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Separable infinite harmonic functions in cones

Marie-Françoise Bidaut-Véron

Marta Garcia-Huidobro

Laurent Véron

Abstract We study the existence of separable infinite harmonic functions in any cone of R
N vanishing on its

boundary under the form u(r, σ) = r−βω(σ). We prove that such solutions exist, the spherical part ω satisfies

a nonlinear eigenvalue problem on a subdomain of the sphere SN−1 and that the exponents β = β+ > 0 and

β = β
−
< 0 are uniquely determined if the domain is smooth.
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1 Introduction

Let S be a C3 subdomain of the unit sphere SN−1 of RN and CS := {λσ ∈ R
N : λ > 0, σ ∈ S} is the

positive cone generated by S. In this paper we study the existence of positive solutions of

∆∞u :=
1

2
∇ |∇u|2 .∇u = 0 (1.1)

in CS vanishing on ∂CS \ {0} under the form

u(x) = u(r, σ) = r−βω(σ) (1.2)

1



M.-F. Bidaut-Véron, M. Garcia Huidobro, L. Véron 2

where β ∈ R and (r, σ) ∈ R+ × SN−1 are the spherical coordinates R
N ; such a function u is called a

separable infinite harmonic function. The function ω satisfies the spherical infinite harmonic problem in

S
1

2
∇′ |∇′ω|2 .∇′ω + β(2β + 1) |∇′ω|2 ω + β3(β + 1)ω3 = 0 in S

ω = 0 on ∂S
(1.3)

where ∇′ is the covariant gradient on SN−1 for the canonical metric and (a, b) 7→ a.b the associated

quadratic form. The role of the infinite Laplacian for Lipschitz extension of Lipchitz continuous func-

tions defined in a domain has been pointed out by Aronsson in his seminal paper [1]. When the infinity

Laplacian ∆∞ is replaced by the p-Laplacian, the research of regular (β < 0) separable p-harmonic

functions has been carried out by Krol [7] in the 2-dim case and by Tolksdorff [13] in the general case.

Following Krol’ s method, Kichenassamy and Véron [9] studied the 2-dim singular case (β > 0). Fi-

nally, by a completely different approach and in a more general setting Porretta and Véron [12] studied

the general case. In that case, the function ω satisfies the spherical p-harmonic problem in S

div′
(

(β2ω2 + |∇′ω|2) p−2
2 ∇′ω

)

+ βλβ(β
2ω2 + |∇′ω|2) p−2

2 ω = 0 in S

ω = 0 on ∂S
(1.4)

where λβ = β(p − 1) + p−N and div′ is the divergence operator acting on vector fields in TSN−1.

Following an idea which was introduced by Lasry and Lions [11], Porretta-Véron’s method was to

transform the equation (1.4) by setting

w = − 1

β
lnω (1.5)

in the case β > 0. The function w satisfies the new problem

−div′
(

(

1 + |∇′w|2
)p/2−1 ∇′w

)

+
(

1 + |∇′w|2
)p/2−1 (

β(p− 1)|∇′w|2 + λβ

)

= 0 in S

lim
ρ(σ)→0

w(σ) = ∞,
(1.6)

where ρ(σ) := dist (σ, ∂S) is the distance is understood in the sense of the geodesic distance on S.

In this article we borrow ideas used in [12] to transform problem (1.1) by introducing the function

w defined by (1.5). Then w satisfies, in the viscosity sense,

−1

2
∇′
∣

∣∇′w
∣

∣

2
.∇′w + β

∣

∣∇′w
∣

∣

4
+ (2β + 1)

∣

∣∇′w
∣

∣

2
+ β + 1 = 0 in S

lim
ρ(σ)→0

w(σ) = ∞.
(1.7)

We first prove

Theorem A. Let S ⊂ SN−1 be a proper subdomain of SN−1 with a C3 boundary. Then for any β > 0
there exists a Lipschitz continuous function w and a unique λ(β) > 0 such that

−1

2
∇′
∣

∣∇′w
∣

∣

2
.∇′w + β

∣

∣∇′w
∣

∣

4
+ (2β + 1)

∣

∣∇′w
∣

∣

2
+ λ(β) = 0 in S

lim
ρ(σ)→0

w(σ) = ∞.
(1.8)
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where ρ(.) is the geodesic distance from points in S to ∂S.

We then prove that there exists a unique β such that λ(β) = β + 1. In a similar way we study the

regular case with β < 0 and we obtain

Theorem B. Let S ⊂ SN−1 be subdomain of M with a C3 boundary. Then there exist exactly two

real numbers β+ > 0 and β− < 0 and at least two positive functions ω+ and ω− in C1,1(S) (up

to multiplication by constants) such that the two functions u+ and u− defined in CS by u+(r, σ) :=
r−β+ω+(σ) and u−(r, σ) := r−β−ω−(σ) are infinite harmonic in CS and vanish on ∂CS \{0} and ∂CS

respectively. Furthermore β+ and β− are decreasing functions of S for the inclusion order relation on

sets.

The previous results can be extended to general regular domains on a Riemannian manifold.

In the special case of a rotationally symmetric domain S we have a more precise result which allows

us to characterize all the separable infinite harmonic functions in CS which keep a constant sign and

vanish on ∂CS \ {0}. We denote by φ ∈ (0, π) the azimuthal angle from the North pole N on SN−1.

Theorem C. Let Sα be the spherical cap with azimuthal opening α ∈ (0, π]. Then there exist two positive

functions ω+ and ω− in C∞(S), vanishing on ∂S, such that the two functions

u+(r, σ) = r
− π2

4α(π+α)ω+(σ), (1.9)

and

u−(r, σ) = r
π2

4α(π−α)ω−(σ), (1.10)

are infinite harmonic in CSα and vanish on ∂CSα \ {0}. The two functions ω+ and ω− are unique up to

multiplication by constants and depend only on the variable φ ∈ (0, α].

This study reduced to an ordinary differential equation which has been already treated by T. Bhat-

tacharya in [4] and [5]. But for the sake of completeness we present it in the last section of the present

paper.

Using these previous results we prove the existence of separable infinite harmonic functions in almost

any cone CS .

Theorem D. Assume S ⊂ SN−1 is an outward accessible domain, that is ∂S = ∂S
c
. Then there exist

two positive exponents βM
+ ≥ βm

+ and two positive functions ωM
+ and ωm

+ in C∞(S), vanishing on ∂S
such that

uM+ (r, σ) = r−βM
+ ωM

+ (σ) and um+ (r, σ) = r−βm
+ ωm

+ (σ), (1.11)

are infinite harmonic in CS and vanish on ∂CS \ {0}.

Note that a similar result holds if one considers regular infinite harmonic functions in CS which

vanish on ∂CS .

Acknowledgements This article has been prepared with the support of the collaboration programs ECOS

C14E08 and FONDECYT grant 1160540 for the three authors.
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2 The General case

We assume that (r, σ) ∈ R+×SN−1 are the spherical coordinates of x ∈ R
N . If u is a C1 function, then

∇u = ure+ 1
r∇′u where e = x

|x| and ∇′ is the tangential gradient of u(r, .) identified to the covariant

gradient thanks to the canonical imbedding of SN−1 into R
N . Then |∇u|2 = u2r +

1
r2 |∇′u|2, thus

−∆∞u = −
(

u2r +
1

r2
|∇′u|2

)

r

ur −
1

r2
∇′

(

u2r +
1

r2
|∇′u|2

)

.∇′u = 0.

A solution −∆∞u = 0 which has the form u(x) = u(r, σ) = r−βω(σ) satisfies, in the viscosity sense,

the spherical infinite harmonic equation

1

2
∇′ |∇′ω|2 .∇′ω + (2β + 1) |∇′ω|2 ω + β3(β + 1)ω3 = 0. (2.1)

Theorem 2.1. For any C3 domain S ⊂ SN−1 there exists a unique βs > 0 and one nonnegative function

ω ∈ C0,1(S) solution of

−1

2
∇′|∇′ω|2.∇′ω = (2β + 1)|∇′ω|2w + β3(β + 1)ω3 in S

ω = 0 in ∂S.
(2.2)

such that the function (r, σ) 7→ us(r, σ) := r−βsω(σ) is positive and ∞-harmonic in the cone Cs =
{x = λσ ∈ R

N : λ > 0, σ ∈ S} and vanish on ∂S \ {0}.

Following Porretta-Veron’s method, we transform the eigenvalue problem into a large solution prob-

lem with absorption by setting

w = − 1

β
lnω. (2.3)

Therefore the formal new problem is to prove the existence of a unique β > 0 and of a nonnegative

function w such that

1

2
∇′|∇′w|2.∇′w − β|∇′w|4 − (2β + 1)|∇′w|2 = β + 1 in S

w = ∞ in ∂S.
(2.4)

The two problems are clearly equivalent for C2 solutions. Since the mapping w 7→ ω is smooth and

decreasing, it exchanges supersolutions (resp. subsolutions) into subsolutions (resp. supersolutions).

Therefore the two problems (2.2)-(2.4) are also equivalent if we deal with continuous viscosity solutions.

