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We study the existence of separable infinity harmonic functions in any cone of R N vanishing on its boundary under the form u(r, σ) = r -β ψ(σ). We prove that such solutions exist, the spherical part ψ satisfies a nonlinear eigenvalue problem on a subdomain of the sphere S N -1 and that the exponents β = β + > 0 and β = β -< 0 are uniquely determined if the domain is smooth. We extend some of our results to non-smooth domains.

Introduction

Let S be a C 3 subdomain of the unit sphere S N -1 of R N and C S := {λσ ∈ R N : λ > 0, σ ∈ S} is the positive cone generated by S. In this paper we study the existence of positive solutions of

∆ ∞ u := 1 2 ∇ |∇u| 2 .∇u = 0 (1.1)
in C S vanishing on ∂C S \ {0} under the form

u(x) = u(r, σ) = r -β ψ(σ), (1.2) 
where β ∈ R and (r, σ) ∈ R + × S N -1 are the spherical coordinates R N ; such a function u is called a separable infinity harmonic function. The function ψ satisfies the spherical infinity harmonic problem in

S 1 2 ∇ |∇ ψ| 2 .∇ ψ + β(2β + 1) |∇ ψ| 2 ψ + β 3 (β + 1)ψ 3 = 0 in S ψ = 0 on ∂S, (1.3) 
where ∇ is the covariant gradient on S N -1 for the canonical metric and (a, b) → a.b the associated quadratic form. The role of the infinity Laplacian for Lipschitz extension of Lipchitz continuous functions defined in a domain has been pointed out by Aronsson in his seminal paper [START_REF] Arronson | Extension of functions satisfying Lipschitz conditions[END_REF]. When the infinity Laplacian ∆ ∞ is replaced by the p-Laplacian, the research of regular (β < 0) separable p-harmonic functions has been carried out by Krol [8] in the 2-dim case and by Tolksdorff [START_REF] Tolksdorf | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF] in the general case. Following Krol' s method, Kichenassamy and Véron [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF] studied the 2-dim singular case (β > 0). Finally, by a completely different approach and in a more general setting Porretta and Véron [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF] studied the general case. In that case, the function ψ satisfies the spherical p-harmonic problem in S div

(β 2 ψ 2 + |∇ ψ| 2 ) p-2 2 ∇ ψ + βλ β (β 2 ψ 2 + |∇ ψ| 2 ) p-2 2 ψ = 0 in S ψ = 0 on ∂S, (1.4) 
where λ β = β(p -1) + p -N and div is the divergence operator acting on vector fields in T S N -1 .

Following an idea which was introduced by Lasry and Lions [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF], Porretta-Véron's method was to transform the equation (1.4) by setting

w = - 1 β ln ψ (1.5)
in the case β > 0. The function w satisfies the new problem

-div 1 + |∇ w| 2 p/2-1 ∇ w + 1 + |∇ w| 2 p/2-1 β(p -1)|∇ w| 2 + λ β = 0 in S lim ρ(σ)→0 w(σ) = ∞, (1.6) 
where ρ(σ) := dist (σ, ∂S) is the distance understood in the the geodesic sense on S.

In this article we borrow ideas used in [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF] to transform problem (1.1) by introducing the function w defined by (1.5). Then w satisfies, in the viscosity sense, where ρ(.) is the geodesic distance from points in S to ∂S.

Then we prove that there exists a unique β such that λ(β) = β + 1. In a similar way we study the regular case where β < 0 in (1.2), (we denote -β = µ > 0), and we obtain Theorem B. Let S ⊂ S N -1 be subdomain with a C 3 boundary. Then there exist exactly two real positive numbers β s and µ s and at least two positive functions ψ s and ω s in C(S) ∩ C 0,1 loc (S) (up to multiplication by constants) such that the two functions u s,+ and u s,-defined in C S by u s,+ (r, σ) := r -βs ψ s (σ) and u s,-(r, σ) := r µs ω s (σ) are infinity harmonic in C S and vanish on ∂C S \ {0} and ∂C S respectively. Furthermore β s and µ s are decreasing functions of S for the inclusion order relation on sets.

The previous results can be extended to general regular domains on a Riemannian manifold as in [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF]. It is an open problem whether the positive solutions associated to the same exponent β s (or b s ) are proportional, see discussion in Remark p. 15. In the special case of a rotationally symmetric domain S we have a more precise result which allows us to characterize all the separable infinity harmonic functions in C S which keep a constant sign and vanish on ∂C S \ {0}. We denote by φ ∈ (0, π) the azimuthal angle from the North pole N on S N -1 . Theorem C. Let S α be the spherical cap with azimuthal opening α ∈ (0, π]. Then there exist two positive functions ψ α and ω α in C ∞ (S), vanishing on ∂S, such that the two functions u α,+ (r, σ) = r -π 2 4α(π+α) ψ α (σ),

(1.9) and u α,-(r, σ) = r π 2 4α(π-α) ω α (σ), (1.10) are infinity harmonic in C Sα and vanish on ∂C Sα \ {0}. The two functions ψ α and ω α depend only on the variable φ ∈ (0, α] and are unique in the class of rotanionnaly invariant solutions up to multiplication by constants.

This study reduced to an ordinary differential equation which has been already treated by T. Bhattacharya in [START_REF] Bhattacharya | A note on non-negative singular infinity-harmonic functions in the half-space[END_REF] and [START_REF] Bhattacharya | A boundary Harnack principle for infinity-Laplacian and some related results[END_REF]. But for the sake of completeness and for some related problems we present it in Section 3 of the present paper.

Using these previous results we prove the existence of separable infinity harmonic functions in any cone C S . Theorem D. Assume S S N -1 is any domain. Then there exist β s > 0 and a positive function ψ s in C(S), locally Lipschitz continuous in S and vanishing on ∂S, such that the function

u s,+ (r, σ) = r -β s ψ s (σ), (1.11) 
is infinity harmonic in C S and vanishes on ∂C S \ {0}.

When the cone C S is a little more regular, the construction of the spherical infinity harmonic functions can be performed via an approximation from outside. Theorem E. Assume that S S N -1 is an outward accessible domain, i.e. ∂S = ∂S c . Then there exist β s ∈ (0, β s ] and a positive function ψ s ∈ C(S), locally Lipschitz continuous in S and vanishing on ∂S, such that the function

u s,+ (r, σ) = r -β s ψ s (σ) (1.12)
is infinity harmonic in C S , vanishes on ∂C S \ {0} and has the property that for any separable infinityharmonic function in C S under the form u(r, σ) = r -β ψ(σ) where β > 0 and ψ in C(S) vanishes on ∂S, there holds

β s ≤ β ≤ β s .
The uniqueness of the exponent β s is proved under Lipschitz and geometric conditions on S. Theorem F. Assume that S S N -1 is a Lipschitz domain satifying the interior sphere condition. Then β s = β s . Furthermore there exists a constant c = c(S, p) > 0 such that for any two positive functions ψ i , i = 1, 2, satisfying the spherical p-harmonic problem (1.4), there holds

ψ 1 (σ) ψ 2 (σ) ≤ c ψ 1 (σ ) ψ 2 (σ ) ∀(σ, σ ) ∈ S. (1.13)
Note that the statements and the proofs of Theorems D, E and F can be easily modified if one considers regular infinity harmonic functions in C S which vanish on ∂C S . Acknowledgements. This article has been prepared with the support of the collaboration programs ECOS C14E08 and FONDECYT grant 1160540 for the three authors. The authors are grateful to the referee for a careful reading of their work.

The smooth case

We assume that (r,

σ) ∈ R + × S N -1 are the spherical coordinates of x ∈ R N . If u is a C 1 function, then ∇u = u r e + 1
r ∇ u where e = x |x| and ∇ is the tangential gradient of u(r, .) identified to the covariant gradient thanks to the canonical imbedding of

S N -1 into R N . Then |∇u| 2 = u 2 r + 1 r 2 |∇ u| 2 , thus -∆ ∞ u = -u 2 r + 1 r 2 |∇ u| 2 r u r - 1 r 2 ∇ u 2 r + 1 r 2 |∇ u| 2 .∇ u = 0.
A solution -∆ ∞ u = 0 which has the form u(x) = u(r, σ) = r -β ψ(σ) satisfies, in the viscosity sense, the spherical infinity harmonic equation

1 2 ∇ |∇ ψ| 2 .∇ ψ + β(2β + 1) |∇ ψ| 2 ψ + β 3 (β + 1)ψ 3 = 0. (2.1)
Theorem 2.1. For any C 3 domain S ⊂ S N -1 there exists a unique β s > 0 and one nonnegative function

ψ ∈ C 0,1 (S) solution of - 1 2 ∇ |∇ ψ| 2 .∇ ψ = β(2β + 1)|∇ ψ| 2 w + β 3 (β + 1)ψ 3 in S ψ = 0 in ∂S. (2.2)
such that the function (r, σ) → u s (r, σ) := r -βs ψ(σ) is positive and ∞-harmonic in the cone C s = {x = λσ ∈ R N : λ > 0, σ ∈ S} and vanish on ∂S \ {0}.

Following Porretta-Veron's method, we transform the eigenvalue problem into a large solution problem with absorption by setting

w = - 1 β ln ψ. (2.3)
Therefore the formal new problem is to prove the existence of a unique β > 0 and of a nonnegative function w such that

1 2 ∇ |∇ w| 2 .∇ w -β|∇ w| 4 -(2β + 1)|∇ w| 2 = β + 1 in S w = ∞ in ∂S.
(2.4)

The two problems are clearly equivalent for C 2 solutions. Since the mapping w → ψ is smooth and decreasing, it exchanges supersolutions (resp. subsolutions) into subsolutions (resp. supersolutions).

Therefore the two problems (2.2)-(2.4) are also equivalent if we deal with continuous viscosity solutions.

