2 is negligible, but Algorithm 3 is more
than 20 times faster.

Then, the histograms comparing the relative error ε and
the PSNR(û, u∗) (following the notation in subsection III.F)
between the minimizer of Algorithm 2 and the result of
Algorithm 3 are presented in Fig. 11. They are computed
with Sieleters images, and Algorithm 2 is used as ”ground
truth”. The relative error appears negligible as it takes its
values between 0.02% and 0.03%. The PSNR takes its lower
values at 70, confirming the adecuacy of Algorithm 3 in terms
of image quality compared to Algorithm 2. Furthermore, on
this test, Algorithm 2 was 23.2 times slower than Algorithm
3.

Finally, we propose a qualitative evaluation. Fig. 14 offers
to look at results on different landscapes and textures. Fringes
were successfully removed without harming image resolution
and contrast. Some slight residues can however be found in
the texture in Fig. 14d. This can be explained by the fact
that the texture has some patterns parallel to the fringes. In

relative error ε in % PSNR(û, u∗)

0.02 0.03 74 78

relative error ε in % PSNR(û, u∗)

0.01 0.035 70 78

Fig. 11. Comparison between the results of Algorithm 3 with respect to the
desired minimizer u∗ obtained with Algorithm 2. The first column shows
histograms of the relative error as described in III.F. The second column
computes the PSNR. Top line : Results are based on 100 evenly spaced images
from Sieleters-MWIR. The images overlap, but it is a necessary compromise
to have a large number of samples. Top line : Results are obtained with 53
disjoint (non-overlapping) images using the same instrument.

Fig. 15 images with intersecting regions were compared. The
intersecting region was covered with fringes on one image,
and in an area with blurred fringes on the other. Note that the
latter still shows some slight fringes. We can observe that no
artifact appeared and that image quality was not decreased.

b) Validating the multiplicative model: As was men-
tioned in subsection II-B, using an additive image formation
model gives good results on many images but leaves fringe
residuals on very contrasted areas (Fig. 13b). This is due
to the fact that only frequencies within the small area Ω
are regularised for fringe removal, when, actually, the image
follows a rather multiplicative model where frequencies for
the fringes are found on the whole spectrum.

If we compare the results of the additive model with the
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results of the multiplicative model of Fig. 4, extracted from
Fig. 12a, it is clear that the multiplicative model succeeds
in removing the impact of fringes on the periodic pattern of
the building, as well the DC term as the fundamental and
harmonics. Meantime, the additive model fails to remove those
frequencies (Fig. 12). This explains why the multiplicative
model leads to a significantly better image than the additive
model (see Fig. 13).

Regarding quantitave results, Table I shows that the PSNR is
indeed significantly better for the multiplicative model. What
is more, the oracle gives a better scores also. This is explained
by the fact that the additive model uses a 2D Fourier transform
which induces artifacts, as the first and last columns do not
match well due to the fact that the fringes are not perfectly
aligned with the lines of the detector.

D. Impact on Stereoscopic Performance

As explained in the introduction, stereoscopic performance
is studied as it is, in the case of Fourier transform imaging
spectrometers, a likely second step for interferogram recon-
struction. For this assessment we used the block matching
algorithm described in [42] and the corresponding code which
is available on [43].

This algorithm provides a statistical test to decide which
blocks in the first image could find a statistically significant
optimal correspondance in the second image. When no cor-
respondance could be found the algorithm outputs a cyan
pixel (meaning undecidable) instead of a gray-level pixel that
represents the estimated disparity. As it was shown in [42], for
good stereo pairs less than 30% of the pixels are undecidable,
and a larger proportion of undecidable pixels means that at
least one of the two images is severely corrupted with some
kind of noise or does not correspond to the same scene.

As is shown in Fig. 16, the best result is clearly obtained
with the images where fringes are removed using the mul-
tiplicative model associated with the 1D Fourier transform.
With the measured images, where no attempt is made to erase
fringes, no information of relief could be retrieved on the lower
part of the image, where fringes are most contrasted. The
mainstream additive model presented in II-B gives poor re-
sults, especially in homogeneous areas. As mentioned before,
this can be explained by the fact that the artifacts generated
from using a discrete total variation prevent the subpixel stereo
algorithm from performing well.

Numerical values corroborate the visual observations, as
85% of the image could be matched with the multiplicative
model, whereas this score falls to 58% and 46% for the
measured image and the additive model respectively, as seen
in Table II.

From these results, we conclude that the multiplicative
model gives the best results, with more coverage. It therefore
brings more coherence to the image and improves results on
relief estimation.