In order to increase the regularity of the solutions and to avoid the difficulties coming form the fact the

above problem is invariant if we add a constant to a solution, instead of (2.4) we consider the regularized

problem with absorption

−δ∆w − 1

2
∇′|∇′w|2.∇′w + γ|∇′w|4 + (2γ + 1)|∇′w|2 + ǫw = 0 in S

w = ∞ in ∂S,
(2.5)
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where ǫ, δ are two positive parameters. We will obtain below local estimates on ∇′w independent of ǫ and

δ. Thanks to these estimates we will let successively δ and ǫ to 0 and obtain that, up to a constant, the term

ǫw converges to some unique λβ called the ergodic constant although it has a probabilist interpretation

only in the case of the ordinary Laplacian [11]. The limit problem of (2.5) is the following

−1

2
∇′|∇′w|2.∇′w + γ|∇′w|4 + (2γ + 1)|∇′w|2 + λβ = 0 in S

w = ∞ in ∂S.
(2.6)

2.1 Two-sided estimates

We denote the "positive" geodesic distance ρ(σ) = dist (σ, ∂S). If σ ∈ Sc we set ρ̃(σ) = −dist (σ, ∂S).
If σ1 and σ2 are not antipodal points there exists a unique minimizing geodesic between σ1 and σ2. It is

an arc of a Riemannian circle (or great circle). The geodesic distance between σ1 and σ2 is denoted by

ℓ(σ1, σ2). It coincides with the angle determined by the two straight lines from 0 to σ1 and 0 toσ2. At

this point it is convenient to use Fermi coordinates in S in a neighborhood of ∂S. We set

Sτ = {σ ∈ S : ρ(σ) < τ} , S′
β = S \ Sτ , Σβ = {σ ∈ S : ρ(σ) = τ}.

If τ ≤ τ0 for any σ ∈ Sτ there exists a unique zσ ∈ ∂S such that ℓ(σ, zσ) = ρ(σ). These Fermi

coordinates of σ are defined by (τ, z) ∈ [0, τ0)× ∂S. The mapping Π such that

Π(σ) = (ρ(σ), zσ) ∀σ ∈ Sτ0

is a C2 diffeomorphism from Sτ0 into [0, τ0)× ∂S. The expression of the Laplace-Beltrami operator in

Sτ0 is given in [3]:

∆′u(σ) =
∂2u

∂τ2
− (N − 2)H

∂u

∂τ
+ ∆̃′

zu ∀σ = Π−1((τ, z)) (2.7)

where H = H(τ, z) is the mean curvature of Στ and ∆̃′
z is a second order elliptic operator acting on

functions defined on Στ . If g = (gij) is the metric tensor on SN−1 and by convention, |g| = det(gij),
this operator admits the following expression

∆̃′
zu =

1
√

|g|

N−2
∑

j=1

∂

∂zj

(

√

|g|aj
∂u

∂zj

)

for some aj > 0 if we take for coordinates curve-frame zj a system of orthogonal 1-dim great circles

on Γ intersecting at zσ (these circle corresponds to the (N − 2)-principal curvatures at this points). The

coefficients aj depend both on z and τ . Thus, if u depends only on ρ,

∆′u(σ) =
∂2u

∂τ2
− (N − 2)H

∂u

∂τ
. (2.8)

The expression of H is given in [3] and we can assume that τ0 is small enough so that H remains

bounded.
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We extend the geodesic distance ρ(x) = dist (x, ∂S) as a smooth positive function so that ρ̃(x) :=
ρ(x) if ρ(x) ≤ τ0 and thus, it the same neighborhood of ∂S, ∇ρ̃(x) = nzx , the unit outward normal

vector to ∂S at the point zx = Proj∂Ω(x).

If w depends only on ρ, (2.6) becomes

δw′′ − (N − 2)Hw′ +w′2w′′ − γw′4 − (2γ + 1)w′2 − ǫw = 0 in Sτ0

w = ∞ in ∂S.
(2.9)

In the sequel we put

Pδ(u) := −δ∆u− 1

2
∇′|∇′u|2.∇′u+ γ|∇′u|4 + (2γ + 1)|∇′u|2 + ǫu = P̃δ(u) + ǫu. (2.10)

Proposition 2.2. There exist τ1 ∈ (0, τ0], three positive constants M , ǫ0 and δ0 and two positive func-

tions w∗, w∗ ∈ C2(S) such that w∗ > w∗ in Sτ , w∗ +
1

γ
ln ρ ∈ L∞(S) and w∗ +

1

γ
ln ρ ∈ L∞(S) with

the property that for any ǫ ∈ (0, ǫ0] and δ ∈ (0, δ0] the two functions

w̄(σ) = w∗ +
M

ǫ
(2.11)

and

w(σ) = w∗ −
M

ǫ
(2.12)

are respectively a supersolution and a subsolution of Pδ(u) = 0. Furthermore any solution w of problem

(2.6) satisfies w ≤ w ≤ w̄.

Proof. Let a > 0. We first notice by a standard computation that the solutions of

δy′′ + y′2y′′ − γy′4 − ay′2 = 0 in (0, 1)
y′(0) = −∞,

(2.13)

are negative and given implicitely by

δ

ay′(ρ)
+

(

1

γ
− δ

a

)√

γ

a
tan−1

(
√

a

γ

1

y′(ρ)

)

= −ρ. (2.14)

In order to have a global estimate, we set y′ = −z−1, thus (2.14) becomes

δz

a
+

(

1

γ
− δ

a

)√

γ

a
tan−1

(

z

√

a

γ

)

= ρ, (2.15)

provided a > γδ. Since tan−1
(

z
√

a
γ

)

≤ z
√

a
γ , we derive

z(ρ) ≥ γρ ⇐⇒ 0 > y′(ρ) ≥ − 1

γρ
∀ρ > 0, (2.16)

with equality only if ρ = 0. Since we can write (2.15) as

√

γ

a

δ

a

(

z

√

a

γ

)

+

(

1

γ
− δ

a

)√

γ

a
tan−1

(

z

√

a

γ

)

= ρ ≥ tan−1

(

z

√

a

γ

)

, (2.17)
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we obtain

z ≤
√

γ

a
tan

(

ρ
√
aγ
)

⇐⇒ y′(ρ) ≤ −
√

a

γ
cot
(

ρ
√
aγ
)

∀ρ > 0. (2.18)

Finally

− 1

γρ
≤ y′(ρ) ≤ −

√

a

γ
cot
(

ρ
√
aγ
)

∀ρ ∈ (0, τ0]. (2.19)

and in particular, for any τ1 ∈ (0, τ0],

|y′(ρ)| ≥
√

a

γ
cot
(

τ1
√
aγ
)

∀ρ ∈ (0, τ1]. (2.20)

From this estimate we derive

y(ρ0) +
1

γ
ln

(

sin ρ0
√
aγ

sin ρ
√
aγ

)

≤ y(ρ) ≤ y(ρ0) +
1

γ
ln

(

ρ0
ρ

)

∀ρ ∈ (0, τ1]. (2.21)

The solution y depends on the value of a and δ. Since ∂S is smooth, we can assume that (N −2) |H|
is bounded by some constant m ≥ 0 in Sτ0 . Denote by wτ a solution satisfying w(τ) = 0, then it is

positive in Sτ and

Pδ(wτ ) = δ(N − 2)Hw′
τ + (2γ + 1− a)w′2

τ + ǫwτ

≥ |w′
τ |((2γ + 1− a)|w′

τ | −m)

≥ |w′
τ |((2γ + 1− a)

√

a

γ
cot
(

τ
√
aγ
)

−m).

If we take 1 < a1 < 2γ + 1, we choose τ := τ1 ∈ (0, τ0] such that

(2γ + 1− a1)

√

a

γ
cot
(

τ
√
a1γ
)

> m, (2.22)

which implies that wτ is a supersolution in Sτ . In assuming now a := a2 > 2γ + 1, we also have,

Pδ(wτ ) ≤ w′
τ ((2γ + 1− a)w′

τ −m) + ǫwτ

≤ |w′
τ | ((2γ + 1− a)|w′

τ |+m) + ǫwτ

≤ |w′
τ |
(

m− (a− 2γ − 1)

√

a

γ
cot
(

τ
√
aγ
)

)

+ ǫwτ .

We choose a2 = 4γ + 2− a1, then

m− (a− 2γ − 1)

√

a

γ
cot (τ

√
aγ) ≤ −c < 0 ∀τ ∈ (0, τ1].

Therefore

Pδ(wτ ) ≤ wτ

(

ǫ+
w′
τ

wτ

)

Since w′
τ1 < 0 and wτ1(τ1) = 0+, there exists ǫ0 > 0, such that for any ǫ ∈ (0, ǫ0]

ǫ+
w′
τ1(ρ)

wτ1(ρ)
≤ −1 ∀ρ ∈ (0, τ1].
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Therefore wτ1,a1 and wτ1,a2 are respectively supersolution and subsolution of Pδ(u) = 0 in Sτ1 . We

extend them in S′
τ1 as smooth functions w̃τ1,a1 and w̃τ1,a2 in order

∣

∣

∣
P̃δ(w̃τ1,aj )

∣

∣

∣
to remain bounded by

some constant M . Finally w̄ = w̃τ1,a1+Mǫ−1 is a supersolution and w = w̃τ1,a2+Mǫ−1 is a subsolution

of Pδ(u) = 0.

Next, we replace w by

wh(δ) = w(δ + h)

and w̄ by

w̄h = w̄(δ − h)

for h small enough, we still have a sub and a super solution of Pδ(u) = 0 in Sτ1 and Sτ1 \ Sh. In the

remaining part of S, we extend smoothly wh and w̄h in order P̃δ(wh) and P̃δ(w̄h) be bounded. We

can adjust M in order Pδ(wh) ≤ 0 and Pδ(w̄h) ≥ 0 in whole S, and all these manipulations can be

done uniformly with respect to h and ǫ. If w is any C2 solution of (2.5), we prove that it dominates the

subsolution wh in S: actually, if we assume that wh and w are not ordered in S, there exists σ0 ∈ S such

that

wh(σ0)− w(σ0) = max{wh(σ)− w(σ) : σ ∈ S} > 0.

Since the two functions are C2,

∇wh(σ0) = ∇w(σ0) and D2wh(σ0) ≤ D2w(σ0),

where D2 is the Hessian form, in the sense of quadratic forms, i.e.