In order to increase the regularity of the solutions and to avoid the difficulties coming form the fact the above problem is invariant if we add a constant to a solution, instead of (2.4) we consider the regularized problem with absorption

-δ∆w - 1 2 ∇ |∇ w| 2 .∇ w + γ|∇ w| 4 + (2γ + 1)|∇ w| 2 + w = 0 in S w = ∞ in ∂S, (2.5) 
where , δ are two positive parameters. We will obtain below local estimates on ∇ w independent of and δ. Thanks to these estimates we will let successively δ and to 0 and obtain that, up to a constant, the term w converges to some unique λ(γ) called the ergodic constant although it has a probabilistic interpretation only in the case of the ordinary Laplacian [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF]. The limit problem of (2.5) is the following

- 1 2 ∇ |∇ w| 2 .∇ w + γ|∇ w| 4 + (2γ + 1)|∇ w| 2 + λ(γ) = 0 in S w = ∞ in ∂S.
(2.6)

Two-sided estimates

We denote the "positive" geodesic distance ρ(σ) = dist (σ, ∂S). If σ ∈ S c we set ρ(σ) = -dist (σ, ∂S).

If σ 1 and σ 2 are not antipodal points there exists a unique minimizing geodesic between σ 1 and σ 2 . It is an arc of a Riemannian circle (or great circle). The geodesic distance between σ 1 and σ 2 is denoted by (σ 1 , σ 2 ). It coincides with the angle determined by the two straight lines from 0 to σ 1 and 0 to σ 2 . At this point it is convenient to use Fermi coordinates in S in a neighborhood of ∂S. We set

S τ = {σ ∈ S : ρ(σ) < τ } , S τ = S \ S τ , Σ τ = {σ ∈ S : ρ(σ) = τ }.
If τ ≤ τ 0 for any σ ∈ S τ there exists a unique z σ ∈ ∂S such that (σ, z σ ) = ρ(σ). These Fermi coordinates of σ are defined by (τ, z) ∈ [0, τ 0 ) × ∂S. The mapping Π such that

Π(σ) = (ρ(σ), z σ ) ∀σ ∈ S τ 0 , is a C 2 diffeomorphism from S τ 0 into [0, τ 0 ) × ∂S.
The expression of the Laplace-Beltrami operator in S τ 0 is given in [START_REF] Bandle | Dependence of Blowup Rate of Large Solutions of Semilinear Elliptic Equations, on the Curvature of the Boundary[END_REF]:

∆ u(σ) = ∂ 2 u ∂τ 2 -(N -2)H ∂u ∂τ + ∆ z u ∀σ = Π -1 ((τ, z)), (2.7) 
where H = H(τ, z) is the mean curvature of Σ τ and ∆ z is a second order elliptic operator acting on functions defined on Σ τ . If g = (g ij ) is the metric tensor on S N -1 and by convention, |g| = det(g ij ), this operator admits the following expression

∆ z u = 1 |g| N -2 j=1 ∂ ∂z j |g|a j ∂u ∂z j ,
for some a j > 0 if we take for coordinates curve-frame z j a system of orthogonal 1-dim great circles on Γ intersecting at z σ (these circle corresponds to the (N -2)-principal curvatures at this points). The coefficients a j depend both on z and τ . Thus, if u depends only on ρ,

∆ u(σ) = ∂ 2 u ∂τ 2 -(N -2)H ∂u ∂τ . (2.8)
The expression of H is given in [START_REF] Bandle | Dependence of Blowup Rate of Large Solutions of Semilinear Elliptic Equations, on the Curvature of the Boundary[END_REF] and we can assume that τ 0 is small enough so that H remains bounded.

We extend the geodesic distance ρ(x) = dist (x, ∂S) as a smooth positive function so that ρ(x) := ρ(x) if ρ(x) ≤ τ 0 and thus, it the same neighborhood of ∂S, ∇ρ(x) = n zx , the unit outward normal vector to ∂S at the point z x = P roj ∂Ω (x).

If w depends only on ρ, (2.5) becomes

δw -(N -2)Hw + w 2 w -γw 4 -(2γ + 1)w 2 -w = 0 in S τ 0 w = ∞ in ∂S.
(2.9)

In the sequel we put

P δ (u) := -δ∆u - 1 2 ∇ |∇ u| 2 .∇ u + γ|∇ u| 4 + (2γ + 1)|∇ u| 2 + u = Pδ (u) + u.
(2.10) Proposition 2.2. There exist τ 1 ∈ (0, τ 0 ], three positive constants M , 0 and δ 0 and two positive func-

tions w * , w * ∈ C 2 (S) such that w * > w * in S τ , w * + 1 γ ln ρ ∈ L ∞ (S) and w * + 1 γ ln ρ ∈ L ∞ (S) with
the property that for any ∈ (0, 0 ] and δ ∈ (0, δ 0 ] the two functions

w(σ) = w * + M (2.11) and w(σ) = w * - M (2.12)
are respectively a supersolution and a subsolution of P δ (u) = 0. Furthermore any solution w of problem (2.6) satisfies w ≤ w ≤ w.

Proof. Let a > 0. We first notice by a standard computation that the solutions of the ODE,

δw + w 2 w -γw 4 -aw 2 = 0 in (0, 1) w (0) = -∞ (2.13)
are negative and given implicitely by

δ aw (ρ) + 1 γ - δ a γ a tan -1 a γ 1 w (ρ) = -ρ. (2.14)
In order to have a global estimate, we set w = -z -1 , thus (2.14) becomes

δz a + 1 γ - δ a γ a tan -1 z a γ = ρ, (2.15) 
provided a > γδ. Since tan -1 z a γ ≤ z a γ , we derive

z(ρ) ≥ γρ ⇐⇒ 0 > w (ρ) ≥ - 1 γρ ∀ρ > 0, (2.16) 
with equality only if ρ = 0. Since we can write (2.15) as

γ a δ a z a γ + 1 γ - δ a γ a tan -1 z a γ = ρ ≥ tan -1 z a γ , (2.17) 
we obtain

z ≤ γ a tan ρ √ aγ ⇐⇒ w (ρ) ≤ - a γ cot ρ √ aγ ∀ρ > 0. (2.18) Finally - 1 γρ ≤ w (ρ) ≤ - a γ cot ρ √ aγ ∀ρ ∈ (0, τ 0 ]. (2.19)
and in particular, for any τ 1 ∈ (0, τ 0 ],

|w (ρ)| ≥ a γ cot τ 1 √ aγ ∀ρ ∈ (0, τ 1 ]. (2.20)
From this estimate we derive

w(ρ 0 ) + 1 γ ln sin ρ 0 √ aγ sin ρ √ aγ ≤ w(ρ) ≤ w(ρ 0 ) + 1 γ ln ρ 0 ρ ∀ρ ∈ (0, τ 1 ]. (2.21)
The solution w depends on the value of a and δ. Since ∂S is smooth, we can assume that (N -2) |H| is bounded by some constant m ≥ 0 in S τ 0 . Denote by w τ a solution satisfying w(τ ) = 0, then it is positive in S τ and

P δ (w τ ) = δ(N -2)Hw τ + (2γ + 1 -a)w 2 τ + w τ ≥ |w τ |((2γ + 1 -a)|w τ | -m) ≥ |w τ |((2γ + 1 -a) a γ cot τ √ aγ -m).
If we take 1 < a 1 < 2γ + 1, we choose τ := τ 1 ∈ (0, τ 0 ] such that

(2γ + 1 -a 1 ) a γ cot τ √ a 1 γ > m, (2.22) 
which implies that w τ is a supersolution in S τ . In assuming now a := a 2 > 2γ + 1, we also have,

P δ (w τ ) ≤ w τ ((2γ + 1 -a)w τ -m) + w τ ≤ |w τ | ((2γ + 1 -a)|w τ | + m) + w τ ≤ |w τ | m -(a -2γ -1) a γ cot τ √ aγ + w τ .
We choose

a 2 = 4γ + 2 -a 1 , then m -(a -2γ -1) a γ cot (τ √ aγ) ≤ -c < 0 ∀τ ∈ (0, τ 1 ]. Therefore P δ (w τ ) ≤ w τ + w τ w τ .
Since w τ 1 < 0 and w τ 1 (τ 1 ) = 0 + , there exists 0 > 0, such that for any ∈ (0, 0 ]

+ w τ 1 (ρ) w τ 1 (ρ) ≤ -1 ∀ρ ∈ (0, τ 1 ].
Therefore w τ 1 ,a 1 and w τ 1 ,a 2 are respectively supersolution and subsolution of P δ (u) = 0 in S τ 1 . We extend them in S τ 1 as smooth functions wτ 1 ,a 1 and wτ 1 ,a 2 in order Pδ ( wτ 1 ,a j ) to remain bounded by some constant M . Finally w = wτ 1 ,a 1 +M -1 is a supersolution and w = wτ 1 ,a 2 +M -1 is a subsolution of P δ (u) = 0.

Next, we replace w by w h (δ) = w(δ + h) and w by wh = w(δ -h)

for h small enough, we still have a sub and a super solution of P δ (u) = 0 in S τ 1 and S τ 1 \ S h . In the remaining part of S, we extend smoothly w h and wh in order Pδ (w h ) and Pδ ( wh ) be bounded. We can adjust M in order P δ (w h ) ≤ 0 and P δ ( wh ) ≥ 0 in whole S, and all these manipulations can be done uniformly with respect to h and . If w is any C 2 solution of (2.5), we prove that it dominates the subsolution w h in S: actually, if we assume that w h and w are not ordered in S, there exists

σ 0 ∈ S such that w h (σ 0 ) -w(σ 0 ) = max{w h (σ) -w(σ) : σ ∈ S} > 0.
Since the two functions are C 2 ,

∇w h (σ 0 ) = ∇w(σ 0 ) and D 2 w h (σ 0 ) ≤ D 2 w(σ 0 ),
where D 2 is the Hessian form, in the sense of quadratic forms, i.e.