4PSNR values are given in dB
5CPU running times are given in seconds on an Intel QuadCore processor

at 1.8 GHz running Matlab R2016b.

(a) Measured image from Sieleters

(b) Fourier transform from the measured image

(c) Fourier transform of image obtained by additive scheme

(d) Fourier transform of image obtained by multiplicative scheme

Fig. 12. Comparison between the spectra of the different schemes. On Fig.
(b), the frequencies of the fringes can be seen as a very bright vertical line.
Due to the image formation model, replicates of this line can be seen. The
additive model, on Fig (b) manages to remove the main frequencies, but the
replicas, which are outside the designated area Ω, remain. The multiplicative
model removes them completely, as seen on Fig. (c).

V. CONCLUSION

In this paper, we have introduced a novel algorithm to
remove fringes from images obtained with an imaging static
Fourier transform spectrometer. This algorithm exploits a
numerical model close to physical model as well as the spectral
properties of interference fringes to devise operators that
minimise the emergence of image artifacts during processing.

We show that it is possible to find accurate solutions to the
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TABLE I
RESULTS FROM SIMULATED DATASET WHERE THE GROUND TRUTH IS KNOWN.

Measured image Oracle Fast Method Variational Method Additive Model
Equation (12) (Algorithm 3) (Algorithm 2) Equation (10)

PSNR4

Image 1 21.27
Image 2 20.88
Image 3 21.12
Image 4 20.58
Image 5 24.22
Image 6 32.78
Image 7 21.31
Image 8 21.40
Image 9 20.04

PSNR4

53.20
56.36
54.33
57.00
59.88
52.95
53.29
51.89
50.42

PSNR4 CPU5

59.09 1.61
60.10 1.63
61.38 2.40
64.03 1.66
67.16 1.63
61.47 1.66
61.13 1.70
58.30 1.66
59.41 1.71

PSNR4 CPU5

59.10 40.81
60.04 40.48
61.32 40.58
63.91 40.39
66.91 40.70
61.49 40.86
61.15 38.95
58.34 40.08
59.40 38.94

PSNR4 CPU5

38.07 1828
38.76 2225
36.94 1850
39.91 1684
35.18 1585
35.26 1749
35.73 1822
40.08 1990
36.35 2203

(a) (b) (c)

Fig. 13. Extract of the image shown in Fig. 12. Subimage (a) comes from the measured image. The interference fringes are the horizontal lines. The image
in the background corresponds to a building. Subimage (b) comes from the image obtained using the additive scheme with a 2D Fourier transform. Residues
of the fringes can be observed. Subimage (c) is the result of the multiplicative algorithm, which successfully removes the residus in (b).

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Results for various types of landscapes. On the left column, measured
images from Sieleters-MWIR, with interference fringes. On the right, the
fringes have been removed using Algorithm 3.

non-convex problem of using a mutiplicative image formation
model. In turn, such a model allows for a better description
of the interferometric image formation process. Furthermore,
a good approximation to this solution can be found in a
competitive computational time.

The experimental results have shown that the use of
smoothed total variation regularization and adopting a 1D

Method Percent of matched points

Additive TV+2DFT 46%

Measured image 58%

Multiplicative (Algorithm 2) 85%

TABLE II
STEREOSCOPIC PERFORMANCE FOR THE ADDITIVE MODEL, THE

MEASURED IMAGES AND THE MULTIPLICATIVE MODEL.

Fourier transform, well-adapted to the vertical periodicity of
interference fringes, considerably improves results. In addi-
tion, our 1D regularization scheme retains the well-known
spectral extrapolation capability of two-dimensional TV mini-
mization, albeit with some limitations for images with horizon-
tal patterns at the exact same frequency as the fringe pattern.

The use of the smoothed TV was also beneficial for sub-
pixel stereo matching when compared to non-differentiable
TV. However, it comes at the price of smoothing out small
gradients in the measured image, with an arbitrary contrast
threshold. A more accurate (even though more computation-
ally expensive) approach that will be investigated in future
research would be to reduce staircasing artifacts by using
the non-differentiable Shannon Total Variation proposed by
Moisan and Abergel [35], [44].
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(a) First image: measured

(b) First image: oracle

(c) First image: result

(d) Second image: measured

Fig. 15. Image (a) shows the measured image (from Sieleters-MWIR), (b)
the oracle and (c) the image resulting from Algorithm 3 for image (a). (d) is
extracted from another image which did not contain contrasted fringes (but
light fringes can be observed at the top and bottom of the image) on the same
area, for visual comparison.
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