D2wh(σ0)(∇wh(σ0),∇wh(σ0)) ≤ D2w(σ0)(∇w(σ0),∇w(σ0)).

This implies Pδ(wh)(σ0) > Pδ(w)(σ0) = 0, contradiction. Therefore

wh ≤ w in S, (2.23)

uniformly with respect to h. Similarly

w̄h ≥ w in S. (2.24)

Letting h to 0 the claim follows. �

2.2 Gradient estimates

If σ0 ∈ SN−1 and R < π, we set BR(σ0) = {σ ∈ SN−1 : ℓ(σ, σ0) < R}.

Proposition 2.3. Let 0 ≤ δ, ǫ ≤ 1 and w be a smooth solution of

−1

2
∇′|∇′w|2.∇w − δ∆w + γ|∇′w|4 + (2γ + 1)|∇′w|2 + ǫw = 0 in BR(σ0) ⊂ S, (2.25)

where S is a domain of SN−1. Then there exists c = c(N) > 0 such that

|∇′w(σ0)| ≤
c

γR
. (2.26)
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Proof. We set z = |∇w|2, then 2∆∞w = ∇′|∇′w|2.∇′w = ∇′z.∇′w. We define the linearized operator

of ∆∞ at w following h by

Bw(h) :=
d

dt
∆∞(w + th)⌊t=0=

1

2
∇′h.∇′z +∇′w.∇′(∇′w.∇′h).

Thus the linearized operator of ∆∞ + δ∆ at w following h is

Lw(h) = Bw(h) + δ∆h. (2.27)

Thus

Lw(z) =
1

2
|∇′z|2 +∇′w.∇′(∇′.∇z) + δ∆z.

We can re-write (2.25) under the form

∇′w.∇z = 2
(

γz2 + (2γ + 1)z + ǫw − δ∆w
)

. (2.28)

Thus

∇′(∇′w.∇′z) = 2
(

(2γz + 2γ + 1)∇′z + ǫ∇′w − δ∇′(∆w)
)

,

and then

∇w.∇′(∇′w.∇′z) = 2
(

(2γz + 2γ + 1)∇′z.∇′w + ǫz − δ∇′(∆w).∇′w
)

.

By the Weitznböck formula, since Ricc (SN−1) = (N−2)g0 (g0 is the metric tensor on SN−1), we have

1

2
∆z =

∣

∣D2w
∣

∣

2
+∇′(∆w).∇′w + (N − 2)|∇′w|2

=
∣

∣D2w
∣

∣

2
+∇′(∆w).∇′w + (N − 2)z.

Hence

Lw(z) =
1

2
|∇z|2 + 2 ((2γz + 2γ + 1)∇′z.∇′w + 2ǫz − 2δ∇′w.∇′(∆w))

+ 2δ
∣

∣D2w
∣

∣

2
+ 2δ∇′(∆w).∇′w + 2δ(N − 2)z.

Expanding the above identity, we see that the terms of order 3 disappear, hence

Lw(z) =
1

2
|∇z|2 + 2 ((2γz + 2γ + 1)∇′z.∇′w + 2ǫz) + 2δ

∣

∣D2w
∣

∣

2
+ 2δ(N − 2)z. (2.29)

If ξ ∈ C2
c (BR(σ0)), we set Z = ξ2z and we derive

Lw(Z) = Bw(ξ
2z) + δ∆(ξ2z)

= ξ2Lw(z) + zLwξ
2 + 2(∇′w.∇′ξ2)(∇′w.∇z) + 2δ∇′ξ2.∇z,

where

Lwξ
2 =

1

2
∇′z.∇′ξ2 +∇′w.∇′(∇′w.∇′ξ2) + δ∆ξ2

=
1

2
∇′z.∇′ξ2 +D2w(∇′ξ2).∇′w +D2ξ2(∇′w).∇′w + δ∆ξ2

= ∇′z.∇′ξ2 +D2ξ2(∇′w).∇′w + δ∆ξ2

≥ ∇′z.∇′ξ2 − z
∣

∣D2ξ2
∣

∣+ δ∆ξ2.
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By Schwarz inequality, (∆w)2 ≤ 1
N−1

∣

∣D2w
∣

∣

2
, we derive from (2.27) and (2.28),

Lw(z) ≥
1

2
|∇z|2 + 4 (2γz + 2γ + 1)

(

γz2 + (2γ + 1)z + ǫw − δ∆w
)

+ 4ǫz

+
2δ

N − 1
(∆w)2 + 2δ(N − 2)z

≥ 1

2
|∇z|2 + δ

N − 1
(∆w)2 + 4γ2z3 − c0,

for some c0 = c0(N, γ) > 0. In the sequel the different positive constants cj which will appear bellow

depend only on N and γ. This implies

Lw(Z) ≥ z
(

∇′z.∇′ξ2 − z
∣

∣D2ξ2
∣

∣+ δ∆ξ2
)

+ 2(∇′w.∇′ξ2)(∇′w.∇z) + 2δ∇′ξ2.∇z

+ ξ2
(

1

2
|∇z|2 + δ

N − 1
(∆w)2 + 4γ2z3 − c0

)

.
(2.30)

We choose ξ such that 0 ≤ ξ ≤ 1, |∇ξ| ≤ c1R
−1 and

∣

∣D2ξ
∣

∣ ≤ c1R
−2, then

(z + 2δ)
∣

∣∇′z.∇′ξ2
∣

∣ ≤ c1
(z + 2δ)ξ

R

∣

∣∇′z
∣

∣ ≤ ξ2

8

∣

∣∇′z
∣

∣

2
+ c2

(z + 2δ)2

R2
,

∣

∣z
(

δ∆ξ2 − z
∣

∣D2ξ2
∣

∣

)∣

∣ ≤ c3(z + 2δ)2

R2
∣

∣∇′w.∇z
∣

∣ ≤
√
z |∇z| ,

∣

∣∇′w.∇ξ2
∣

∣ ≤ 2ξ |∇w| |∇ξ| ≤ 2c1ξ
√
z

R
,

∣

∣2(∇′w.∇′ξ2)(∇′w.∇z)
∣

∣ ≤ 4c1ξz |∇z|
R

≤ ξ2

8

∣

∣∇′z
∣

∣

2
+ c4

z2

R2
.

We consider a point z0 ∈ BR where Z is maximal, then Lw(Z)(z0) ≤ 0, which implies that at this

point,

ξ2
(

1

2
|∇z|2 + δ

N − 1
(∆w)2 + 4γ2z3 − c0

)

≤ ξ2

4
|∇z|2 + c5(z + 2δ)2

R2
. (2.31)

We assume R ≤ 1 and 2δ ≤ 1, we multiply by ξ4 and obtain

1

4

∣

∣ξ3∇z
∣

∣

2
+

δξ6

N − 1
(∆w)2 + 4γ2(ξ2z)3 ≤ c6((ξ

2z)2 + 1)

R2
+ c0. (2.32)

From the inequality

4γ2(ξ2z)3 ≤ c6(ξ
2z)2

R2
+

c7
R2

,

we deduce

ξ2z ≤ c8
R2

with c8 = max
{

c7,
c6
γ2

}

. (2.33)

If we assume that ξ(σ0) = 1, we finally infer

|∇w(σ0)| ≤
√
c8
R

, (2.34)

which is the claim. �

As an immediate consequence, we have
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Corollary 2.4. Let 0 ≤ ǫ, δ ≤ 1. If w is a solution of (2.5) in S, it satisfies

|∇w(σ)| ≤ c

γρ(σ)
∀σ ∈ S, (2.35)

for some c > 0 depending only of N .

2.3 Proof of Theorem A

We write

w = wδ,ǫ,γ

and

−δ∆w − 1

2
∇ |∇′w|2 ∇′w + γ |∇′w|4 + (2γ + 1) |∇′w|2 + ǫw = 0, (2.36)

and wδ,ǫ,γ satisfies the estimate (2.35). By Proposition 2.2 it satisfies also

−1

γ
ln ρ− M

ǫ
≤ w∗ ≤ wδ,ǫ,γ ≤ w∗ +

M

ǫ
≤ −1

γ
ln ρ+

M

ǫ
(2.37)

The set of functions {wδ,ǫ,γ}ǫ,δ is clearly locally equicontinuous in S. By classical stability results on

viscosity solutions (see e.g. [8, Chap 3]), there exist a subsequence {wδn,ǫ,γ} and a function wǫ,γ such

that wδn,ǫ,γ → wǫ,γ, and wǫ,γ is a viscosity solution of

−1

2
∇′|∇′w|2.∇′w + β|∇′w|4 + (2β + 1)|∇′w|2 + ǫw = 0 in S

w = ∞ in ∂S.
(2.38)

Furthermore wǫ,γ satisfies the same estimates (2.35) and (2.37) as wδ,ǫ,γ. Put w̃ǫ,γ(σ) = wǫ,γ(σ) −
wǫ,γ(σ0) with σ0 ∈ Ω, then w̃ := w̃ǫ,γ satisfies

−1

2
∇ |∇′w̃|2∇′w̃ + γ |∇′w̃|4 + (2γ + 1) |∇′w̃|2 + ǫw̃ + ǫw(σ0) = 0. (2.39)

Moreover

|w̃ǫ,γ(σ)| = |wǫ,γ(σ)− wǫ,γ(σ0)| ≤ max

{

c

γρ(τ)
: τ ∈ [σ, σ0]

}

|σ − σ0|.