D 2 w h (σ 0 )(∇w h (σ 0 ), ∇w h (σ 0 )) ≤ D 2 w(σ 0 )(∇w(σ 0 ), ∇w(σ 0 )).
This implies P δ (w h )(σ 0 ) > P δ (w)(σ 0 ) = 0, contradiction. Therefore

w h ≤ w in S, (2.23) 
uniformly with respect to h. Similarly

wh ≥ w in S. (2.24) 
Letting h tend to 0 the claim follows.

Gradient estimates

If σ 0 ∈ S N -1 and R < π, we set B R (σ 0 ) = {σ ∈ S N -1 : (σ, σ 0 ) < R}.

Proposition 2.3. Let 0 ≤ δ, ≤ 1 and w be a smooth solution of

- 1 2 ∇ |∇ w| 2 .∇w -δ∆w + γ|∇ w| 4 + (2γ + 1)|∇ w| 2 + w = 0 in B R (σ 0 ) ⊂ S, (2.25) 
where S is a domain of S N -1 . Then there exists c = c(N ) > 0 such that

|∇ w(σ 0 )| ≤ c γR . (2.26) Proof. We set z = |∇w| 2 , then 2∆ ∞ w = ∇ |∇ w| 2 .∇ w = ∇ z.∇ w. We define the linearized operator of ∆ ∞ at w following h by B w (h) := d dt ∆ ∞ (w + th) t=0 = 1 2 ∇ h.∇ z + ∇ w.∇ (∇ w.∇ h).
Thus the linearized operator of ∆ ∞ + δ∆ at w following h is

L w (h) = B w (h) + δ∆h. (2.27) Thus L w (z) = 1 2 |∇ z| 2 + ∇ w.∇ (∇ .∇z) + δ∆z.
We can re-write (2.25) under the form

∇ w.∇z = 2 γz 2 + (2γ + 1)z + w -δ∆w . (2.28) Hence ∇ (∇ w.∇ z) = 2 (2γz + 2γ + 1)∇ z + ∇ w -δ∇ (∆w) ,
and then

∇w.∇ (∇ w.∇ z) = 2 (2γz + 2γ + 1)∇ z.∇ w + z -δ∇ (∆w).∇ w .
By the Weitznböck formula, since Ricc (S N -1 ) = (N -2)g 0 (g 0 is the metric tensor on S N -1 ), we have

1 2 ∆z = D 2 w 2 + ∇ (∆w).∇ w + (N -2)|∇ w| 2 = D 2 w 2 + ∇ (∆w).∇ w + (N -2)z. Hence L w (z) = 1 2 |∇z| 2 + 2 ((2γz + 2γ + 1)∇ z.∇ w + 2 z -2δ∇ w.∇ (∆w)) + 2δ D 2 w 2 + 2δ∇ (∆w).∇ w + 2δ(N -2)z.
Expanding the above identity, we see that the terms of order 3 disappear, hence

L w (z) = 1 2 |∇z| 2 + 2 ((2γz + 2γ + 1)∇ z.∇ w + 2 z) + 2δ D 2 w 2 + 2δ(N -2)z. (2.29) If ξ ∈ C 2 c (B R (σ 0 )), we set Z = ξ 2 z and we derive L w (Z) = B w (ξ 2 z) + δ∆(ξ 2 z) = ξ 2 L w (z) + zL w ξ 2 + 2(∇ w.∇ ξ 2 )(∇ w.∇z) + 2δ∇ ξ 2 .∇z, where L w ξ 2 = 1 2 ∇ z.∇ ξ 2 + ∇ w.∇ (∇ w.∇ ξ 2 ) + δ∆ξ 2 = 1 2 ∇ z.∇ ξ 2 + D 2 w(∇ ξ 2 ).∇ w + D 2 ξ 2 (∇ w).∇ w + δ∆ξ 2 = ∇ z.∇ ξ 2 + D 2 ξ 2 (∇ w).∇ w + δ∆ξ 2 ≥ ∇ z.∇ ξ 2 -z D 2 ξ 2 + δ∆ξ 2 .
By Schwarz inequality, (∆w

) 2 ≤ 1 N -1 D 2 w 2 , we derive from (2.27) and (2.28), L w (z) ≥ 1 2 |∇z| 2 + 4 (2γz + 2γ + 1) γz 2 + (2γ + 1)z + w -δ∆w + 4 z + 2δ N -1 (∆w) 2 + 2δ(N -2)z ≥ 1 2 |∇z| 2 + δ N -1 (∆w) 2 + 4γ 2 z 3 -c 0 ,
for some c 0 = c 0 (N, γ) > 0. In the sequel the different positive constants c j which will appear bellow depend only on N and γ. This implies

L w (Z) ≥ z ∇ z.∇ ξ 2 -z D 2 ξ 2 + δ∆ξ 2 + 2(∇ w.∇ ξ 2 )(∇ w.∇z) + 2δ∇ ξ 2 .∇z + ξ 2 1 2 |∇z| 2 + δ N -1 (∆w) 2 + 4γ 2 z 3 -c 0 . (2.30) We choose ξ such that 0 ≤ ξ ≤ 1, |∇ξ| ≤ c 1 R -1 and D 2 ξ ≤ c 1 R -2 , then (z + 2δ) ∇ z.∇ ξ 2 ≤ c 1 (z + 2δ)ξ R ∇ z ≤ ξ 2 8 ∇ z 2 + c 2 (z + 2δ) 2 R 2 , z δ∆ξ 2 -z D 2 ξ 2 ≤ c 3 (z + 2δ) 2 R 2 , ∇ w.∇z ≤ √ z |∇z| , ∇ w.∇ξ 2 ≤ 2ξ |∇w| |∇ξ| ≤ 2c 1 ξ √ z R , 2(∇ w.∇ ξ 2 )(∇ w.∇z) ≤ 4c 1 ξz |∇z| R ≤ ξ 2 8 ∇ z 2 + c 4 z 2 R 2 . We consider a point z 0 ∈ B R where Z is maximal, then L w (Z)(z 0 ) ≤ 0, which implies that at this point, ξ 2 1 2 |∇z| 2 + δ N -1 (∆w) 2 + 4γ 2 z 3 -c 0 ≤ ξ 2 4 |∇z| 2 + c 5 (z + 2δ) 2 R 2 .
(2.31)

We assume R ≤ 1 and 2δ ≤ 1, we multiply by ξ 4 and obtain

1 4 ξ 3 ∇z 2 + δξ 6 N -1 (∆w) 2 + 4γ 2 (ξ 2 z) 3 ≤ c 6 ((ξ 2 z) 2 + 1) R 2 + c 0 . (2.32)
From the inequality

4γ 2 (ξ 2 z) 3 ≤ c 6 (ξ 2 z) 2 R 2 + c 7 R 2 , we deduce ξ 2 z ≤ c 8 R 2 with c 8 = max c 7 , c 6 γ 2 .
(2.33)

If we assume that ξ(σ 0 ) = 1, we finally infer

|∇w(σ 0 )| ≤ √ c 8 R , (2.34) 
which is the claim.

As an immediate consequence, we have

Corollary 2.4. Let 0 ≤ , δ ≤ 1. If w is a solution of (2.5) in S, it satisfies |∇w(σ)| ≤ c γρ(σ) ∀σ ∈ S, (2.35) 
for some c > 0 depending only of N .

Proof of Theorem A

We write w = w δ, ,γ and

-δ∆w - 1 2 ∇ |∇ w| 2 ∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + w = 0, (2.36) 
then w δ, ,γ satisfies the estimate (2.35). By Proposition 2.2 it satisfies also 

- 1 γ ln ρ - M ≤ w * ≤ w δ, ,γ ≤ w * + M ≤ - 1 γ ln ρ + M . ( 2 
(σ) = w ,γ (σ) - w ,γ (σ 0 ) with σ 0 ∈ Ω, then w := w ,γ satisfies - 1 2 ∇ |∇ w| 2 ∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + w + w(σ 0 ) = 0. (2.39) Moreover | w ,γ (σ)| = |w ,γ (σ) -w ,γ (σ 0 )| ≤ max c γρ(τ ) : τ ∈ [σ, σ 0 ] |σ -σ 0 |.
Thus, as → 0, w ,γ → 0 locally uniformly in S. Up to some subsequence { n }, w n,γ → w γ locally uniformly in S and n w n,γ (σ 0 ) → λ(γ). As in [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF] the expression λ(γ) does not depend on σ 0 . By analogy with the semilinear case studied in [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF], this last limit is called the ergodic constant. Furthermore it is easy to check that there exist positive constants M 1 and M 2 such that w 1 and w 2 defined by

w 1 (x) = - 1 γ ln ρ + M 1 ρ + M 2 and w 2 (x) = - 1 γ ln ρ -M 1 ρ -M 2 (2.40)
are respectively a supersolution and subsolution of (2.39) in S and that there holds

w 2 (x) ≤ w ,γ (x) ≤ w 1 (x) ∀x ∈ S.
(2.41)

By the same stability results of viscosity solutions, we infer that w γ is a positive solution of

- 1 2 ∇ |∇ w| 2 ∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + λ(γ) = 0 in S w = ∞ on ∂S.
(2.42) Furthermore, there holds from (2.41) and (2.35), Proof. Assume that the set { w (σ 0 )} of values of the solutions of (2.42) at σ 0 admits two different cluster points λ 1 and λ 2 . Then there exist two locally Liptchitz continuous functions w 1 and w 2 satisfying

w γ + 1 γ ln ρ ≤ M, ( 2 
- 1 2 ∇ |∇ w i | 2 .∇ w i + γ|∇ w i | 4 + (2γ + 1)|∇ w i | 2 + λ i = 0 in S, (2.45) 
in the viscosity sense, and such that

w i (σ) = - 1 γ ln ρ(σ) (1 + o(1)) as ρ(σ) → 0. (2.46)
We can assume that

λ 1 > λ 2 . For > 0 let v = (1 + )w 2 . Then - 1 2 ∇ |∇ v| 2 .∇ v + (1 + ) -1 γ|∇ v| 4 + (1 + )(2γ + 1)|∇ v| 2 + (1 + ) 3 λ 2 = 0 in S. (2.47) For X > 0, we put f (X) = γ 1 + X 2 -(2γ + 1) X + λ 1 -(1 + ) 3 λ 2 .
Then

f (X) ≥ f (X 0 ) = f (2γ + 1)(1 + ) 2γ = - (1 + )(2γ + 1) 2 4γ + λ 1 -(1 + ) 3 λ 2 .
Therefore there exists 0 > 0 such that for any X ≥ 0, f (X) ≥ 0, or equivalently

(1 + ) -1 γX 2 + (1 + )(2γ + 1)X + (1 + ) 3 λ 2 ≤ γX 2 + (2γ + 1)X + λ 1 . (2.48) This implies that - 1 2 ∇ |∇ v| 2 .∇ v + γ|∇ v| 4 + (2γ + 1)|∇ v| 2 + λ 1 ≥ 0 in S, (2.49) 
in the viscosity sense. Since w 1 < v near ∂S, it follows from comparison principle that w 1 < v in S.