Thus, as ǫ → 0, ǫw̃ǫ,γ → 0 locally uniformly in S. Up to some subsequence {ǫn}, w̃ǫn,γ → wγ locally

uniformly in S and ǫnwǫn,γ(σ0) → λ(γ). As in [12] the expression λ(γ) does not depend on σ0. By

analogy with the semilinear case studied in [11], this last limit is called the ergodic limit. By the same

stability results of viscosity solutions, we infer that wγ is a positive solution of

−1

2
∇ |∇′w|2 ∇′w + γ |∇′w|4 + (2γ + 1) |∇′w|2 + λ(γ) = 0 in S

w = ∞ on ∂S.
(2.40)
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Furthermore, there holds from (2.37) and (2.35),

∣

∣

∣

∣

wγ +
1

γ
ln ρ

∣

∣

∣

∣

≤ M, (2.41)

and

|∇wγ | ≤
c

γρ
. (2.42)

Proposition 2.5. For any C3 domain S ⊂ SN−1, the ergodic limit λ(γ) := λ(γ, S) is uniquely de-

termined by γ. Furthermore it is a continuous decreasing function of γ and S for the order relation of

inclusion.

Proof. Assume that the set {ǫwǫ(σ0)} of values of the solutions of (2.40) at σ0 admits two different clus-

ter points λ1 and λ2. Then there exist two locally Liptchitz continuous functions w1 and w2 satisfying

−1

2
∇′|∇′wi|2.∇′wi + γ|∇′wi|4 + (2γ + 1)|∇′wi|2 + λi = 0 in S, (2.43)

in the viscosity sense, and such that

wi(σ) = −1

γ
ln ρ(σ) (1 + o(1)) as ρ(σ) → 0. (2.44)

We can assume that λ1 > λ2. For ǫ > 0 let v = (1 + ǫ)w2. Then

−1

2
∇′|∇′v|2.∇′v + (1 + ǫ)−1γ|∇′v|4 + (1 + ǫ)(2γ + 1)|∇′v|2 + (1 + ǫ)3λ2 = 0 in S. (2.45)

For X > 0, we put

f(X) =
γǫ

1 + ǫ
X2 − (2γ + 1)ǫX + λ1 − (1 + ǫ)3λ2.

Then

f(X) ≥ f(X0) = f

(

(2γ + 1)(1 + ǫ)

2γ

)

= −ǫ(1 + ǫ)(2γ + 1)2

4γ
+ λ1 − (1 + ǫ)3λ2.

Therefore there exists ǫ0 > 0 such that for any X ≥ 0, f(X) ≥ 0, or equivalently

(1 + ǫ)−1γX2 + (1 + ǫ)(2γ + 1)X + (1 + ǫ)3λ2 ≤ γX2 + (2γ + 1)X + λ1. (2.46)

This implies that

−1

2
∇′|∇′v|2.∇′v + γ|∇′v|4 + (2γ + 1)|∇′v|2 + λ1 ≥ 0 in S, (2.47)

in the viscosity sense. Since w1 < v near ∂S, it follows from comparison principle that w1 < v in S.

Letting ǫ → 0 yields

w1 ≤ w2 in S. (2.48)
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Since for any k ∈ R, w1 + k satisfies the same equation as w1 and the same estimate (2.44) as the wi we

obtain a contradiction. Thus λ = λ(γ) is uniquely determined.

For proving monotonicity, assume γ1 > γ2 > 0 and let wǫ,1 and wǫ,2 be solutions of

−1

2
∇′|∇′wǫ,i|2.∇′wǫ,i + γi|∇′wǫ,i|4 + (2γi + 1)|∇′wǫ,i|2 + ǫwǫ,i = 0 in S, (2.49)

such that

wǫ,i(σ) = − 1

γi
ln ρ(σ) (1 + o(1)) as ρ(σ) → 0. (2.50)

Then

−1

2
∇′|∇′wǫ,1|2.∇′wǫ,1 + γ2|∇′wǫ,1|4 + (2γ2 + 1)|∇′wǫ,1|2 + ǫwǫ,1 ≤ 0.

Since wǫ,1 ≤ wǫ,2 near ∂S, it follows by comparison principle that wǫ,1 ≤ wǫ,2 in S and in particular

ǫwǫ,1 ≤ ǫwǫ,2. Since λ1 = limn→∞ ǫwǫn,1(x0) and λ2 = limn→∞ ǫwǫn,2(x0), we infer that λ1 ≤ λ2.

For proving the continuity, let {γn} be a sequence converging to γ and let wn be corresponding

solutions of

−1

2
∇′|∇′wn|2.∇′wn + γn|∇′wn|4 + (2γn + 1)|∇′wn|2 + λ(γn) = 0 in S, (2.51)

subject to
∣

∣

∣

∣

wn(σ) +
1

γn
ln ρ(σ)

∣

∣

∣

∣

≤ K, (2.52)

for some K > 0 independent of n. Since {wn} is locally bounded in W 1,∞
loc (Ω) we can extract sequences,

denoted by {wnk
}, {λ(wnk

)} such that λ(wnk
) → λ̄ and wnk

converges locally uniformly to a viscosity

solution w of

−1

2
∇′|∇′w|2.∇′w + γ|∇′w|4 + (2γ + 1)|∇′w|2 + λ̄ = 0 in S, (2.53)

subject to w(σ) = −1

γ
ln ρ(σ) (1 + o(1)) as ρ(σ) → 0. The existence of such a function implies that

λ̄ = λ(γ). Thus the whole sequence {λ(γn)} converges to λ(γ), a fact which implies the continuity.

Next, let S1 ⊂ S2 be two C3 subdomains of SN−1. We denote by wδ,ǫ,γ,Sj
, j = 1, 2, the solutions of

(2.5) respectively in S1 and S2. Since these solutions are limit of solutions with finite boundary values

and that the maximum principle holds, we infer that wδ,ǫ,γ,S2 ≤ wδ,ǫ,γ,S1 in S1. Letting δ → 0 yields

wǫ,γ,S2 ≤ wǫ,γ,S1 . Taking σ0 ∈ S1 and since the ergodic constant is uniquely determined, we have

ǫwǫ,γ,S2(σ0) ≤ ǫwǫ,γ,S1(σ0) and thus λ(γ, S2) ≤ λ(γ, S1) and finally λ(γ, S2) ≤ λ(γ, S1).
�

2.4 Proof of Theorem B

We prove below the following proposition using the result of Theorem C, which proof does not depend

on the previous constructions.

Proposition 2.6. For any C3 domain S ⊂ SN−1, there exists a unique β := βS such that λ(β) = β+1.

Furthermore βS is a decreasing function of S for the order relation between spherical domains.
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Proof. The function γ 7→ λ(γ, S)−γ is continuous and decreasing. For ǫ > 0 we consider two spherical

caps Si ⊂ S ⊂ Se; by Proposition 2.5

λ(γ, Se) ≤ λ(γ, S) ≤ λ(γ, Si), (2.54)

then

λ(γ, Se)− γ ≤ λ(γ, S) − γ ≤ λ(γ, Si)− γ. (2.55)

By Theorem C, there exists γ = βSe and γ = βSi
such that

λ(βSe , Se)− βSe = 1 and λ(βSi
, Si)− βSi

= 1,

and βSe < βSi
unless λ(βSe , Se) = λ(βSi

, Si) and Si = Se. This implies that

λ(βSe , S)− βSe ≥ 1 and λ(βSi
, S)− βSi

≤ 1. (2.56)

By continuity there exists a unique β = βS ∈ [βSe , βSi
] such that λ(βS , S)− βS = 1. To this exponent

β corresponds a locally Lipschitz continuous function w solution of problem (2.4). Then ω = e−βw is a

viscosity solution of (2.2). Notice also that the construction of βS and the monotonicity of S 7→ λ(γ, S)
imply that S 7→ βS is decreasing.

Similarly we can consider separable infinite harmonic functions under the form (1.2) with negative

β < 0. We set β̃ = −β, then (2.2) is replaced by

−1

2
∇′|∇′ω|2.∇′ω = β̃(2β̃ − 1)|∇′ω|2w + β̃3(β̃ − 1)ω3 in S

ω = 0 in ∂S.
(2.57)

If ω is a positive solution of (2.57), we set

w = − 1

β̃
lnω.

Then w satisfies

−1

2
∇′
∣

∣∇′w
∣

∣

2
.∇′w + β̃

∣

∣∇′w
∣

∣

4
+ (2β̃ − 1)

∣

∣∇′w
∣

∣

2
= β̃ − 1 in S

lim
ρ(σ)→0

w(σ) = ∞,
(2.58)

This equation is treated similarly as (2.4). �

Remark. It is an open problem whether the positive functions which satisfy (2.2) are unique up to the

multiplication by a constant. Up to now the only thing that we can prove is that any two positive solutions

ω1 and ω2 satisfy

0 < infS
ω1

ω2
≤ supS

ω1

ω2
< ∞. (2.59)
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3 The spherical cap problem

3.1 Problem on the circle

For k ∈ N∗, we set

βk =
k2

2k + 1
and β̃k =

k2

1− 2k
. (3.1)

Proposition 3.1. For any k ∈ N
∗ there exists two π

k -anti-periodic C∞ functions ωk and ω̃k positive on

(0, πk ) such that x 7→ |x|−βkωk(
x
|x|) is infinite harmonic and singular in R

2\{0} and x 7→ |x|−β̃k ω̃k(
x
|x|)

is infinite harmonic and regular in R
2.

Proof. We write ∇′ω = ωσe
⊥ with S1 ∼ R/2π. Thus (2.2) becomes

−ω2
σωσσ = β3(β + 1)ω3 + β(2β + 1)ω2

σω, (3.2)

which for ω 6= 0 can be written as

−ω2
σ

ω2

ωσσ

ω
= β(2β + 1)

ω2
σ

ω2
+ β3(β + 1).

We set Y =
ωσ

ω
, then Yσ + Y 2 =

ωσσ

ω
and

−Y 2Yσ = Y 4 + β(2β + 1)Y 2 + β3(β + 1) = (Y 2 + β2)(Y 2 + β(β + 1)).

Standard computation yields

(

β

Y 2 + β2
− β + 1

Y 2 + β(β + 1)

)

Yσ = 1. (3.3)

Case 1. If β = −1, (3.3) becomes

Yσ

Y 2 + 1
= −1, (3.4)

thus

tan−1 Y (σ) = −σ =⇒ Y (σ) = − tanσ =⇒ ω(σ) = sinσ. (3.5)

This corresponds to the fact that the coordinate functions are separable and infinite harmonic.

Case 2. If β(β + 1) > 0, or equivalently either β > 0 or β < −1, since Y is C1 and 4α-periodic, then

kα = π for some k ∈ N
∗. Fixing ω(0) = 0, ωσ(0) > 0, we see from (3.2) that ω has to change sign.

Assuming that σ = α is the first critical point of ω on (0, 4α), we derive

[

tan−1

(

Y

β

)

−
√

β + 1

β
tan−1

(

Y
√

β(β + 1)

)]σ=α

σ=0

= α,

with Y (0) = ∞, Y (α) = 0. This implies

(
√

β + 1

β
− 1

)

π

2
= α ⇐⇒ β =

π2

4(α2 + απ)
.
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If β > 0, the periodicity condition yields

√

β + 1

β
= 1 +

1

k
⇐⇒ β = βk =

k2

1 + 2k
. (3.6)

If β < −1
(

1−
√

β + 1

β

)

π = α,

and the periodicity condition implies

√

β + 1

β
= 1− 1

k
⇐⇒ β = β̃k =

k2

1− 2k
. (3.7)

Case 3. If β(β + 1) < 0 or equivalently −1 < β < 0, we can write (3.3) under the form

d

dσ

(

tan−1

(

Y

β

)

− 1

2

√

β + 1

−β
ln

(

|Y −
√

−β(β + 1)|
Y +

√

−β(β + 1)

))

= 1. (3.8)

Then Y runs from Y (0) = ∞ to Y (α) = 0, but it could happen that Y is not C1 on whole (0, α)
in particular for the value σ0 where Y (σ0) =

√

−β(β + 1). From the equation it would mean that

ωσ(σ0) = 0 i.e. the graph of ω has an horizontal tangent at σ = σ0. We can integrate (3.8) on (0, σ0− ǫ)
and let ǫ → 0. Since β > 0, it yields

π

2
+ tan−1

(

Y (σ0 − ǫ)

β

)

− 1

2

√

β + 1

−β
ln

(

|Y (σ0 − ǫ)−
√

−β(β + 1)|
Y (σ0 − ǫ) +

√

−β(β + 1)

)

= σ0 − ǫ.

The left-hand side expression tends to ∞ when ǫ → 0. Hence there is no such β ∈ (−1, 0). �

Remark. When k = 1 the coordinate functions are infinite harmonic and vanish on a straight line. When

k = 2 the regular solution with −β̃1 =
4
3

u(x, y) = x
4
3 − y

4
3

has been discovered by Aronsson [2]. The corresponding circular function, ω(σ) = (cos σ)
4
3 − (sinσ)

4
3 ,

admits four nodal sets on S1. When k = 1, then β1 = 1
3 . It is proved in [4] that any positive infinite

harmonic function in a half-space which vanishes on the boundary except at one point blows-up like the

separable infinite harmonic function u(r, σ) = r−
1
3ω(σ).

3.2 Proof of Theorem C

The following representation of SN−1 is classical

SN−1 =
{

σ = (sinφσ′, cosφ) : σ′ ∈ SN−2, φ ∈ [0, π]
}

Then ∇′ω = ωφe+∇′
σ′ω where e is a tangent unit downward vector to SN−1 following the great circle

going through the point σ. Then |∇′ω|2 = ω2
φ + |∇′

σ′ω|2, thus, if ω depends only on φ, we have

1

2
∇′|∇′ω|2.∇′ω = ωφφω

2
φ.
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Therefore such a function ω, if it is a C1 solution of (2.2) in the spherical cap Sα defined for φ ∈ (0, α),
satisfies

−ωφφω
2
φ = β(2β + 1)ω2

φωφ + β3(β + 1)ω in (0, α)

ωφ(0) = 0 , ω(α) = 0.
(3.9)

The conclusion follows from Proposition 3.1. �

Remark. If α = π, the exponent β+ is 1
8 and ω := ω

Σc
is a positive solution of

−ω2
σωσσ =

9

4096
ω3 +

5

32
ω2
σω in (−π, π)

ω(−π) = ω(π) = 0.
(3.10)

Then the function u
Σc
(r, σ) = r−

1
8ω

Σc
(σ) is an infinite harmonic function in R

N \L
Σc

, which vanishes

on the half line L
Σc

:= {x = tΣ : t ≥ 0}. The function Y = ωσ

ω can be computed implicitly on (0, π)
thanks to the identity

tan−1(8Y (σ))− 3 tan−1(83Y (σ)) = σ. (3.11)

This yields, with Z = 8Y
3 , tan−1(3Z(σ)) − 3 tan−1(Z(σ)) = σ, hence

3Z − tan(3 tan−1(Z)))

1 + 3Z tan(3 tan−1(Z))
= tan σ, (3.12)

since

tan(3x) =
3 tan x− tan3 x

1− 3 tan2 x
.

This yields

−8Z3

1 + 6Z2 − 3Z4
= tanσ, (3.13)

which gives the value of Y by solving a fourth degree equation and then ω = ω
Σc

by integrating Y .

Using Theorem C we can prove the existence of a singular infinite harmonic function in a cone C
Sκ,α

generated by a spherical annulus Sκ,α of the spherical points with azimuthal angle κ < φ < α.

Proposition 3.2. Assume 0 ≤ κ < α < π and let ν = 1
2 (α − κ). Then there exists a positive singular

infinite harmonic function u
Sκ,α

and a regular infinite harmonic function u
Sκ,α

in C
Sκ,α

which vanish

respectively on ∂C
Sκ,α

\ {0} and ∂C
Sκ,α

under the form u
Sκ,α

(r, σ) = r
−β

Sκ,αω
Sκ,α

and u†
Sκ,α

(r, σ) =

r
β†
Sκ,αω†

Sκ,α
where

β
Sκ,α

=
π2

4ν(π + ν)
and β†

Sκ,α
=

π2

4ν(π − ν)
, (3.14)

and ω
Sκ,α

and ω†
Sκ,α

are positive solutions of (3.2) in Sκ,α with β = β
Sκ,α

and β†
Sκ,α

respectively,

vanishing at κ and α.

Proof. By Theorem C there exists a positive and even solution ω̃ of

ω̃φφω
2
φ = β(2β + 1)ω̃2

φω̃φ + β3(β + 1)ω̃ in (−ν, ν) :=
(

1
2(κ− α), 12 (α− κ)

)

ω(−ν) = 0 , ω(ν) = 0,
(3.15)

with β = β
Sκ,α

or β = β†
Sκ,α

. Then φ 7→ ω(φ) := ω̃(φ + 1
2(κ + α)) is a positive solution of (3.2) in

(κ, α). The proof follows. �
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3.3 Proof of Theorem D

The next technical lemma is a variant of Proposition 3.2 and Proposition 3.2.

Lemma 3.3. Assume 0 < α < π and ǫ, γ > 0. Then the solution v = vǫ,γ,α of

−v′2v′′ + γv′4 + (2γ + 1)v′2 + ǫv = 0 in (0, α)
v(0) = ∞ , v(α) = ∞,

(3.16)

is an increasing function of ǫ. If 0 < σ0 < α, there exists λ = λ(α, γ) = limǫ→0 ǫvǫ,γ,α(σ0) and this

value is independent of σ0. The function ṽ = ṽǫ,γ,α = vǫ,γ,α − vǫ,γ,α(σ0) converges locally uniformly in

(0, α) to a solution v = vγ,α of

−v′2v′′ + γv′4 + (2γ + 1)v′2 + λ = 0 in (0, α)
v(0) = ∞ , v(α) = ∞,

(3.17)

with

λ(α, γ) =
1

4γ3

(

π2

α2
− γ(2γ + 1)

)2

. (3.18)

Furthermore

vγ,α(φ) = −1

γ
lnφ as φ → 0, (3.19)

and

vγ,α(φ) = −1

γ
ln(α− φ) as φ → α. (3.20)

Proof. From the proof of Theorem A, we know that vǫ,γ,α is an increasing function of ǫ. It satisfies

estimates (2.37) and (2.35). Furthermore there exists λ = λ(α, γ) = limǫ→0 ǫvǫ,γ,α(σ0) ≥ 0, which is

a value independent of σ0 ∈ (0, α), and ṽ = ṽǫ,γ,α = vǫ,γ,α − vǫ,γ,α(σ0) converges locally uniformly in

(0, α) to a solution v = vγ,α of (3.17). We set Y = −γv′, then

Y 2Y ′ + Y 4 + γ(2γ + 1)Y 2 + λγ3 = 0 in (0, α)
Y (0) = ∞ , Y (α) = −∞.