Letting → 0 yields w 1 ≤ w 2 in S.

(2.50)

Since for any k ∈ R, w 1 + k satisfies the same equation as w 1 and the same estimate (2.46) as the w i we obtain a contradiction. Thus λ = λ(γ) is uniquely determined.

For proving monotonicity, assume γ 1 > γ 2 > 0 and let w ,1 and w ,2 be solutions of

- 1 2 ∇ |∇ w ,i | 2 .∇ w ,i + γ i |∇ w ,i | 4 + (2γ i + 1)|∇ w ,i | 2 + w ,i = 0 in S, (2.51) such that w ,i (σ) = - 1 γ i ln ρ(σ) (1 + o(1)) as ρ(σ) → 0. (2.52) Then - 1 2 ∇ |∇ w ,1 | 2 .∇ w ,1 + γ 2 |∇ w ,1 | 4 + (2γ 2 + 1)|∇ w ,1 | 2 + w ,1 ≤ 0.
Since w ,1 ≤ w ,2 near ∂S, it follows by comparison principle that w ,1 ≤ w ,2 in S and in particular w ,1 ≤ w ,2 . Since λ 1 = lim n→∞ w n,1 (x 0 ) and λ 2 = lim n→∞ w n,2 (x 0 ), we infer that λ 1 ≤ λ 2 .

For proving the continuity, let {γ n } be a sequence converging to γ and let w n be corresponding solutions of

- 1 2 ∇ |∇ w n | 2 .∇ w n + γ n |∇ w n | 4 + (2γ n + 1)|∇ w n | 2 + λ(γ n ) = 0 in S, (2.53) 
subject to

w n (σ) + 1 γ n ln ρ(σ) ≤ K, (2.54) 
for some K > 0 independent of n. Since {w n } is locally bounded in W 1,∞ loc (Ω) we can extract sequences, denoted by {w n k }, {λ(w n k )} such that λ(w n k ) → λ and w n k converges locally uniformly to a viscosity solution w of

- 1 2 ∇ |∇ w| 2 .∇ w + γ|∇ w| 4 + (2γ + 1)|∇ w| 2 + λ = 0 in S, (2.55) subject to w(σ) = - 1 γ ln ρ(σ) (1 + o(1)) as ρ(σ) → 0.
The existence of such a function implies that λ = λ(γ). Thus the whole sequence {λ(γ n )} converges to λ(γ), a fact which implies the continuity.

Next, let S 1 ⊂ S 2 be two C 3 subdomains of S N -1 . We denote by w δ, ,γ,S j , j = 1, 2, the solutions of (2.5) respectively in S 1 and S 2 . Since these solutions are limit of solutions with finite boundary values and that the maximum principle holds, we infer that w δ, ,γ,S 2 ≤ w δ, ,γ,S 1 in S 1 . Letting δ → 0 yields w ,γ,S 2 ≤ w ,γ,S 1 . Taking σ 0 ∈ S 1 and since the ergodic constant is uniquely determined, we have w ,γ,S 2 (σ 0 ) ≤ w ,γ,S 1 (σ 0 ) and thus λ(γ, S 2 ) ≤ λ(γ, S 1 ).

Proof of Theorem B

We prove below the following proposition using the result of Theorem C, which proof does not depend on the previous constructions.

Proposition 2.6. For any C 3 domain S ⊂ S N -1 , there exists a unique β := β s such that λ(β) = β + 1. Furthermore β s is a decreasing function of S for the order relation between spherical domains.

Proof. The function γ → λ(γ, S)-γ is continuous and decreasing. For > 0 we consider two spherical caps S i ⊂ S ⊂ S e ; by Proposition 2.5 λ(γ, S e ) ≤ λ(γ, S) ≤ λ(γ, S i ),

(2.56) (2.4). Then ψ = e -βw is a viscosity solution of (2.2). Notice also that the construction of β s and the monotonicity of S → λ(γ, S) imply that S → β s is decreasing.

then λ(γ, S e ) -γ ≤ λ(γ, S) -γ ≤ λ(γ, S i ) -γ. ( 2 
Similarly we can consider separable infinity harmonic functions under the form (1.2) with negative β < 0. We set β = -β, then (2.2) is replaced by

- 1 2 ∇ |∇ ψ| 2 .∇ ψ = µ(2µ -1)|∇ ψ| 2 w + µ 3 (µ -1)ψ 3 in S ψ = 0 in ∂S.
(2.59)

If ψ is a positive solution of (2.59), we set

w = - 1 µ ln ψ.
Then w satisfies

- 1 2 ∇ ∇ w 2 .∇ w + µ ∇ w 4 + (2µ -1) ∇ w 2 = µ -1 in S lim ρ(σ)→0 w(σ) = ∞, (2.60) 
This equation is treated similarly as (2.4).

Remark.

It is an open problem whether the positive functions which satisfy (2.2) are unique up to the multiplication by a constant. This is a sharp contrast with the spherical p-harmonic problem with 1 < p < ∞ where uniqueness is proved by the strong maximum principle and Hopf boundary lemma, and this uniqueness result has been extended to Lipschitz domain in [START_REF] Gkikas | The spherical p-harmonic eigenvalue problem in non-smooth domains[END_REF] using the characterization of the p-Martin boundary obtained by [START_REF] Lewis | Boundary behavior and the Martin boundary problem for p-harmonic functions in Lipschitz domains[END_REF], and a sharp version of boundary Harnack principle. See also Section 3.3 for related results. Notice that uniqueness holds when the solutions are spherically radial (see Section 3.2).

3 The general case

Problem on the circle

We consider here the special case N = 2 and S is the circle in (2.2 ). For k ∈ N * , we set 

β k = k 2 2k + 1 and µ k = k 2 2k -1 . ( 3 
(0, π k ) such that x → |x| -β k ψ k ( x |x| ) is infinity harmonic and singular in R 2 \ {0} and x → |x| µ k ω k ( x |x| ) is infinity harmonic and regular in R 2 . Proof. We write ∇ ψ = ψ σ e ⊥ with S 1 ∼ R/2π. Thus (2.2) becomes -ψ 2 σ ψ σσ = β 3 (β + 1)ψ 3 + β(2β + 1)ψ 2 σ ψ, ψ(0) = ψ(2π). (3.2) 
For ψ = 0 the equation in (3.2 ) can be written as

- ψ 2 σ ψ 2 ψ σσ ψ = β(2β + 1) ψ 2 σ ψ 2 + β 3 (β + 1). We set Y = ψ σ ψ , then Y σ + Y 2 = ψ σσ ψ and -Y 2 Y σ = Y 4 + β(2β + 1)Y 2 + β 3 (β + 1) = (Y 2 + β 2 )(Y 2 + β(β + 1)). (3.3) 
We first search for solutions with β such that β(β + 1) ≥ 0, β = 0. Standard computation yields

β Y 2 + β 2 - β + 1 Y 2 + β(β + 1) Y σ = 1, (3.4) 
and this equation is not degenerate and equivalent to (3.2) as long as

Y = 0. If β = -1 (that is β1 in (3.1 )) then (3.4) becomes Y σ Y 2 + 1 = -1, (3.5) thus tan -1 Y (σ) = -σ =⇒ Y (σ) = -tan σ =⇒ ψ(σ) = sin σ. (3.6)
This corresponds to the fact that the coordinate functions are separable and infinity harmonic.

We assume now β(β + 1) > 0, or equivalently either β > 0 or β < -1. We fix ψ(0) = 0 and consider an interval on the right of 0 where ψ > 0. From the equation ψ is concave, thus ψ σ (0) > 0. Because of concavity and periodicity ψ must change sign. We assume that σ = α is the first critical point of ψ which is a singular point for (3.2) and (3.4). We integrate (3.4) on a small interval (α, σ) and get

tan -1 Y (σ) β - β + 1 β tan -1 Y (σ) β(β + 1) = σ -α.
Expanding tan -1 (x) near x = 0 we obtain

Y (σ) = -β 3 3β + 3 3 √ σ -α (1 + o(1)) =⇒ ψ(σ) = ψ(α) -C(β)ψ(α)(σ -α) 4 3 (1 + o(1)), (3.7) 
with C(β) = 3 

(R). Since tan -1 Y β - β + 1 β tan -1 Y β(β + 1) σ=α σ=0 = α,
with Y (0) = ∞, Y (α) = 0, the condition for π-antiperiodicity is therefore

β + 1 β -1 π 2 = α ⇐⇒ β = π 2 4(α 2 + απ) .
If β > 0, the periodicity condition yields

β + 1 β = 1 + 1 k ⇐⇒ β = β k = k 2 1 + 2k . (3.8) If β < -1 1 - β + 1 β π = α,
and the periodicity condition implies

β + 1 β = 1 - 1 k ⇐⇒ β = βk = k 2 1 -2k . ( 3.9) 
The case β(β + 1) < 0, or equivalently -1 < β < 0, is easily ruled out. We find that (3.3 ) has the constant solution Y (σ) = -β(β + 1), meaning ψ(σ) = C exp(σ -β(β + 1)), which is by no mean periodic. On the other hand, in this case we can write (3.4) under the form

d dσ tan -1 Y β - 1 2 β + 1 -β ln |Y --β(β + 1)| Y + -β(β + 1) = 1. (3.10)
Since Y runs from Y (0) = ∞ to Y (α) = 0, there must be a value σ 0 where Y (σ 0 ) = -β(β + 1). We can integrate (3.10 ) on (0, σ 0 -) and let → 0. Since β < 0, it yields

π 2 + tan -1 Y (σ 0 -) β - 1 2 β + 1 -β ln |Y (σ 0 -) --β(β + 1)| Y (σ 0 -) + -β(β + 1) = σ 0 -.
The left-hand side expression tends to ∞ when → 0, a contradiction. Hence there are no solutions with β ∈ (-1, 0). This ends the proof of the proposition.