(3.21)

We write it under the separable form

(

Y 2

Y 4 + γ(2γ + 1)Y 2 + λγ3

)

Y ′ = −1 ⇔
(

A2

A2 −B2

1

Y 2 +A2
− B2

A2 −B2

1

Y 2 +B2

)

Y ′ = −1,

for some A,B > 0 and with A > B if we assume 2γ + 1 > 2γλ. Actually A2B2 = λγ3 and

A2 +B2 = γ(2γ + 1). Thus

(

A tan−1

(

Y

A

)

−B tan−1

(

Y

B

))′

= B2 −A2 (3.22)

By integration on (0, α) we derive the identity

A+B =
π

α
. (3.23)
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Since A+B =

√

γ(2γ + 1) + 2
√

λγ3, we deduce (3.18) from (3.23). Finally, since

tan−1 z =
π

2
− 1

z
+

1

3z3
+O(z−5) when z → ∞,

we derive

− 1

γv′(φ)
=

1

Y (φ)
= φ+O(φ3) when φ → 0

from (3.22), which implies (3.19) by l’Hospital rule. Relation (3.20) is proved similarly.

�

Next we denote by Sα(a) the spherical cap with vertex a ∈ SN−1 and azimuthal opening α from a
and S∗

α(a) = Sα(a) \ {a}. The next statement is a rephrasing of Lemma 3.3 in a geometric framework.

Corollary 3.4. Let α, ǫ and γ > 0 be as in Lemma 3.3 and a ∈ SN−1. Then there exists a unique

solution w = wa,α,γ,ǫ of

−1

2
∇′ |∇′w|2 .∇′w + γ |∇′w|4 + (2γ + 1) |∇′w|2 + ǫw = 0 in S∗

α(a),

lim
ℓ(σ,a)→0

w(σ) = ∞,

lim
ℓ(σ,a)→α

w(σ) = ∞
(3.24)

rotationally invariant with respect to a. If a is replaced by a′ ∈ SN−1, the solution wa′,α,γ,ǫ of (3.29)
in S∗

α(a
′) is derived from wa,α,γ,ǫ by an orthogonal transformation exchanging a and a′. The mapping

ǫ 7→ wa,α,γ,ǫ is decreasing and for any σ0 ∈ S∗
α(a)

lim
ǫ→0

ǫwa,α,γ,ǫ(σ0) = λ(α, γ) := λ(γ, S∗
α(a)), (3.25)

(this notation is coherent with λ(γ, S) already used). The function w̃a,α,γ,ǫ = wa,α,γ,ǫ − wa,α,γ,ǫ(σ0)
converges locally uniformly in S∗

α(a
′) to the unique viscosity solution w := wa,α,γ rotationally invariant

with respect to a of

−1

2
∇′ |∇′w|2 .∇′w + γ |∇′w|4 + (2γ + 1) |∇′w|2 + λ(α, γ) = 0 in S∗

α(a),

lim
ℓ(σ,a)→0

w(σ) = ∞,

lim
ℓ(σ,a)→α

w(σ) = ∞.

(3.26)

Finally

wa,α,γ(σ) = −1

γ
ln (ℓ(a, σ)) +O(1) as σ → a, (3.27)

and

wa,α,γ(σ) = −1

γ
ln (α− ℓ(a, σ)) +O(1) as ℓ(σ, a) → 0. (3.28)

The following statement is formally similar to Corollary 3.4. It makes more precise the approxi-

mations used in the proof of Theorem A, in the construction of the proof of Theorem B in the case

α = π.
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Corollary 3.5. Let ǫ and γ > 0 and a ∈ SN−1. Then there exists a unique rotationally invariant with

respect to a solution v = va,γ,ǫ, of

−1

2
∇′ |∇′v|2 .∇′v + γ |∇′v|4 + (2γ + 1) |∇′v|2 + ǫv = 0 in SN−1 \ {a},

lim
ℓ(σ,a)→0

v(σ) = ∞,
(3.29)

For any σ0 ∈ SN−1 \ {a}

lim
ǫ→0

ǫva,γ,ǫ(σ0) = Λ(γ) :=
1

4γ3

(

1

4
− γ(2γ + 1)

)2

. (3.30)

The function ṽa,γ,ǫ = va,γ,ǫ−va,γ,ǫ(σ0) converges locally uniformly in SN−1\{a} to the unique viscosity

solution v := va,γ rotationally invariant with respect to a of

−1

2
∇′ |∇′v|2 .∇′v + γ |∇′v|4 + (2γ + 1) |∇′v|2 + Λ(γ) = 0 in SN−1 \ {a},

lim
ℓ(σ,a)→0

v(σ) = ∞.
(3.31)

Finally

va,γ(σ) = −1

γ
ln (ℓ(a, σ)) +O(1) as σ → a. (3.32)

As in Corollary 3.4, if a is replaced by a′ ∈ SN−1, the solution va′,γ,ǫ of (3.29) in SN−1 \ {a′} is

derived from va,γ,ǫ by an orthogonal transformation exchanging a and a′. The mapping ǫ 7→ va,γ,ǫ is

decreasing.

Proof of Theorem D. Step 1: Approximate solutions. We consider two sequences of smooth spherical

domains, {Sk} and {S′
k} such that

Sk ⊂ Sk ⊂ Sk+1 ⊂ S and
⋃

k

Sk = S,

S ⊂ S′
k+1 ⊂ S

′
k+1 ⊂ S′

k and int

(

⋂

k

S′k

)

= S.

Such a sequence of domains {S′
k} exists since ∂S = ∂S

c
. To each domain we associate the positive

exponents βk := βSk
and β′

k := βS′
k

and the corresponding spherical p-harmonic functions ωk := ωSk

and ω′
k := ωS′

k
, defined respectively in Sk and S′

k, and such that ωk(σ0) = ω′
k(σ0) for some σ0 ∈ S1,

so that the functions uk(r, .) = r−βkωk and u′k(r, .) = r−β′
kω′

k are respectively p-harmonic in the cones

CSk
and CS′

k
and vanishes on ∂CSk

\ {0} and ∂CS′
k
\ {0}. For γ, δ, ǫ > 0, we denote by wk,γ,δ,ǫ the

solution of

−δ∆w − 1

2
∇′ |∇′w|2 .∇′w + γ |∇′w|4 + (2γ + 1) |∇′w|2 + ǫw = 0 in Sk

lim
ρk(σ)→0

w(σ) = ∞,
(3.33)
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and by w′
k,γ,δ,ǫ the one of

−δ∆w′ − 1

2
∇′ |∇′w′|2 .∇′w′ + γ |∇′w′|4 + (2γ + 1) |∇′w′|2 + ǫw′ = 0 in S′

k

lim
ρ′
k
(σ)→0

w′(σ) = ∞,
(3.34)

where ρk(.) = dist (., ∂Sk) and ρ′k(.) = dist (., ∂S′
k). By the maximum principle all the functions w′

ℓ,γ,δ,ǫ

and wk,γ,δ,ǫ are positive and the following comparison relations hold:

(i) w′
ℓ,γ,δ,ǫ ≤ wk,γ,δ,ǫ in S′

k ∀k, ℓ > 0,

(ii) wℓ,γ,δ,ǫ ≤ wk,γ,δ,ǫ in Sk ∀k ≤ ℓ,

(iii) w′
ℓ,γ,δ,ǫ ≥ w′

k,γ,δ,ǫ in S′
k ∀k ≤ ℓ,

(iv) wk,γ,δ,ǫ ≤ wk,γ,δ,ǫ′ in Sk ∀ǫ′ ≤ ǫ,

(v) w′
k,γ,δ,ǫ ≤ w′

k,γ,δ,ǫ′ in S′
k ∀ǫ′ ≤ ǫ.

(3.35)

Furthermore it follows from Corollary 2.4,

(i) |∇wk,γ,δ,ǫ(σ)| ≤
c

ρk(σ)
∀σ ∈ Sk,

(ii)
∣

∣

∣
∇w′

k,γ,δ,ǫ(σ)
∣

∣

∣
≤ c

ρ′k(σ)
∀σ ∈ S′

k,
(3.36)

where c = c(N). Moreover, similarly to in (2.37),

(i) −1

γ
ln ρk(σ) −

Mk

ǫ
≤ wk,γ,δ,ǫ(σ) ≤ −1

γ
ln ρk(σ) +

Mk

ǫ
∀σ ∈ Sk,

(ii) −1

γ
ln ρ′k(σ) −

M ′
k

ǫ
≤ w′

k,γ,δ,ǫ(σ) ≤ −1

γ
ln ρ′k(σ) +

M ′
k

ǫ
∀σ ∈ S′

k.

(3.37)

We let δ → 0 and derive that, up to a subsequence, wk,γ,δn,ǫ → wk,γ,ǫ locally uniformly in Sk and

w′
k,γ,δn,ǫ

→ w′
k,γ,ǫ locally uniformly in S′

k. The two functions wk,γ,ǫ and w′
k,γ,ǫ satisfy (3.35), (3.36)

and (3.37) and are viscosity solutions of

−1

2
∇′ |∇′w|2 .∇′w + γ |∇′w|4 + (2γ + 1) |∇′w|2 + ǫw = 0 in Sk

lim
ρk(σ)→0

w(σ) = ∞,
(3.38)

and

−1

2
∇′ |∇′w′|2 .∇′w′ + γ |∇′w′|4 + (2γ + 1) |∇′w′|2 + ǫw′ = 0 in S′

k

lim
ρ′
k
(σ)→0

w′(σ) = ∞,
(3.39)
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respectively. Furthermore w′
ℓ,γ,ǫ ≤ wk,γ,ǫ in Sk for any k, ℓ > 0, (k, ǫ) 7→ wk,γ,ǫ is nonincreasing and

(k, ǫ) 7→ w′
k,γ,ǫ is nondecreasing with respect to k and nonincreasing with respect to ǫ. Next we let

k → ∞. Then wk,γ,ǫ ↓ wγ,ǫ and w′
k,γ,ǫ ↑ w′

γ,ǫ. The two functions w′
γ,ǫ and wγ,ǫ are defined in S and are

nonincreasing functions of ǫ. Furthermore there holds

(i) w′
1,γ,ǫ ≤ w′

ℓ,γ,ǫ ≤ w′
γ,ǫ ≤ wγ,ǫ ≤ wk,γ,ǫ ≤ w1,γ,ǫ ∀k, ℓ ≥ 1,

(ii) max
{
∣

∣∇w′
γ,ǫ(σ)

∣

∣ , |∇wγ,ǫ(σ)|
}

≤ c

ρ(σ)
∀σ ∈ S,

(3.40)

where c = c(N). Estimate (3.40)-(i) can be made more precise in the following way: for each σ ∈ S,

there is kσ ∈ N such that σ ∈ Skσ and

−1

γ
ln ρ(σ)− 1

ǫ
max
k≥kσ

Mk ≤ wγ,ǫ(σ) ≤ −1

γ
ln ρ(σ) +

1

ǫ
min
k≥kσ

Mk, (3.41)

and

−1

γ
ln ρ(σ) − 1

ǫ
max
k≥1

M ′
k ≤ w′

γ,ǫ(σ) ≤ −1

γ
ln ρ(σ) +

1

ǫ
min
k≥1

M ′
k. (3.42)

Step 2: boundary blow-up.