Remark. When k = 1 the coordinate functions are infinity harmonic and vanish on a straight line. When k = 2, the regular solution with µ 1 = 4 3 is u(x, y) = x Its existence is due to Aronsson [START_REF] Arronson | On the equation u x u xx + 2u xy u x u y + u y u yy = 0[END_REF]. The corresponding circular function, ω(σ) = (cos σ) , admits four nodal sets on S 1 . When k = 1, then β 1 = 1 3 . It is proved in [START_REF] Bhattacharya | A note on non-negative singular infinity-harmonic functions in the half-space[END_REF] that any positive infinity harmonic function in a half-space which vanishes on the boundary except at one point blows-up like the separable infinity harmonic function u(r, σ) = r -1 3 ψ(σ).

The spherical cap problem

Proof of Theorem C. The following representation of S N -1 is classical

S N -1 = σ = (sin φ σ , cos φ) : σ ∈ S N -2 , φ ∈ [0, π] .
Then ∇ ψ = ψ φ e + ∇ σ ψ where e is a tangent unit downward vector to S N -1 following the great circle going through the point σ. Then |∇ ψ| 2 = ψ 2 φ + |∇ σ ψ| 2 , thus, if ψ depends only on φ, we have

1 2 ∇ |∇ ψ| 2 .∇ ψ = ψ φφ ψ 2 φ .
Therefore such a function ψ, if it is a C 1 solution of (2.2) in the spherical cap S α defined for φ ∈ (0, α), satisfies -ψ φφ ψ 2 φ = β(2β + 1)ψ 2 φ ψ φ + β 3 (β + 1)ψ in (0, α) ψ φ (0) = 0 , ψ(α) = 0.

(3.11)

The conclusion follows from Proposition 3.1.

Remark. If α = π, the exponent β + is 1 8 and ψ := ψ Σ c is a positive solution of -ψ 2 σ ψ σσ = 9 4096 ψ 3 + 5 32 ψ 2 σ ψ in (-π, π) ψ(-π) = ψ(π) = 0. (3.12) Then the function u Σ c (r, σ) = r -1 8 ψ Σ c (σ) is an infinity harmonic function in R N \ L Σ c ,

which vanishes on the half line L

Σ c := {x = tΣ : t ≥ 0}. The function Y = ψσ ψ can be computed implicitly on (0, π) thanks to the identity

tan -1 (8Y (σ)) -3 tan -1 ( 8 3 Y (σ)) = σ. (3.13)
This yields, with

Z = 8Y 3 , tan -1 (3Z(σ)) -3 tan -1 (Z(σ)) = σ, hence 3Z -tan(3 tan -1 (Z))) 1 + 3Z tan(3 tan -1 (Z)) = tan σ, (3.14) 
since

tan(3x) = 3 tan x -tan 3 x 1 -3 tan 2 x .
This yields

-8Z 3 1 + 6Z 2 -3Z 4 = tan σ, (3.15) 
which gives the value of Y by solving a fourth degree equation and then ψ = ψ Σ c by integrating Y . Using Theorem C we can prove the existence of a singular infinity harmonic function in a cone C Sκ,α generated by a spherical annulus S κ,α of the spherical points with azimuthal angle κ < φ < α. Proposition 3.2. Assume 0 ≤ κ < α < π and let ν = 1 2 (α -κ). Then there exists a positive singular infinity harmonic function u Sκ,α ,+ and a regular infinity harmonic function u sκ,α ,-in C Sκ,α which vanish respectively on ∂C Sκ,α \ {0} and ∂C Sκ,α under the form u Sκ,α ,+ (r, σ) = r -βs κ,α ψ Sκ,α (σ) and u Sκ,α ,-(r, σ) = r µ Sκ,α ω Sκ,α (σ) where

β Sκ,α = π 2 4ν(π + ν) and ω Sκ,α = π 2 4ν(π -ν) , (3.16) 
and ψ Sκ,α and ω Sκ,α are positive solutions of (3.2) in S κ,α vanishing at κ and α with β = β Sκ,α and β = -µ Sκ,α respectively.

Proof. By Theorem C there exists a positive and even solution ψ of 

ψφφ ψ 2 φ = β(2β + 1) ψ2 φ ψφ + β 3 (β + 1) ψ in (-ν, ν) := 1 2 (κ -α), 1 2 (α -κ) ψ(-ν) = 0 , ψ(ν) = 0, (3.17 
v = v ,γ,α of -v 2 v + γv 4 + (2γ + 1)v 2 + v = 0 in (0, α) v(0) = ∞ , v(α) = ∞, (3.18)
is an increasing function of . If 0 < σ 0 < α, there exists λ = λ(α, γ) = lim →0 v ,γ,α (σ 0 ) and this value is independent of σ 0 . The function ṽ = ṽ ,γ,α = v ,γ,α -v ,γ,α (σ 0 ) converges locally uniformly in

(0, α) to a solution v = v γ,α of -v 2 v + γv 4 + (2γ + 1)v 2 + λ = 0 in (0, α) v(0) = ∞ , v(α) = ∞, (3.19) with λ(α, γ) = 1 4γ 3 π 2 α 2 -γ(2γ + 1) 2 . (3.20) Furthermore v γ,α (φ) = - 1 γ ln φ as φ → 0, (3.21) and v γ,α (φ) = - 1 γ ln(α -φ) as φ → α. (3.22)
Proof. From the proof of Theorem A, we know that v ,γ,α is an increasing function of . It satisfies estimates (2.37) and (2.35). Furthermore there exists λ = λ(α, γ) = lim →0 v ,γ,α (σ 0 ) ≥ 0, which is a value independent of σ 0 ∈ (0, α), and ṽ = ṽ ,γ,α = v ,γ,α -v ,γ,α (σ 0 ) converges locally uniformly in (0, α) to a solution v = v γ,α of (3.19). We set Y = -γv , then

Y 2 Y + Y 4 + γ(2γ + 1)Y 2 + λγ 3 = 0 in (0, α) Y (0) = ∞ , Y (α) = -∞. (3.23)
We write it under the separable form

Y 2 Y 4 + γ(2γ + 1)Y 2 + λγ 3 Y = -1 ⇔ A 2 A 2 -B 2 1 Y 2 + A 2 - B 2 A 2 -B 2 1 Y 2 + B 2 Y = -1,
for some A, B > 0 and with A > B if we assume 2γ + 1 > 2γλ. Actually A 2 B 2 = λγ 3 and

A 2 + B 2 = γ(2γ + 1). Thus A tan -1 Y A -B tan -1 Y B = B 2 -A 2 . (3.24)
By integration on (0, α) we derive the identity

A + B = π α . ( 3 

.25)

Since A + B = γ(2γ + 1) + 2 λγ 3 , we deduce (3.20) from (3.25). Finally, since The following statement is formally similar to Corollary 3.4. It makes more precise the approximations used in the proof of Theorem A, in the construction of the proof of Theorem B in the case α = π. Corollary 3.5. Let and γ > 0 and a ∈ S N -1 . Then there exists a unique rotationally invariant with respect to a solution v = v a,γ, , of

tan -1 z = π 2 - 1 z + 1 3z 3 + O(z -5 ) when z → ∞, we derive - 1 γv (φ) = 1 Y (φ) = φ + O(φ 3 )
- 1 2 ∇ |∇ v| 2 .∇ v + γ |∇ v| 4 + (2γ + 1) |∇ v| 2 + v = 0 in S N -1 \ {a} lim (σ,a)→0 v(σ) = ∞. (3.31) Furthermore, for any σ 0 ∈ S N -1 \ {a}, lim →0 v a,γ, (σ 0 ) = Λ(γ) := 1 4γ 3 1 4 -γ(2γ + 1) 2 .
(3.32)

The function ṽa,γ, = v a,γ, -v a,γ, (σ 0 ) converges locally uniformly in S N -1 \{a} to the unique viscosity solution v := v a,γ rotationally invariant with respect to a and vanishing at σ 0 of

- 1 2 ∇ |∇ v| 2 .∇ v + γ |∇ v| 4 + (2γ + 1) |∇ v| 2 + Λ(γ) = 0 in S N -1 \ {a} lim (σ,a)→0 v(σ) = ∞. (3.33) Finally v a,γ (σ) = - 1 γ ln ( (a, σ)) + O(1) as σ → a. (3.34)
As in Corollary 3.4, if a is replaced by a ∈ S N -1 , the solution v a ,γ, of (3.31) in S N -1 \ {a } is derived from v a,γ, by an orthogonal transformation exchanging a and a . The mapping → v a,γ, is decreasing.