The compactness of approximate solutions vanishing at a fixed point in the local uniform convergence

topology is easy to obtain thanks to the uniform estimate of the gradient. The main difficulty is to preserve

the boundary blow-up when the parameters k, γ, δ, ǫ tend to their respective limit.

Case 1. We first assume that there exist σ0 ∈ S, two decreasing sequences {ǫn}, {δℓ} converging to 0
and an increasing sequence {kj} tending to infinity with the property that

ǫnw
′
kj ,γ,δℓ,ǫn

(σ0) ≤ ǫmw′
kj ,γ,δℓ,ǫm

(σ0) for all m < n , j, ℓ ∈ N. (3.43)

Since w̃′
kj ,γ,δℓ,ǫn

= w′
kj ,γ,δℓ,ǫn

− w′
kj ,γ,δℓ,ǫn

(σ0) satisfies

−δℓ∆
′w̃ − 1

2
∇′ |∇′w̃|2 .∇′w̃ + γ |∇′w̃|4 + (2γ + 1) |∇′w̃|2 + ǫnw̃ + ǫnw

′
kj ,γ,δℓ,ǫn

(σ0) = 0 in S′
kj

lim
ρ′
kj

(σ)→0
w̃(σ) = ∞,

(3.44)

there holds

w̃′
kj ,γ,δℓ,ǫn

≥ w̃′
kj ,γ,δℓ,ǫm

for all m < n , j, ℓ ∈ N. (3.45)

Letting δℓ → 0 we derive that w′
kj ,γ,δℓ,ǫn

→ w′
kj ,γ,ǫn

locally uniformly in S′
kj

and w′
kj ,γ,ǫn

satisfies

−1

2
∇′ |∇′w|2 .∇′w + γ |∇′w|4 + (2γ + 1) |∇′w|2 + ǫnw = 0 in S′

kj

lim
ρ′
kj

(σ)→0
w(σ) = ∞.

(3.46)

Furthermore, for all m < n , j ∈ N,

(i) w′
kj ,γ,ǫn

≥ w′
kj ,γ,ǫm

(ii) w′
kj ,γ,ǫn

− w′
kj ,γ,ǫn

(σ0) ≥ w′
kj ,γ,ǫm

− w′
kj ,γ,ǫm

(σ0)

(iii) ǫnw
′
kj ,γ,ǫn

(σ0) ≤ ǫmw′
kj ,γ,ǫm

(σ0).

(3.47)
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By monotonicity with respect to S′
kj

, w′
kj ,γ,ǫn

↑ w′
γ,ǫn as j → ∞. Let a ∈ ∂S and {aj} ⊂ ∂Skj

converging to a (such a sequence exits since ∂S = ∂S̄c). Let vaj ,γ,ǫn be the solution of (3.29) with

ǫ = ǫn and a = aj which exists by Corollary 3.5. Then

vaj ,γ,ǫn ≤ w′
kj ,γ,ǫn in Skj (3.48)

Since va,γ,ǫn is obtained from vaj ,γ,ǫn by an orthogonal transformation on SN−1, we derive

va,γ,ǫn ≤ w′
γ,ǫn in S. (3.49)

This proves that w′
γ,ǫn is a viscosity solution of

−1

2
∇′ |∇′w|2 .∇′w + γ |∇′w|4 + (2γ + 1) |∇′w|2 + ǫnw = 0 in S

lim
ρ(σ)→0

w(σ) = ∞,
(3.50)

and from (3.47),
(i) w′

γ,ǫn ≥ w′
γ,ǫm

(ii) w′
γ,ǫn − w′

γ,ǫn(σ0) ≥ w′
γ,ǫm − w′

γ,ǫm(σ0)

(iii) ǫnw
′
γ,ǫn(σ0) ≤ ǫmw′

γ,ǫm(σ0).

(3.51)

Because w̃′
γ,ǫn = w′

γ,ǫn − w′
γ,ǫn(σ0) is increasing with respect to n, locally compact in the topology of

local uniform convergence and satisfies

−1

2
∇′ |∇′w̃|2 .∇′w̃ + γ |∇′w̃|4 + (2γ + 1) |∇′w̃|2 + ǫnw̃ + ǫnw

′
γ,ǫn(σ0) = 0 in S

lim
ρ(σ)→0

w̃(σ) = ∞,
(3.52)

and since ǫnw
′
γ,ǫn(σ0) → λ′(γ, S) as n → ∞, we infer that w̃′

γ = limn→∞ w̃′
γ,ǫn is a locally Lipschitz

continuous viscosity solution of

−1

2
∇′ |∇′w̃|2 .∇′w̃ + γ |∇′w̃|4 + (2γ + 1) |∇′w̃|2 + λ′(γ, S) = 0 in S

lim
ρ(σ)→0

w̃(σ) = ∞.
(3.53)

Case 2. If the condition of Step 1 does not hold, for any σ0 ∈ S there exist two decreasing sequences

{ǫn}, {δℓ} converging to 0 and an increasing sequence {kj} tending to infinity, all depending on σ0, such

that

λ′(γ, S) > ǫnw
′
kj ,γ,δℓ,ǫn

(σ0) > ǫmw′
km,γ,δm,ǫm

(σ0) ∀n > m, (3.54)

where

λ′(γ, S) = lim
n→∞,j→∞,ℓ→∞

ǫnw
′
kj ,γ,δℓ,ǫn

(σ0).

We fix some σ0 ∈ S. Then w̃′
kj ,γ,δℓ,ǫn

= w′
kj ,γ,δℓ,ǫn

− w′
kj ,γ,δℓ,ǫn

(σ0) satisfies

−δℓ∆w̃ − 1

2
∇′ |∇′w̃|2 + γ |∇′w̃|4 + (2γ + 1) |∇′w̃|2 + ǫnw̃ + λ′(γ, S) ≥ 0 in S′

kj

lim
ρ′
kj

(σ)→0
w̃(σ) = ∞.

(3.55)
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We introduce the problem

−δℓ∆Z − 1

2
∇′ |∇′Z|2 + γ |∇′Z|4 + (2γ + 1) |∇′Z|2 + ǫnZ + λ′(γ, S) = 0 in S′

kj

lim
ρ′
kj

(σ)→0
Z(σ) = ∞.

(3.56)

Since (3.56) can be re-written as

−δℓ∆Z ′ − 1

2
∇′ |∇′Z ′|2 + γ |∇′Z ′|4 + (2γ + 1) |∇′Z ′|2 + ǫnZ

′ = 0 in S′
kj

lim
ρkj (σ)→0

Z ′(σ) = ∞,
(3.57)

with Z ′ = Z + ǫ−1
n λ′(γ, S), existence is ensured by the approximation by finite boundary data as above.

We denote by Zkj ,γ,δℓ,ǫn and Z ′
kj ,γ,δℓ,ǫn

, which coincides actually with w̃′
kj ,γ,δℓ,ǫn

, the solutions of (3.56)

and (3.57) obtained by such approximation. Using Corollary 3.5 as in Case 1and comparison, we obtain

the following estimate

vakj ,γ,ǫn − λ′(γ, S)

ǫn
≤ Z ′

kj ,γ,δℓ,ǫn
− λ′(γ, S)

ǫn
= Zkj ,γ,δℓ,ǫn ≤ w̃′

kj ,γ,δℓ,ǫn
in S′

kj
, (3.58)

where, again akj ∈ Skj and vakj ,γ,ǫn is the solution of (3.29) with ǫ = ǫn and a = aj which exists by

Corollary 3.5. Now the sequences {Zkj ,γ,δℓ,ǫn}ǫn,kj and {wkj ,γ,δℓ,ǫn}kj are increasing. Letting succes-

sively δℓ → 0 and kj → ∞ we infer that, up to a subsequence, Zkj ,γ,δℓ,ǫn converges locally uniformly

to some Zγ,ǫn and w̃′
kj ,γ,δℓ,ǫn

converges locally uniformly to some w̃′
γ,ǫn = w′

γ,ǫn −w′
γ,ǫn(σ0) which are

respectively viscosity solutions of

−1

2
∇′ |∇′Z|2 + γ |∇′Z|4 + (2γ + 1) |∇′Z|2 + λ′(γ, S) + ǫnZ = 0 in S

lim
ρ(σ)→0

Z(σ) = ∞.
(3.59)

and

−1

2
∇′ |∇′w̃|2 + γ |∇′w̃|4 + (2γ + 1) |∇′w̃|2 + ǫnw

′
γ,ǫn(σ0) + ǫnw̃ = 0 in S

lim
ρ(σ)→0

w̃(σ) = ∞.
(3.60)

Furthermore Zγ,ǫn and w̃′
γ,ǫn are locally bounded in S, relatively compact for the local uniform topology

and they satisfy

Zγ,ǫn ≤ w̃′
γ,ǫn in S. (3.61)

At end, the sequence {Zγ,ǫn}ǫn is nondecreasing. Hence, up to a subsequence, {w̃′
γ,ǫn} converges locally

uniformly in S to some w̃′
γ which satisfies

lim
ǫn→0

Zγ,ǫn = Zγ ≤ w̃′
γ in S. (3.62)

Since

lim
ρ(σ)→0

Zγ,ǫn(σ) = ∞ ≤ lim
ρ(σ)→0

Zγ(σ),
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it follows that w̃′
γ is a locally Lipschitz continuous viscosity solution of (3.53).