Proof of Theorem D

Step 1: Approximate solutions. We consider an increasing sequence of smooth spherical domains,

{S k } such that S k ⊂ S k ⊂ S k+1 ⊂ S and k S k = S,
To each domain we associate the positive exponent β k := β s k and the corresponding spherical infinityharmonic function ψ k := ψ s k defined in S k and such that ψ k (σ 0 ) = 1 for some σ 0 ∈ S 1 , so that the function u k (r, .) = r -β k ψ k is infinity-harmonic in the cone C S k and vanishes on ∂C S k \ {0}. For γ, δ, > 0, we denote by w k,γ,δ, the solution of

-δ∆w - 1 2 ∇ |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + w = 0 in S k lim ρ k (σ)→0 w(σ) = ∞, (3.35) 
where ρ k (.) = dist (., ∂S k ). By the maximum principle the functions w k,γ,δ, is positive and the following comparison relations hold:

(i) w ,γ,δ, ≤ w k,γ,δ, in S k ∀k ≤ , (ii) w k,γ,δ, ≤ w k,γ,δ, in S k ∀ ≤ , (iii) w k,γ,δ, ≤ w k,γ ,δ, in S k ∀γ ≤ γ. (3.36) 
Furthermore it follows from Corollary 2.4,

|∇w k,γ,δ, (σ)| ≤ c ρ k (σ) ∀σ ∈ S k , (3.37) 
where c = c(N ). Moreover, similarly as in (2.37),

- 1 γ ln ρ k (σ) - M k ≤ w k,γ,δ, (σ) ≤ - 1 γ ln ρ k (σ) + M k ∀σ ∈ S k . (3.38) 
We let δ → 0 and derive that, up to a subsequence, w k,γ,δn, → w k,γ, locally uniformly in S k . The function w k,γ, satisfy (3.36), (3.37) and (3.38) and is a viscosity solution of

- 1 2 ∇ |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + w = 0 in S k lim ρ k (σ)→0 w(σ) = ∞. (3.39) 
Furthermore the mapping (k, ) → w k,γ, is nonincreasing, and if we let k → ∞, then w k,γ, ↓ w γ, . The function w γ, is defined in S and is nonincreasing functions of and γ. Furthermore there holds

(i) w γ, ≤ w k,γ, ≤ w 1,γ, ∀k, ≥ 1, (ii) |∇w γ, (σ)| ≤ c ρ(σ) ∀σ ∈ S, (3.40) 
where c = c(N ). Estimate (3.40)-(i) can be made more precise in the following way: for each σ ∈ S, there is k σ ∈ N such that σ ∈ S kσ and

- 1 γ ln ρ(σ) - 1 max k≥kσ M k ≤ w γ, (σ) ≤ - 1 γ ln ρ(σ) + 1 min k≥kσ M k . (3.41) 
Step 2: Boundary blow-up. The compactness of approximate solutions vanishing at a fixed point in the local uniform convergence topology is easy to obtain thanks to the uniform estimate of the gradient. The main difficulty is to preserve the boundary blow-up when the parameters k, γ, δ, tend to their respective limit.

Case 1. We first assume that there exist σ 0 ∈ S, two decreasing sequences { n }, {δ } converging to 0 and an increasing sequence {k j } tending to infinity with the property that

n w k j ,γ,δ , n (σ 0 ) ≤ m w k j ,γ,δ , m (σ 0 ) for all m < n , j, ∈ N. (3.42) Since wk j ,γ,δ , n = w k j ,γ,δ , n -w k j ,γ,δ , n (σ 0 ) satisfies -δ ∆ w - 1 2 ∇ |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + n w + n w k j ,γ,δ , n (σ 0 ) = 0 in S k j lim ρ k j (σ)→0 w(σ) = ∞, (3.43 
) there holds wk j ,γ,δ , n ≥ wk j ,γ,δ , m for all m < n , j, ∈ N.

(3.44)

Letting δ → 0 we derive that w k j ,γ,δ , n → w k j ,γ, n locally uniformly in S k j and w k j ,γ, n satisfies

- 1 2 ∇ |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + n w = 0 in S k j lim ρ k j (σ)→0 w(σ) = ∞. (3.45) 
Furthermore, for all m < n , j ∈ N,

(i) w k j ,γ, n ≥ w k j ,γ, m (ii) w k j ,γ, n -w k j ,γ, n (σ 0 ) ≥ w k j ,γ, m -w k j ,γ, m (σ 0 ) (iii) n w k j ,γ, n (σ 0 ) ≤ m w k j ,γ, m (σ 0 ). (3.46) 
By monotonicity with respect to S k j , w k j ,γ, n ↓ w γ, n as j → ∞. Let a ∈ ∂S and v a,γ, n be the solution of (3.31) with = n which exists by Corollary 3.5. Then

v a,γ, n ≤ w k j ,γ, n in S k j , (3.47) 
which yields v a,γ, n ≤ w γ, n in S. (3.48) 
This proves that w γ, n is a viscosity solution of

- 1 2 ∇ |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + n w = 0 in S lim ρ(σ)→0 w(σ) = ∞, (3.49) 
and from (3.46), (i)

w γ, n ≥ w γ, m (ii) w γ, n -w γ, n (σ 0 ) ≥ w γ, m -w γ, m (σ 0 ) (iii) n w γ, n (σ 0 ) ≤ m w γ, m (σ 0 ). (3.50) 
Because wγ, n = w γ, n -w γ, n (σ 0 ) is increasing with respect to n, locally compact in the topology of local uniform convergence and satisfies

- 1 2 ∇ |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + n w + n w γ, n (σ 0 ) = 0 in S lim ρ(σ)→0 w(σ) = ∞, (3.51) 
and since n w γ, n (σ 0 ) → λ(γ, S) as n → ∞, we infer that wγ = lim n→∞ wγ, n is a locally Lipschitz continuous viscosity solution of

- 1 2 ∇ |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + λ(γ, S) = 0 in S lim ρ(σ)→0 w(σ) = ∞. (3.52) Case 2.
If the condition of Step 1 does not hold, for any σ 0 ∈ S there exist two decreasing sequences { n }, {δ } converging to 0 and an increasing sequence {k j } tending to infinity, all depending on σ 0 , such that λ(γ, S)

> n w k j ,γ,δ , n (σ 0 ) > m w km,γ,δm, m (σ 0 ) ∀ n > m, (3.53) 
where

λ(γ, S) = lim n → ∞ j → ∞ → ∞ n w k j ,γ,δ , n (σ 0 ).
We fix some σ 0 ∈ S. Then wk j ,γ,δ ,

n = w k j ,γ,δ , n -w k j ,γ,δ , n (σ 0 ) satisfies -δ ∆ w - 1 2 ∇ |∇ w| 2 + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + n w + λ(γ, S) ≥ 0 in S k j lim ρ k j (σ)→0 w(σ) = ∞. (3.54)
We introduce the problem

-δ ∆Z - 1 2 ∇ |∇ Z| 2 + γ |∇ Z| 4 + (2γ + 1) |∇ Z| 2 + n Z + λ(γ, S) = 0 in S k j lim ρ k j (σ)→0 Z(σ) = ∞. (3.55)
Since (3.55) can be re-written as

-δ ∆Z - 1 2 ∇ |∇ Z | 2 + γ |∇ Z | 4 + (2γ + 1) |∇ Z | 2 + n Z = 0 in S k j lim ρ k j (σ)→0 Z (σ) = ∞, (3.56) 
with Z = Z + -1 n λ(γ, S), existence is ensured by the approximation by finite boundary data as above. We denote by Z k j ,γ,δ , n and Z k j ,γ,δ , n , which coincides actually with wk j ,γ,δ , n , the solutions of (3.55) and (3.56) obtained by such approximation. Using Corollary 3.5 as in Case 1and comparison, we obtain the following estimate

v a,γ, n - λ(γ, S) n ≤ Z k j ,γ,δ , n - λ(γ, S) n = Z k j ,γ,δ , n ≤ wk j ,γ,δ , n in S k j , (3.57) 
where, again a ∈ ∂S and v a,γ, n is the solution of (3.31) with = n which exists by Corollary 3.5. Now the sequences {Z k j ,γ,δ , n } n,kj and {w k j ,γ,δ , n } k j are increasing. Letting successively δ → 0 and k j → ∞ we infer that, up to a subsequence, Z k j ,γ,δ , n converges locally uniformly to some Z γ, n and wk j ,γ,δ , n converges locally uniformly to some wγ, n = w γ, n -w γ, n (σ 0 ) which are respectively viscosity solutions of 

- 1 2 ∇ |∇ Z| 2 + γ |∇ Z| 4 + (2γ + 1) |∇ Z| 2 + λ(γ, S) + n Z = 0 in S lim ρ(σ)→0 Z(σ) = ∞, (3.58) 
lim n→0 Z γ, n = Z γ ≤ wγ in S. (3.61) Since lim ρ(σ)→0 Z γ, n (σ) = ∞ ≤ lim ρ(σ)→0 Z γ (σ),
it follows that wγ is a locally Lipschitz continuous viscosity solution of (3.52).

Step 3: End of the proof. As in the proof of Proposition 2.6, γ → λ(γ, S)-γ is a non increasing function of γ. We recall that λ(γ, S * α ) = λ(γ, S * α (a)). By formula (3.20), for any α > 0 lim γ→0 λ(γ,

S * α ) = ∞. Since λ(γ, S) -γ ≥ λ(γ, S * π , ) -γ, (3.62) 
it follows that λ(γ, S * α ) -γ converges to infinity when γ converges to 0. Let α > 0 such that S α (a) ⊂ S for some a ∈ S. Let {γ ν } be a sequence decreasing to β s when ν → ∞ and such that lim ν→∞ λ(γ ν , S) = β s + 1. As in

If γ = π 2 4α(π + α) , then λ( π 2 4α(π+α) , S * α )) -π 2 4α(π+α) = 1. Since λ π 2 4α(π + α) , S - π 2 4α(π + α) < λ π 2 4α(π + α) , S * α (a) - π 2 4α(π + α) = 1, (3.63 
Step 1 we denote by w k j ,γν ,δ , n the solution of (3.35) with (k j , γ ν , δ , n ) = (k, γ, δ, ). There always holds

w k j ,γµ,δ , n ≤ w k j ,γν ,δ , n if γ µ ≥ γ ν . (3.66) 
Again we distinguish two cases Case 1. We assume that there exist σ 0 ∈ S and monotone sequences {k j }, {δ } and { n } such that n w k j ,γν ,δ , n (σ 0 ) ≤ m w k j ,γµ,δ , m (σ 0 ) for all m < n , µ ≤ ν , j, ∈ N.

(3.67)

As in Step 2-Case 1 it implies w k j ,γν ,δ , n -w k j ,γν ,δ , n (σ 0 ) ≥ w k j ,γµ,δ , m -w k j ,γµ,δ , m (σ 0 ) for all m < n , µ < ν , j, ∈ N.

(3.68) Letting δ → 0 and k j → ∞ we obtain that the limit function w γν , n satisfies

- 1 2 ∇ |∇ w| 2 .∇ w + γ ν |∇ w| 4 + (2γ ν + 1) |∇ w| 2 + n w = 0 in S lim ρ(σ)→0 w(σ) = ∞, (3.69) 
and wγν, n = w γν , n -w γν , n (σ 0 ) is increasing both with respect to n and ν. If n → 0 we derive that wγν = lim n→∞ wγν, n satisfies wγν (σ 0 ) = 0 and

- 1 2 ∇ |∇ w| 2 .∇ w + γ ν |∇ w| 4 + (2γ ν + 1) |∇ w| 2 + λ (γ ν , S) = 0 in S lim ρ(σ)→0 w(σ) = ∞.
(3.70)

By gradient estimates and since wγν (σ 0 ) = 0, the set of functions { wγν } ν is relatively compact for the local uniform convergence in S. Furthermore wγν is increasing with respect to ν, with limit w. Using (3.65) and the definition of {γ ν }, we conclude that

- 1 2 ∇ |∇ w| 2 .∇ w + β s |∇ w| 4 + (2β s + 1) |∇ w| 2 + β s + 1 = 0 in S lim ρ(σ)→0 w(σ) = ∞, (3.71) 
holds in the viscosity sense. Case 2. We assume that for any σ 0 ∈ S and ν there exist two decreasing sequences { n }, {δ } converging to 0 and an increasing sequence {k j } tending to infinity such that

β s + 1 > n w k j ,γν ,δ , n (σ 0 ) > m w km,γν ,δm, m (σ 0 ) ∀ n > m, (3.72) 
where

β s + 1 = lim ν→∞ λ(γ ν , S) = lim n→∞,j→∞, →∞ n w k j ,γν ,δ , n (σ 0 ).
We follow the ideas in Step 2-Case 2 and consider the problem

-δ ∆Z - 1 2 ∇ |∇ Z| 2 + γ ν |∇ Z| 4 + (2γ ν + 1) |∇ Z| 2 + n Z + β s + 1 = 0 in S k j lim ρ k j (σ)→0 Z(σ) = ∞. (3.73)
Since (3.73) can be re-written as (3.56) with γ replaced by γ ν and setting Z = Z + -1 n (β s +1), we have existence and uniqueness of the solution Z * k j ,γν ,δ , n (we do not use the previous notation Z k j ,γν ,δ , n since the constant term is not of the form λ(γ ν , S)). Then Z * k j ,γν ,δ , n = Z * k j ,γν ,δ , n + -1 n (β s + 1) satisfies (3.56) with γ replaced by γ ν . Then (3.57) is replaced by

v a,γν , n - β s + 1 n ≤ Z * k j ,γν ,δ , n - β s + 1 n = Z * k j ,γν ,δ , n ≤ w k j ,γν ,δ , n in S k j , (3.74) 
where v a,γν , n is as above with obvious modifications. We denote by wγν, n = w γν , n -w γν , n (σ 0 ) the limit, when δ → 0 and k j → ∞, of wk j ,γν ,δ , n = w k j ,γν ,δ , n -w k j ,γν ,δ , n (σ 0 ) and by Z * γν , n the one of Z * k j ,γν ,δ , n under the same conditions. They are respective viscosity solutions of The sequence {Z * γν , n } is nondecreasing both with respect to n and ν. Therefore the boundary condition is kept. Letting n → 0 and γ ν → β s we conclude as in Step 1 that, up to a subsequence {ν s } there exists a locally Lipschitz continuous function w such that wγν s , n → w when ν → ∞ and ν s → β s succesively, and w is a viscosity solution of (3.71).

- 1 2 ∇ |∇ w| 2 + γ ν |∇ w| 4 + (2γ ν + 1) |∇ w| 2 + n w γν , n (σ 0 ) + n w = 0 in S lim ρ(σ)→0 w(σ) = ∞. (3.75) and - 1 2 ∇ |∇ Z| 2 + γ ν |∇ Z| 4 + (2γ ν + 1) |∇ Z| 2 + β s + 1 + n Z = 0 in S lim ρ(σ)→0 Z(σ) = ∞. ( 3 
We end the proof by setting ψ s = e -β s w.

Mutatis mutandis in the above proof, one can obtain an existence result of a separable positive regular infinity harmonic function in C S vanishing on ∂C S . Theorem 3.6. Assume S S N -1 is any domain. Then there exist µ s > 0 and a positive function ω s in C(S), locally Lipschitz continuous in S and vanishing on ∂S, such that the function 

u s,-(r, σ) = r µ s ω s (σ), ( 3 
:= ψ s k , defined in S k , such that ψ k (σ * ) = 1 for some σ * ∈ S 1 , so that the function u k (r, .) = r -β k ψ k is p-harmonic in C S k
and vanish on ∂C S k \ {0}. For γ, δ, > 0, we denote by w k,γ,δ, the solution of

-δ∆w - 1 2 ∇ |∇ w | 2 .∇ w + γ |∇ w | 4 + (2γ + 1) |∇ w | 2 + w = 0 in S k lim ρ k (σ)→0 w (σ) = ∞, (3.79) 
where ρ k (.) = dist (., ∂S k ). By the maximum principle all the functions w ,γ,δ, is positive and the following comparison relations hold. Estimates (3.36) are valid the main difference being the fact that w ,γ,δ, ≤ w k,γ,δ, in S k for k, > 0 and that the mapping k → w k,γ,δ, is increasing. Similarly ( , γ) → w ,γ,δ, is nonincreasing. The gradient estimate (3.37) holds for w k,γ,δ, , provided ρ k (σ) be replaced by ρ k (σ) = dist (σ, ∂S k ). Moreover, similarly to in (2.37),

- 1 γ ln ρ k (σ) - M k ≤ w k,γ,δ, (σ) ≤ - 1 γ ln ρ k (σ) + M k ∀σ ∈ S k . (3.80) 
When δ → 0, w k,γ,δn, → w k,γ, locally uniformly in S k to some function w k,γ, which satisfies (3.36), the modified gradient estimate (3.37) (expressed with ρ k replaced by ρ k ) and (3.80) and is a viscosity solution of

- 1 2 ∇ |∇ w | 2 .∇ w + γ |∇ w | 4 + (2γ + 1) |∇ w | 2 + w = 0 in S k lim ρ k (σ)→0 w (σ) = ∞. (3.81)
When k → ∞ w k,γ, ↑ w γ, which is a nonincreasing function of and γ.

The proof of the boundary blow-up introduces two cases: either there exists σ 0 ∈ S, two decreasing sequences { n }, {δ } converging to 0 and an increasing sequence {k j } tending to infinity with the property that n w k j ,γ,δ , n (σ 0 ) ≤ m w k j ,γ,δ , m (σ 0 ) for all m < n , j, ∈ N.

(3.82)

Or for any σ 0 ∈ S there exist two decreasing sequences { n }, {δ } converging to 0 and an increasing sequence {k j } tending to infinity, all depending on σ 1 , such that

λ (γ, S) > n w k j ,γ,δ , n (σ 0 ) > m w km,γ,δm, m (σ 0 ) ∀ n > m, (3.83) 
where

λ (γ, S) = lim n → ∞, j → ∞, → ∞ n w k j ,γ,δ , n (σ 1 ).
In the first case for any a ∈ ∂S, there exists a sequence {a j } such that a j ∈ S k j converging to a (such a sequence exits since ∂S = ∂ Sc ). Then v a j ,γ, n ≤ w k j ,γ, n in S k j (3.84)

Since v a,γ, n is obtained from v a j ,γ, n by an orthogonal transformation on S N -1 , we derive v a,γ, n ≤ w γ, n in S. where Z k j ,γ,δ , n and Z k j ,γ,δ , n are defined accordingly. This implies again that the limit w γ, n of {w k j ,δ , n } when j → ∞ is a viscosity solution of (3.86).

The proof of the existence of some β s > 0 such that λ (β s , S) = 1 + β s follows the same dichotomy.

Step 2: Comparison of exponents. Since w k,γ,δ, ≤ w k,γ,δ, it follows that w k,γ,δ, (σ 0 ) ≤ w k,γ,δ, (σ 0 ) (it is always possible to choose the same σ 0 in order to defined the ergodic constant), hence λ (γ, S) ≤ λ(γ, S) and finally β s ≤ β s by monotonicity. Assume now that u(r, σ) = r -β ψ(σ) is a positive infinity harmonic function in C S which vanishes on ∂C S \ {0}. We proceed by conradiction in assuming that β > β s . Hence β > β k := β s k for k large enough. We set φ = ψ θ where θ = β k β < 1.

Then ∇φ = θψ θ-1 ∇ψ , |∇φ| 2 = θ 2 ψ 2(θ-1) |∇ψ| 2 , |∇φ| 2 φ = θ 2 ψ 3(θ-1)+1 |∇ψ| 2 , ∇|∇φ| 2 .∇φ = θ 3 ψ 3(θ-1) ∇|∇ψ| 2 .∇ψ + 2θ 3 (θ -1)ψ 3(θ-1)-1 |∇ψ| 4

If we denote ∩ ∂S the constant δ z is actually independent of z and denoted by δ * . We use now the standard Harnack inequality for infinity harmonic functions in Θ (see e.g. [START_REF] Bhattacharya | A boundary Harnack principle for infinity-Laplacian and some related results[END_REF]) to derive the existence of c 2 = c 2 (N, δ * ) > 0 such that This implies that for a fixed σ 0 ∈ S, one has 

L k φ = - 1 2 ∇ ∇ φ 2 .∇ φ -β k (2β k + 1) ∇ φ 2 φ -
1 c 2 ≤ u(x) u(y) , u ( 

2 . 1 2 ∇ ∇ w 2 .