Because of (3.35) we can easily construct the solution w̃γ of

−1

2
∇′ |∇′w̃|2 .∇′w̃ + γ |∇′w̃|4 + (2γ + 1) |∇′w̃|2 + λ(γ, S) = 0 in S

lim
ρ(σ)→0

w̃(σ) = ∞,
(3.63)

as approximations from inside, with λ(γ, S) ≥ λ′(γ, S) and it dominates w̃′
γ .

Step 3: end of the proof. As in the proof of Proposition 2.6, the functions γ 7→ λ′(γ, S) − γ and

γ 7→ λ(γ, S) − γ are non increasing functions of γ. We recall that λ(α, γ) = λ(γ, S∗
α(a)). By formula

(3.18), for any α > 0 limγ→0 λ(α, γ) = ∞. Since

λ(γ, S) − γ ≥ λ′(γ, S) − γ ≥ λ(π, γ)− γ (3.64)

it follows that λ(γ, S)− γ and λ′(γ, S)− γ converge to infinity when γ converges to 0. Let α > 0 such

that Sα(a) ⊂ S for some a ∈ S. If

γ = β+(α) :=
π2

4α(π + α)
,

then λ(α, β+(α)) − β+(α) = 1. Since

λ′(β+(α), S) − β+(α) ≤ λ(β+(α), S) − β+(α) < λ(β+(α), S
∗
α(a))− β+(α) = 1, (3.65)

it follows that

inf
{

λ′(γ, S)− γ : γ > 0
}

≤ inf {λ(γ, S)− γ : γ > 0} < 1. (3.66)

We set

βM
+ = inf {γ : λ(γ, S)− γ < 1} and βm

+ = inf
{

γ : λ′(γ, S)− γ < 1
}

. (3.67)

Let {γν} be a sequence decreasing to βm
+ when ν → ∞ and such that limν→∞ λ′(γν , S) = βm

+ + 1.

As in Step 1 we denote by w′
kj ,γν ,δℓ,ǫn

the solution of (3.34) with (kj , γν , δℓ, ǫn) = (k, γ, δ, ǫ). There

always holds

w′
kj ,γν ,δℓ,ǫn

≤ w′
kj ,γµ,δℓ,ǫn

if ν ≥ µ. (3.68)

Again we distinguish two cases

Case 1. We assume that there exist σ0 ∈ S and monotone sequences {kj}, {δℓ} and {ǫn} such that

ǫnw
′
kj ,γν ,δℓ,ǫn

(σ0) ≤ ǫmw′
kj ,γµ,δℓ,ǫm

(σ0) for all m < n , µ ≤ ν , j, ℓ ∈ N, (3.69)

(notice that the monotonicity with respect to ν is always satisfied). As in Step 2-Case 1 it implies

w′
kj ,γν ,δℓ,ǫn

− w′
kj ,γν ,δℓ,ǫn

(σ0) ≥ w′
kj ,γµ,δℓ,ǫm

− w′
kj ,γµ,δℓ,ǫm

(σ0) for all m < n , µ < ν , j, ℓ ∈ N.

(3.70)

Letting δℓ → 0 and kj → ∞ we obtain that the limit function w′
γν ,ǫn satisfies

−1

2
∇′ |∇′w|2 .∇′w + γν |∇′w|4 + (2γν + 1) |∇′w|2 + ǫnw = 0 in S

lim
ρ(σ)→0

w(σ) = ∞,
(3.71)
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and w̃′
γν ,ǫn = w′

γν ,ǫn − w′
γν ,ǫn(σ0) is increasing both with respect to n and ν. If ǫn → 0 we derive that

w̃′
γν = limn→∞ w̃′

γν ,ǫn satisfies w̃′
γν (σ0) = 0 and

−1

2
∇′ |∇′w̃|2 .∇′w̃ + γν |∇′w̃|4 + (2γν + 1) |∇′w̃|2 + λ′(γν , S) = 0 in S

lim
ρ(σ)→0

w̃(σ) = ∞,
(3.72)

By gradient estimates and since w̃′
γν (σ0) = 0, the set of functions {w̃′

γν}ν is relatively compact for the

local uniform convergence in S. Furthermore w̃′
γν is increasing with respect to ν, with limit w̃′. Using

(3.67) and the definition of {γν}, we conclude that

−1

2
∇′ |∇′w̃′|2 .∇′w̃′ + βm

+ |∇′w̃′|4 + (2βm
+ + 1) |∇′w̃′|2 + βm

+ + 1 = 0 in S

lim
ρ(σ)→0

w̃′(σ) = ∞,
(3.73)

holds in the viscosity sense.

Case 2. We assume that for any σ0 ∈ S and ν there exist two decreasing sequences {ǫn}, {δℓ} converging

to 0 and an increasing sequence {kj} tending to infinity such that

βm
+ + 1 > ǫnw

′
kj ,γν ,δℓ,ǫn

(σ0) > ǫmw′
km,γν ,δm,ǫm

(σ0) ∀n > m, (3.74)

where

βm
+ + 1 = lim

ν→∞
λ′(γν , S) = lim

n→∞,j→∞,ℓ→∞
ǫnw

′
kj ,γν ,δℓ,ǫn

(σ0).

We follow the ideas in Step 2-Case 2 and consider the problem

−δℓ∆Z − 1

2
∇′ |∇′Z|2 + γν |∇′Z|4 + (2γν + 1) |∇′Z|2 + ǫnZ + βm

+ + 1 = 0 in S′
kj

lim
ρ′
kj

(σ)→0
Z(σ) = ∞.

(3.75)

Since (3.75) can be re-written as (3.57) with γ, replaced by νν and setting Z ′ = Z + ǫ−1
n (βm

+ + 1), we

have existence and uniqueness of the solution Z∗
kj ,γν ,δℓ,ǫn

(we do not use the previous notation Zkj ,γν ,δℓ,ǫn

since the constant term is not of the form λ(γν , S)). The function Z ′∗
kj ,γν ,δℓ,ǫn

= Z∗
kj ,γν ,δℓ,ǫn

+ǫ−1
n (βm

+ +

1) satisfies (3.57) with γ replaced by γν . Then (3.58) is replaced by

vakj ,γν ,ǫn − βm
+ + 1

ǫn
≤ Z ′∗

kj ,γν ,δℓ,ǫn
− βm

+ + 1

ǫn
= Z∗

kj ,γν ,δℓ,ǫn
≤ w̃′

kj ,γν ,δℓ,ǫn
in S′

kj
, (3.76)

where vakj ,γν ,ǫn is as above with obvious modifications. We denote by w̃′
γν ,ǫn = wγν ,ǫn − wγν ,ǫn(σ0)

the limit, when δℓ → 0 and kj → ∞, of w̃′
kj ,γν ,δℓ,ǫn

= wkj ,γν ,δℓ,ǫn − wkj ,γν ,δℓ,ǫn(σ0) and by Z∗
γν ,ǫn the

one of Z∗
kj ,γν ,δℓ,ǫn

under the same conditions. They are respective viscosity solutions of

−1

2
∇′ |∇′w̃|2 + γν |∇′w̃|4 + (2γν + 1) |∇′w̃|2 + ǫnw

′
γν ,ǫn(σ0) + ǫnw̃ = 0 in S

lim
ρ(σ)→0

w̃(σ) = ∞.
(3.77)
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and

−1

2
∇′ |∇′Z|2 + γν |∇′Z|4 + (2γν + 1) |∇′Z|2 + βm

+ + 1 + ǫnZ = 0 in S

lim
ρ(σ)→0

Z(σ) = ∞.
(3.78)

Furthermore Z∗
γν ,ǫn and w̃′

γν ,ǫn are locally bounded in S, relatively compact for the local uniform topol-

ogy and they satisfy

Z∗
γν ,ǫn ≤ w̃′

γν ,ǫn in S. (3.79)

The sequence {Z∗
γν ,ǫn} is nondecreasing both with respect to n and ν. Therefore the boundary condition

is kept. Letting ǫn → 0 and γν → βm
+ we conclude as in Step 1 that , up to a subsequence {νs} there

exists a locally Lipschitz continuous function w̃′ such that w̃′
γνs ,ǫn

→ w̃′ when ν → ∞ and νs → βm
+

succesively, and w̃′ is a viscosity solution of (3.73).

We end the proof by setting ωM
+ = e−βM

+ wM
+ . �

Mutadis mutandis in the above proof, we have an existence result for positive regular infinite har-

monic function in CS vansihing on ∂CS .

Theorem 3.6. Assume S ⊂ SN−1 is an outward accessible domain, that is ∂S = ∂S
c
. Then there exist

two negative exponents βM
− ≥ βm

− and two positive functions ωM
− and ωm

− in C∞(S), vanishing on ∂S
such that

uM+ (r, σ) = r−βM
− ωM

− (σ) and um− (r, σ) = r−βm
− ωm

− (σ), (3.80)

are infinite harmonic in CS and vanish on ∂CS .
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