 212 ∇ w + β ∇ w 4 + (2β + 1) ∇ w 2 + β + 1 = 0 in S lim ρ(σ)→0 w(σ) = ∞. (1.7)We first prove Theorem A. Let S ⊂ S N -1 be a proper subdomain of S N -1 with a C 3 boundary. Then for any β > 0 there exists a locally Lipschitz continuous function w and a unique λ(β) > 0 satisfying in the viscosity sense-∇ w + β ∇ w 4 + (2β + 1) ∇ w 2 + λ(β) = 0 in S lim ρ(σ)→0w(σ) = ∞.(1.8)

Proposition 2 . 5 .

 25 For any C 3 domain S ⊂ S N -1 , the ergodic constant λ(γ) := λ(γ, S) is uniquely determined by γ. Furthermore it is a continuous decreasing function of γ and S for the order relation of inclusion.

. 1 ) 3 . 1 .

 131 Proposition For any k ∈ N * there exists two π k -anti-periodic C 1 functions ψ k and ω k positive on

3 √ β + 1 ,

 31 and define Y (σ) for σ ∈ (α, 2α) by imposing Y (σ) = -Y (2α -σ) and continue this process in order to construct a 2α-antiperiodic solution belonging to C 1,1 3 

4 3 -

 3 (sin σ) 4 3

  ) with β = β Sκ,α or β = -µ Sκ,α . Then φ → ψ(φ) := ψ(φ + 1 2 (κ + α)) is a positive solution of (3.2) in (κ, α). The proof follows. The next technical lemma is a variant of Theorem C and Proposition 3.2. Lemma 3.3. Assume 0 < α < π and , γ > 0. Then the solution

2 ∇ 2 ∇

 22 when φ → 0 from (3.24), which implies (3.21) by l'Hospital rule. Relation (3.22) is proved similarly. Next we denote by S α (a) the spherical cap with vertex a ∈ S N -1 and azimuthal opening α from a and S * α (a) = S α (a) \ {a}. The next statement is a rephrasing of Lemma 3.3 in a geometric framework. Corollary 3.4. Let α, and γ > 0 be as in Lemma 3.3 and a ∈ S N -1 . Then there exists a unique solution w = w a,α,γ, of -1 |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + w = 0 in S * α (a) lim (σ,a)→0 w(σ) = ∞ lim (σ,a)→α w(σ) = ∞, (3.26) rotationally invariant with respect to a. If a is replaced by a ∈ S N -1 , the solution w a ,α,γ, of (3.26) in S * α (a ) is derived from w a,α,γ, by an orthogonal transformation exchanging a and a . The mapping → w a,α,γ, is decreasing and for any σ 0 ∈ S * α (a) lim →0 w a,α,γ, (σ 0 ) = λ(γ, S * α (a)) := λ(γ, S * α ), (3.27) (this notation is coherent with λ(γ, S) already used, furthermore its value does not depend on a). The function wa,α,γ, = w a,α,γ, -w a,α,γ, (σ 0 ) converges locally uniformly in S * α (a ) to the unique viscosity solution w := w a,α,γ rotationally invariant with respect to a and vanishing at σ 0 of -1 |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + λ(γ, S * α ) = 0 in S * α (a) lim (σ,a)→0 w(σ) = ∞ lim (σ,a)→α w(σ) = ∞. (3.28) Finally w a,α,γ (σ) = -1 γ ln ( (a, σ)) + O(1) as σ → a, (3.29) and w a,α,γ (σ) = -1 γ ln (α -(a, σ)) + O(1) as (σ, a) → 0. (3.30)

  ) it follows that inf {λ(γ, S) -γ : γ > 0} < 1. (3.64) We set β s = inf {γ : λ(γ, S) -γ < 1} . (3.65)

2 ∇

 2 w γ, n is a viscosity solution of-1 |∇ w| 2 .∇ w + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + n w = 0 in S lim ρ(σ)→0 w(σ) = ∞. (3.86)The proof in the second case is the same as in Theorem D, just replacing v a,γ, n by v a j ,γ, n in (3.57) which becomesv a k j ,γ, n -λ(γ, S) n ≤ Z k j ,γ,δ , n -λ(γ, S) n = Z k j ,γ,δ , n ≤ wk j ,γ,δ , n in S k j ,(3.87)

β 3 k 4 + β 3 (β + 1) - β 3 k θ 3 (β k + 1 )ψ 3 = θ 3 2 Θ 3 2 , 2 3:= Θ ∩ B 3 2 \ B 2 3 = 2 \ B 2 3 = 3 2 , 2 3 = ∂C S ∩ B 3 2 \ B 2 3 . 3 2 , 2 3 , 3 2 , 2 3∩

 34333133232232333233332 (β k + 1)φ 3 , then L k φ = θ 3 ψ 3(θ-1) β(2β + 1) -β k θ (2β k + 1) ψ|∇ψ| 2 + (1 -θ)ψ -1 |∇ψ| ψ 3(θ-1)-1 (β -β k ) β |∇ψ| 2 + β 2 ψ 2 2 > 0.(3.88)Hence the function W = -1 β k ln φ satisfies in the viscosity sense-1 2 ∇ ∇ W 2 .∇ W + β k |∇W | 4 + (2β k + 1)|∇W | 2 + β k + 1 < 0 in S kand is bounded in S k . By comparison between viscosity solutions, W is smaller than w k := -1 β k ln ψ s k where ψ s k is a spherical infinity harmonic function in S k (see the proof of Theorem D-Step 1). But we can replace W by W + n for any n ∈ N * . This is a contradiction, hence β ≤ β s . In the same way β ≥ β s , which ends the proof.Proof of Theorem F. If ∂S is Lipschitz and satifies the interior sphere condition, it is possible to construct a bounded Lipschitz subdomain Θ of C S satisfying the interior sphere condition with the following additional properties:Θ ⊂ C S ∩ B 2 \ B 1 C S ∩ B 3 (r, σ) : 2 3 < r < 3 2 , σ ∈ S .(3.89) and we define the lateral boundary of Θ by ∂ Θ Assume now that u(r, σ) = r -β ψ(σ) and u (r, σ) = r -β ψ (σ), with β, β > 0, are nonnegative, infinity harmonic in C S and vanish on ∂C S \ {0}. Since u and u vanish on ∂ Θ it follows from [12, Th 1.1], that there exists a constant c 1 = c 1 (N, Θ) > 0 such that for any z ∈ ∂ Θ ∂S there exists a constant δ z ∈ (0

3 2 , 2 3 s

 33 x) u (y) ≤ c 2 ∀(x, y) ∈ Θ .t. inf {dist (x, ∂Θ), dist (y, ∂Θ)} ≥ δ * . (3.91) Taking x = (1, σ) and y = (1, σ ) in (3.90), we derive from (3.90), (3.91) that ψ(σ) ψ (σ) ≤ c 3 ψ(σ ) ψ (σ ) ∀(σ, σ ) ∈ S.

1 Then - 1 2 ∇ 2 ∇ ∇ W * 2 .

 1222 is Step 1, assuming β > β and definingφ * = ψ θ where θ * = β β < ∇ φ * 2 .∇ φ * -β (2β + 1) ∇ φ * 2 φ * -β 3 (β + 1)φ 3 * > 0.The functionW * = -1 β ln φ * satisfies the inequation -1 ∇ W * + β ∇W * | 4 + (2β + 1)|∇W * | 2 + β + 1 < 0 in S,(3.93) while w = -1 β ln ψ is a solution of the associated equation. From (3.92), ψ (σ) = o(φ(σ)) when ρ(σ) := dist (σ, ∂S) → 0. Hence w -W * = -1 β ln ψ φ * → ∞ when ρ(σ) → 0. (3.94) By comparison there holds w ≥ W * . Since for any n ∈ N * , the function W * ,n = W * + n satisfies (3.93) and (3.94), it follows that w ≥ W * ,n , contradiction. Hence β ≤ β , which ends the proof.

  .57) By Theorem C, there exists γ = β se and γ = β s i such that λ(β se , S e ) -β se = 1 and λ(β s i , S i ) -β s i = 1, and β se < β s i unless λ(β se , S e ) = λ(β s i , S i ) and S i = S

e . This implies that λ(β se , S) -β se ≥ 1 and λ(β s i , S) -

β s i ≤ 1.

(2.58)

By continuity there exists a unique β = β s ∈ [β se , β s i ] such that λ(β s , S) -β s = 1. To this exponent β corresponds a locally Lipschitz continuous function w solution of problem

  + γ |∇ w| 4 + (2γ + 1) |∇ w| 2 + n w γ, n (σ 0 ) + n w = 0 in S Furthermore Z γ, n and wγ, n are locally bounded in S, relatively compact for the local uniform topology and they satisfy Z γ, n ≤ wγ, n in S. (3.60)At end, the sequence {Z γ, n } n is nondecreasing. Hence, up to a subsequence, { wγ, n } converges locally uniformly in S to some wγ which satisfies

	and				
	-	1 2	∇ |∇ w| 2 lim	w(σ) = ∞.	(3.59)
			ρ(σ)→0		

  .76) Furthermore Z * γν , n and wγν, n are locally bounded in S, relatively compact for the local uniform topology and they satisfy Z * γν , n ≤ w γν , n in S.

	(3.77)

  .78) is infinity harmonic in C S and vanishes on ∂C S . Proof of Theorem E. Step 1: Existence of β s . The proof follows the one of Theorem D, hence we indicate only the main streamlines. We consider a decreasing sequence of smooth spherical domains {S k } such that S ⊂ S k+1 ⊂ S k+1 ⊂ S k and int

	3.4 Proof of Theorems E and F

k S k = S. Such a sequence of domains {S k } exists since ∂S = ∂S c . To each domain we associate the positive exponent β k := β s k and the corresponding spherical p-harmonic function ψ k